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Abstract. Using the notions of forward and backward arithmetic convergence in asym-
metric metric spaces, we have defined arithmetic ff -continuity and arithmetic fb-
continuity and prove some interesting results. Moreover, we have introduced the con-
cepts of forward and backward arithmetic compactness and obtained the related results
in the setting of asymmetric metric space.
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1. Introduction and Preliminaries

In 1931, Wilson [18] first introduced asymmetric metric spaces as quasi-metric
spaces, and afterwards they were studied by many other authors (see [1, 14, 15, 16]).
An asymmetric metric space is a generalization of a metric space but the symmetry
axiom is eliminated in the definition of metric spaces. We can come up with some
troubles in several classical statements of symmetric analysis without the symmetry
property in the definition of such spaces. In asymmetric metric spaces, some notions
such as convergence, completeness and compactness are different from the metric
case. There are two notions for each of them, namely forward and backward ones,
since we have two topologies which are the forward topology and the backward
topology in the same space (see [13]). Collins and Zimmer [10] studied these notions
in the asymmetric context.

An example that asymmetric metrics are common in real life is taxicab geom-
etry topology including one-way streets, where a path from point A to point B

contains a different set of streets than a path from B to A. Also, the examples of
the latest applications of asymmetric metric spaces in the field of pure and applied
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mathematics and material science are as in [8]. In [9], Cobzas gave the basic results
on asymmetric normed spaces.

Ruckle [17] introduced the notion ofarithmetic convergence as a sequence x =
(xk) defined on N, and it is said to be arithmetic convergent if for each ε > 0
there is an integer n such that for every integer m we have |xm − x<m,n>| < ε.
Here and henceforth, < m,n > denotes the greatest common divisor of m and n.
Çakalli [4] gave another definition of arithmetic convergence of a sequence (xk) as
a sequence x = (xk) is said to be arithmetically convergent if for each ε > 0 there
is an integer n0 such that |xm − x<m,n>| < ε for every integers m,n satisfying
< m,n >≥ n0. Throughout the article, we follow the definition given by Çakalli
in his corrigendum to the paper [4]. For more details on arithmetic convergence
and arithmetic continuity, we refer to [4, 19, 20, 21, 22, 23]. For different types of
continuity and b- metric spaces, we refer to [2, 3, 5, 6, 7, 11, 12].

In this article, we will first introduce the concepts of forward and backward
arithmetic convergence and using these notions we will define forward and backward
arithmetic continuity in asymmetric metric spaces and establish some interesting
results. In the last section, we will introduce forward and backward arithmetic
compactness and obtain related results.

2. Asymmetric Metric Spaces

Let us recall some definitions and results on asymmetric metric spaces which
were given in [10].

Definition 2.1. A function d : X ×X → R is an asymmetric metric and (X, d)
is an asymmetric metric space if

(i) d(x, y) ≥ 0 and d(x, y) = 0 holds if and only if x = y for every x, y ∈ X .

(ii) d(x, z) ≤ d(x, y) + d(y, z); for every x, y, z ∈ X .

Definition 2.2. The forward topology τ+ induced by d is the topology generated
by the forward open balls B+(x, ε) = {y ∈ X : d(x, y) < ε} for x ∈ X ; ε > 0.

Likewise, the backward topology τ− induced by d is the topology generated by
the backward open balls B−(x, ε) = {y ∈ X : d(y, x) < ε} for x ∈ X ; ε > 0.

Definition 2.3. A set S ⊂ X is forward bounded (resp. backward bounded), if
there exists x ∈ X and ε > 0 such that S ⊂ B+(x, ε) (resp. S ⊂ B−(x, ε)).

Definition 2.4. A sequence (xn) is said to be forward convergent to x ∈ X (back-
ward convergent to x ∈ X) if and only if

lim
n→∞

d(x, xn) = 0 ( lim
n→∞

d(xn, x) = 0)

and is denoted by xn
f
→ x (xn

b
→ x).
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Definition 2.5. A sequence (xn) in an asymmetric metric space (X, d) is forward
Cauchy (backward Cauchy) if for each ε > 0 there exists a N ∈ N such that for
k > n > N ; d(xn, xk) < ε (d(xk, xn) < ε) holds.

Definition 2.6. [Sequential definition of continuity] Let (X, dX) and (Y, dY ) be
asymmetric metric spaces. A function f : X → Y is ff − continuous at x ∈ X if

and only if whenever xn
f
→ x in (X, dX) we have f(xn)

f
→ f(x) in (Y, dY ).

The statement holds analogously for the other types. Note that the forward
uniform continuity is same as the backward uniform continuity.

Definition 2.7. A set S ⊂ X is

(i) forward compact if every open cover of S in the forward topology has a finite
subcover.

(ii) forward relatively compact if S is forward compact, where S denotes the clo-
sure of S in the forward topology.

(iii) forward sequentially compact if every sequence in X contains a forward con-
vergent subsequence.

(iv) forward complete if every forward Cauchy sequence is forward convergent.

Definition 2.8. Let (fn) be a function sequence and f be a function from X to Y .
We say that the sequence (fn) is forward convergent uniformly (backward convergent
uniformly) to limit f if for every ε > 0 there exists a positive number N such that
for all x ∈ X and all n ≥ N we have d(f(x), fn(x)) < ε (d(fn(x), f(x)) < ε).

3. Arithmetic Continuity in Asymmetric Metric Spaces

In this section, we introduce the concepts of forward and backward arithmetic con-
vergence and forward and backward arithmetic continuity in asymmetric metric
spaces and prove some results using these notions.

Definition 3.1. A sequence x = (xk) is called forward arithmetic conver-
gent (resp. backward arithmetic convergent) in an asymmetric metric space
(X, d) if for each ε > 0 there is an integer N such that d(x<m,n>, xm) <

ε (resp. d (xm, x<m,n>) < ε), for every integers m,n satisfying < m,n >≥ N.

We shall denote it by writing xm
af
→ x<m,n> (resp. xm

ab
→ x<m,n>).

Definition 3.2. Let (X, dX) and (Y, dY ) be two asymmetric metric spaces. A
function f : X → Y is arithmetic ff − continuous (respectively arithmetic
fb−continuous), iff it transforms forward arithmetic convergent sequence in (X, dX)
to forward arithmetic convergent sequence (respectively backward arithmetic con-
vergent sequence) in (Y, dY ).
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Theorem 3.1. Let (X, dX) and (Y, dY ) be asymmetric metric spaces. If f : X →
Y is uniformly continuous then it is arithmetic ff -continuous.

Proof. Let f : X → Y be uniformly continuous and (xn) be any forward arithmetic
convergence sequence in X . Since f is uniformly continuous, for a given ε > 0 there
exists δ > 0 such that for every x, y ∈ X with dX(x, y) < δ, dY (f(x), f(y)) < ε.
Again, the sequence (xn) is forward arithmetic convergent in X , hence for the same
δ > 0 there exists a positive integer m0 such that for all integers m,n satisfying
< m,n >≥ 0,

dX(x<n,m>, xn) < δ for each n ⇒ dY (f(x<n,m>), f(xn)) < ε for each n

⇒ the sequence (f(xn)) is forward arithmetic

convergent

⇒ the function f is arithmetic ff-continuous.

This completes the proof.

Definition 3.3. A sequence of functions (fn) from an asymmetric metric space
(X, dX) to an asymmetric metric space (Y, dY ) is said to be forward arithmetic
convergent (resp. backward arithmetic convergent) if for any ε > 0 and ∀ x ∈ X

there exists a positive integerm0 such that for all integersm,n satisfying< m,n >≥
0,

dY (f<n,m>(x), fn(x)) < ε (resp. dY (fn(x), f<n,m>(x)) < ε).

Theorem 3.2. If (fn) be a sequence of forward arithmetic convergent functions
from an asymmetric metric space (X, dX) to an asymmetric metric space (Y, dY )
and xo is a point in X such that

lim
x→xo

fn(x) = yn, n = 1, 2, 3 . . .

then (yn) is also forward arithmetic convergent.

Proof. Since the sequence (fn) is forward arithmetic convergent, therefore, for ε > 0
and a positive integer m0 such that for all integers m,n satisfying < m,n >≥ 0

dY (f<n,m>(x), fn(x)) < ε ∀x ∈ X.

Keeping n,m fixed and letting x → xo,

dY (y<n,m>, yn) < ε.

Hence, the sequence (yn) is forward arithmetic convergent.

Remark 3.1. The same result can be written for backward arithmetic convergence.
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Theorem 3.3. If (fn) is a sequence of arithmetic ff−continuous functions from
asymmetric metric space (X, dX) to asymmetric metric space (Y, dY ) with forward
convergence equivalent to backward convergence in Y and (fn) forward converges
uniformly to a function f , then f is arithmetic ff -continuous.

Proof. Let ε > 0 and (xn) be any forward arithmetic convergent sequence in X .

Since fn
f
→ f uniformly, we can choose N1 ∈ N so that dY (f(x), fn(x)) < ε

3

for all n ≥ N1 and x ∈ X . Now, in particular, fn(x<n,m>)
f
→ f(x<n,m>)

and so fn(x<n,m>)
b
→ f(x<n,m>). Thus, we can find N2 ∈ N so that

dY (fn(x<n,m>), f(x<n,m>)) <
ε
3
for all n ≥ N2. Let N = max {N1, N2}. Further,

(fn) is given to be a sequence of arithmetic ff -continuous functions. In particu-
lar, fN is arithmetic ff -continuous function, and thus arithmetic fb-continuous by
equivalence of forward and backward convergence in Y. So there exists an integer
n0, greater than N and δ > 0 such that

dY (fN (xn), fN(x<n,m>)) <
ε

3
for dX(x<n,m>, xn) < δ,

for all integers m,n satisfying < m,n >≥ n0. Consequently, whenever
dX(x<n,m>, xn) < δ and < m,n >≥ n0, we have

dY (f(xn), f(x<n,m>)) ≤ dY (f(xn), fN (xn)) + dY (fN(xn), fN (x<n,m>))

+dY (fN (x<n,m>), f(x<n,m>))

<
ε

3
+

ε

3
+

ε

3
= ε.

Therefore f is arithmetic fb-continuous and by equivalence of convergence it is also
arithmetic ff -continuous.

Theorem 3.4. Let (X, dX) and (Y, dY ) be two asymmetric metric spaces. Then
the set of all arithmetic ff -continuous functions from X to Y, with forward conver-
gence equivalent to backward convergence in Y, is a closed subset of all continuous
functions from X to Y i.e. A

ff (X,Y )= Aff (X,Y ) where A
ff (X,Y ) is the set of

all arithmetic ff -continuous functions from X to Y and Aff (X,Y ) denotes the
closure of Aff(X,Y ).

Proof. Let f ∈ Aff (X,Y ). Then there exists a sequence of points in Aff (X,Y )

such that fn
f
→ f as n → ∞. Let ε > 0 and (xn) be any forward arithmetic

convergent sequence in X . Since fn
f
→ f uniformly, we can choose N1 ∈ N so

that dY (f(x), fn(x)) <
ε
3
for all n ≥ N1 and x ∈ X . In particular, fn(x<n,m>)

f
→

f(x<n,m>) and so fn(x<n,m>)
b
→ f(x<n,m>). Therefore, we can findN2 ∈ N so that

dY (fn(x<n,m>), f(x<n,m>)) <
ε
3
for all n ≥ N2. Assume that N = max {N1, N2}.

Moreover, (fn) is given to be a sequence of arithmetic ff -continuous functions.
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In particular, fN is arithmetic ff -continuous function, and thus arithmetic fb-
continuous by equivalence of forward and backward convergence in Y. So there
exists an integer n0 greater than N and δ > 0 such that

dY (fN (xn), fN (x<n,m>)) <
ε

3
for dX(x<n,m>, xn) < δ

for all integers m,n satisfying < m,n >≥ n0. Thus, whenever dX(x<n,m>, xn) < δ

and < m,n >≥ n0,, we have

dY (f(xn), f(x<n,m>)) ≤ dY (f(xn), fN (xn)) + dY (fN(xn), fN (x<n,m>))

+dY (fN (x<n,m>), f(x<n,m>))

<
ε

3
+

ε

3
+

ε

3
= ε.

Therefore f is arithmetic fb-continuous and by equivalence of convergence it is
also arithmetic ff -continuous. So f ∈ Aff (X,Y ). This completes the prove of the
theorem.

In [4], Çakalli introduced the notion of (cAC)-continuity as follows: a function f

is said to be (cAC)-continuous (or f ∈ (cAC)) if f transforms convergent sequences
to arithmetic convergent sequences. We define this notion in the sense of arithmetic
forward (or backward) convergence as follows:

A function f from asymmetric metric space X to asymmetric metric space Y is
said to be forward (cAC)-continuous if it transforms forward convergent sequences
inX to forward arithmetic convergent sequences in Y, i.e. (xn) is forward convergent
in X implies f(xn) is forward arithmetic convergent in Y.

Theorem 3.5. Let (X, dX) and (Y, dY ) be two asymmetric metric spaces, with
forward convergence equivalent to backward convergence in Y. If (fn) is a sequence
of forward (cAC)-continuous functions from X to Y and (fn) forward converges
uniformly to a function f , then f is forward (cAC)-continuous.

Proof. Let ε > 0 be given and (xk) be any forward convergent sequence in X. Since
fn forward converges uniformly to f, there exists a positive integer N1 such that

dY (f(x), fn(x)) < ε
3
for all x ∈ X and n ≥ N1. In particular, fn(xn)

f
→ f(xn)

and so fn(xn)
b
→ f(xn). Thus we can find N2 ∈ N so that dY (fn(xn), f(xn)) <

ε
3

for all n ≥ N2. Assume that N = max {N1, N2}. By hypothesis, fn is forward
(cAC)-continuous. In particular fN is forward (cAC)-continuous, so there exists an
integer n0, greater than N such that dY (fN (x<m,n>), fN (xn)) < ε

3
for all x ∈ X

and for all integers m,n satisfying < m,n >≥ n0. Thus, it follows that

dY (f(x<m,n>), f(xn)) ≤ dY (f(x<m,n>), fN (x<m,n>))

+dY (fN(x<m,n>), fN (xn)) + dY (fN (xn), f(xn))

<
ε

3
+

ε

3
+

ε

3
= ε.

This establishes the result.
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Theorem 3.6. Let (X, dX) and (Y, dY ) be two asymmetric metric spaces. Then
the set of all forward (cAC)-continuous functions from X to Y, with forward con-
vergence equivalent to backward convergence in Y, is a closed subset of the set of all
continuous functions from X to Y.

Proof. The result immediately follows from the previous theorem.

4. Compactness in Asymmetric Metric Spaces

We will first introduce forward arithmetic compactness and backward arithmetic
compactness in the setting of asymmetric metric space as follows:

Definition 4.1. A subset A of an asymmetric metric space (X, dX) is said to be

(i) forward arithmetic compact if every sequence in A has forward arithmetic
convergent subsequence.

(ii) backward arithmetic compact if every sequence in A has backward arithmetic
convergent subsequence.

Theorem 4.1. An arithmetic ff -continuous image of an forward arithmetic com-
pact subset of an asymmetric metric space (X, d) is forward arithmetic compact.

Proof. Let (X, dX) and (Y, dY ) be asymmetric metric spaces. Let f : X → Y be an
arithmetic ff -continuous function and A ⊂ X be forward arithmetic compact. Let
(yn) be a sequence in f(A). Then we can write yn = f(xn) where xn ∈ X for each
n ∈ N. Since A is forward arithmetic compact, there exists an forward arithmetic
convergent subsequence (xnk

) of (xn). Again, it is given that f is arithmetic ff -
continuous, this implies that f(xnk

) is forward arithmetic convergent subsequence
of f(xn). Hence, f(A) is forward arithmetic compact.

Theorem 4.2. An arithmetic fb-continuous image of a backward arithmetic com-
pact subset of an asymmetric metric space (X, d) is backward arithmetic compact.

Proof. The proof is the same as in the previous theorem.

Theorem 4.3. Any closed subset of a forward arithmetic compact subset of an
asymmetric metric space (X, d) is forward arithmetic compact.

Proof. Let A be any forward arithmetic compact subset of X and B be a closed
subset of A. Let x = (xn) be any sequence of points in B. Then x = (xn) is a
sequence of points in A. Since A is forward arithmetic compact, there exists an
forward arithmetic convergent subsequence (xnk

) of the sequence x. Since B is
closed, so any sequence x = (xn) of points in B has forward arithmetic convergent
subsequence in B. Hence the result.



492 T. Yaying, B. Hazarika and S.A. Mohiuddine

Theorem 4.4. Any closed subset of a backward arithmetic compact subset of an
asymmetric metric space (X, d) is backward arithmetic compact.

Proof. The proof is the same as in the previous theorem.
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