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Abstract. The k-means algorithm with the corresponding problem formulation is one
of the first methods that researchers use when solving a new automatic grouping (clus-
tering) problem. Its improvement, modification and combination with other algorithms
are described in the works of many researchers. In this research, we propose new al-
gorithms of the Greedy Heuristic Method, which use an idea of the search in variable
neighborhoods for solving the classical cluster analysis problem, and allows us to obtain
a more accurate and stable result of solving in comparison with the known algorithms.
Our computational experiments show that the new algorithms allow us to obtain re-
sults with better values of the objective function value (sum of squared distances) in
comparison with classical algorithms such as k-means, j-means and genetic algorithms
on various practically important datasets. In addition, we present the first results for
the GPU realization of the Greedy Heuristic Method.

Keywords. Greedy Heuristic; clustering problem; GPU; k-Means Problem; variable
neighborhoods.

1. Introduction

The use of the automatic grouping (clustering) systems is becoming increasingly
common due to the expansion of application areas of data analysis problems such
as image recognition, diagnostic problems in medicine, marketing research, Internet
traffic research, etc. [1-3].

The idea of the k-means algorithm was proposed in 1956 by Steinhaus [4], and
the algorithm was developed by Lloyd in 1957, although his work [5] was published
only in 1982. After the article of McQueen [6], the algorithm became known as the
k-means algorithm, or the Lloyd algorithm. Since then, the k-means algorithm, its
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improvement, modification, and combination with other algorithms have become
the topic of many researchers [7].

The algorithm includes only two alternating steps: splitting a set of objects into
groups (clusters) around known centers (the object belongs to the group which has
center closest to this object) and redefining the centers of the groups. In the case
of the classical k-means problem, the cluster centers are usually called centroids.

An important issue of the k-means algorithm is the choice of initial centers,
which is often the subject of a special research [8-12]. Busare and Bansode [§]
describe the k-means algorithm in combination with an improved pillar algorithm,
which is efficient for selecting initial centers, however, its outlier problems lead to a
decrease in performance. The authors have solved these problems. Wang et al. [9]
used the Huffman tree to build the dissimilarity matrix and select initial centers.

For weighted multidimensional data, Mahmud et al. [10] used the choice of initial
centers by a heuristic method, which takes into account the weight of each data
attribute. Abdul Nazir and Sebastian [11] describe an improved k-means algorithm,
which includes special methods for determining initial centers and assigning points
to clusters. However, any technique of selecting initial values does not turn the
k-means algorithm into a global search algorithm. For the large multidimensional
datasets, its result are very far from the true minimum of the problem.

The J-means algorithm, developed by Hansen and Mladenovic [12], is considered
as one of the most efficient and accurate algorithms for this problem, as well as
for the p-median problem. The algorithm replaces the centers with one of the
data vectors. If such replacement leads to the objective function value decrease, it
continues the search using the standard k-means procedure.

The commonality of clustering problems based on the model of k-means and sim-
ilar (searched parameters of such problems are the coordinates of cluster centers)
with problems based on the model of mixture probability distribution separation
[13], in which the parameters of the problem are the unknown parameters of dis-
tributions (including mathematical expectations which can be considered as cluster
centers), supplemented by a priori probabilities of distributions. In addition, the
most popular algorithms for solving such problems, k-means and the EM-algorithm
[13], are similar in their structures: both are procedures with two alternating steps
of the dividing of objects into clusters and location of the centers. In both types
of problems, the objective functions are multi-extremal. This allows us to use sim-
ilar methods for increasing the accuracy and stability of the solutions obtained by
algorithms for both types of problems.

In the works of Stashkov et al. [14, 15], authors consider the use of the VNS
algorithm (Variable Neighborhood Search) as an extended local search method in
combination with an EM algorithm. The essence of the variable neighborhood
approach [16] is that for some intermediate solution, we determine a set of neigh-
borhoods of this solution. From this set, we select one neighborhood, in which,
using the appropriate local search algorithm, the algorithm searches for a solution
with the better value of the objective function. If such a solution has been found,
the intermediate solution is replaced by this new solution, and the algorithm goes
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on with the search in the same neighborhood. If such a solution cannot be found,
algorithm selects a new neighborhood.

The idea of a greedy agglomerative heuristic procedure for the k-means problem
in combination with VNS algorithms was first proposed in [7]. The idea of this
paper is to apply improved versions of the Greedy Heuristic Method algorithms [17]
using the idea of search in alternating neighborhoods to the k-means problem for
obtaining the most accurate (by the value of the objective function) and a stable
result. The results of our computational experiments are given in comparison with
both classical algorithms and other algorithms of the Greedy Heuristic Method,
including on those problems where the Genetic Algorithms of the Greedy Heuristic
Method have proven themselves well.

2. The k-Means Problem and Algorithm

The k-means problem [18] consists in finding such set of k cluster centers X;... X}
in d-dimensional space so that the sum of squared distances from them to the given
points A; (SSE, sum of squared errors) is minimal.

N
(2.1) argmin F(X1, .., X¢) = »_ min_ || X; — A
i—1 JE{1,k}

The algorithm of the same name sequentially improves a known solution, al-
lowing down to a local minimum of (2.1). However, in the strict sense, it is not a
local search algorithm of a continuous optimization problem, since the search for
a new solution is not carried out in an e-neighborhood. This is a simple and fast
algorithm applicable to the widest class of problems. The algorithm has some limi-
tations, in particular, we need to pre-set the number of groups k into which objects
are clustered. The result is highly dependent on the initial decision, usually chosen
randomly.

Algorithm 1 k-means (ALA procedure: alternating location and allocation)
Required : data vectors A;...An, k initial cluster centers X;...X
do
1 : For each of centers X;, compose clusters C; of data vectors so
that each of the data vectors is assigned to the nearest center.
2 : Calculate new center X; for each of clusters.
while Steps 1-2 lead to any modifications.

The aim of our study is to improve the accuracy of the result of solving the
k-means problem (by the value of the objective function) and the stability of the
result (1), for a fixed, limited time.

3. Clustering Algorithms of the Greedy Heuristic Method
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A greedy agglomerative heuristic procedure for the problem of k-means and
similar problems [19] consists of two steps. Such procedures require two known
("parent”) solutions to the problem (the first of which, for example, is the best
achieved solution), represented by sets of cluster centers S.

First, the sets of parent solutions are merged. We obtain an intermediate infea-
sible solution with an excessive number of clusters.

Then, the number of centers is gradually reduced. Each time, the algorithm
cuts off such a center, that the removal of this center gives the least significant
deterioration in the value of the objective function (1).

The algorithm of the basic greedy agglomerative heuristic procedure is as follows:

Algorithm 2 Basic Greedy Agglomerative Heuristic Procedure
Required : initial number of clusters K, required number of clusters k < K
initial solution S, |S| = K.
1: Improve the solution S with Algorithm 1 (if possible).
while K # k do
for each i’ € {1,K} do
2.1: 8" = S\{Xy}.
2.2: Improve S’with Algorithm 1, having performed 1-3 of its
iterations. Store the obtained value of (1) to FJ,.
end do
3: 1" = argmax, _73 Fir
4: Compose new solution S” = S\{X; }, and improve it with
Algorithm 1.
end do

We have proposed new heuristic procedures that modify the known solution
based on the second known solution.

Similar greedy agglomerative heuristic procedures were used as crossover op-
erators in the evolutionary (genetic) algorithms of the Greedy Heuristic Method
[17, 19]. In this paper, these procedures form neighborhoods that are used for
modifying the known solution when searching in a search algorithm in alternating
neighborhoods.

Algorithm 3 Greedy Procedure with Partial Merger # 1
Required: two "parent” sets (arrays) of cluster centers S’ = {X{,...,X}} and
ST ={X{,... X}
Calculate the objective function (1): F* = F(S");
Arrange the elements of S”in ascending order of values F'(S U {X}'})
for each i’ € {1, K}do
1: Attach an element of F(S U{X/}),
2: Run Algorithm 2 with initial solution S. Save the obtained set
of cluster centers S; and corresponding value F; of the objective
function (1). If F; < F* then S’ = S.
end do
3. Return the best solution obtained in Step 2.
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A simpler version of the greedy agglomerative procedure, but demanding more
computational resources is presented below. Note that, unlike Algorithm 3, this
algorithm was proposed earlier [17, 19] as a crossing-over operator for a Genetic
Algorithm with a greedy agglomerative heuristic procedure.

Algorithm 4 Greedy Procedure with Full Merger
Required: see Algorithm 3.

1: Combine sets S = 5" U S”.

2: Run Algorithm 2 with initial solution S.

Finally, an compromise variant is possible, in which the sets are partially com-
bined: the first parent set being taken completely, with a random number of ele-
ments chosen randomly from the second set [17, 20].

Algorithm 5 Greedy Procedure with Partial Merger # 1
Required: see Algorithm 3.
1: Generate randomly r’ € [0;1). Calculate r = [(k/2 — 2) - 7"?] + 2.
Here, [.] is the integer part.
2fori=1to k—r do
2.1: Form a randomly chosen subset S”’of S” of cardinality .
Combine sets S = 5" U S".
2.2: Run Algorithm 2 with the initial solution S.
end do
3: Return the best solution obtained in Step 2.2.

These heuristic procedures, which are (not in the strict sense) algorithms of local
search in the neighborhood of known (”parent”) solution represented by the set S
can be embedded in various global search strategies. These procedures can be used
for composing new solutions which are derived from solution S” (”child” solutions
of S by combining S with other solution S”. Thus, greedy procedures form the
neighborhoods of S, and S” is a parameter of such neighborhoods.

The Greedy Heuristic Method [19] provides, as one of the options for organiz-
ing a local search, the use of search algorithms with variable neighborhoods (VNS
algorithms) embedded in the greedy agglomerative procedures [21-23]. A review
of current local search methods based on the idea of variable neighborhoods and
approaches to combining them with other metaheuristics is given in [24]. In this
paper, we use the greedy agglomerative heuristic procedures embedded in the VNS
algorithm.

Algorithms 3-5 perform the search in the neighborhood formed by extension
of a known intermediate solution S’ by elements of another solution S” with the
subsequent removal of the extra cluster centers with the use of the greedy agglomer-
ative heuristic procedure. Thus, these algorithms search in some neighborhoods of
solution S’, and the second solution S” is a parameter of this neighborhood, which
is selected randomly (randomized). The idea of the proposed VNS-based algorithm
for solving the k-means problem can be described as follows:

Algorithm 6 k-VNS (general description of the algorithm family) # 1
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1: Run Algorithm 1 with randomly generated initial solution S.
2 O = Ogtart- Here, Ogtqrt is the index of the initial neighborhood type.
3:i=0,7=0.
while j < jnae and stop conditions (time limitation) are not satisfied do
while i < 4,4, do
4: Run Algorithm 1 from a randomly generated solution and obtain
new solution S’.
repeat
5: Depending on the value of variable O(values equal to 1, 2 and 3
are allowed), run Algorithm 3, 4 or 5, correspondingly, with initial
solutions S and S’. Thus, the neighborhood is determined by
variables O and S’.
if the result of Step 5 is better than S then
store new result to S,i = 0,5 = 0.
until Step 5 results in a solution which is worse than S

6: =1+ 1.
end do
7:1=0,7=j4+1,0=0+1;if O > 3 then O = 1.
end do

For this algorithm, values of two parameters are very important: i,,,, is the
number of unsuccessful attempts to search in the current type of neighborhood,
and jmaz is the number of unsuccessful switching of neighborhood types. We used
the values 44, = min{2k,20}, jimae = 2.

In addition, parameter Ogqr¢,which specifies the number of the initial type of
neighborhood. plays very important role. The parameter determines the type of
local minimum to which the solution is initially attracted. As shown by compu-
tational experiments, the initial type of the neighborhood largely determines the
future behavior and the result of the algorithm. We performed our computational
experiments with all its possible values. Depending on this value, the algorithms
are designated below respectively k-VNS1, k-VNS2, k-VNS3.

Moreover, the method of obtaining the second solution S’ in Step 4 is important,
too. By default, the second solution contains the number of centers equal to the
number of centers in solution S. We also used modifications of Algorithm 6, in which
the number of centers in solution S’ is chosen randomly from the set {2, 2|.S|},where
|S] is the number of centers in the solution S. In this case, the algorithms are named
k-VNSI1-RND, k-VNS2-RND, k-VNS3-RND.

Note that for k-means problems, the j-means procedure is considered to be very
efficient. However, the scope this procedure is limited to relatively small problems
due to computational complexity. This procedure is reduced to replacing the centers
with one of the data vectors. If such replacement is successful (from the point of view
of the objective function) then algorithm continues the search with the standard
k-means procedure [13, 19]. Thus, the j-means is a VNS algorithm.

In addition, for our computational experiments, we used the combined versions
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of the VNS and J-Means algorithms, denoting them: J-Means-VNS1, J-Means-
VNS2. In addition to three values of the neighborhood type O(as in Algorithm 6),
these versions of algorithms use the 4™ possible value. If the value is equal to 1, then
these algorithms use the J-means for local search, otherwise they run Algorithms
3-5. In algorithms J-Means-VNSx, Steps 5 and 7 are as follows: 5: Depending on
the value of variable O (values 1, 2, 3 and 4 are allowed), run algorithm J-Means,
Algorithms 3, 4, or 5, correspondingly, with initial solutions S and .
7:i=0,j=j+1,0=0+1,if O > 4 then O = 1.

4. Computational Experiments

To test our new family of algorithms (k-VNSx), we used the classical data sets
from the UCI Machine Learning Repository [25] and Clustering Datasets [26].

For our experiments (Tables 4.1-4.4), we used the computer system Depo X8Sti
(Xeon X5650 2.67 GHz CPU, 12 GB of RAM). Some of the experiments were also
conducted on a small system with the Atom N270 1.6 GHz CPU, 1 GB of RAM
(the same results if the execution time increases 16-25 times). For all data sets,
30 attempts were done with each of the algorithms (J-Means, k-means, k-VNSI,
k-VNS2, k-VNS3, k-VNS1-RND, k-VNS2-RND, k-VNS3-RND, J-Means—VNSI,
J-Means-VNS2). Only the best results achieved in each attempt were recorded.
For these results of each algorithm, the best and the worst, and the averaged values
were calculated (Min, Max, Average). To estimate the stability of the results, we
calculated the standard deviation (SD) of (1). The J-Means and k-means algorithms
were launched in multi-start mode. On selected data sets, we performed calculations
with various numbers of the required clusters (Tables 4.1, 4.4), the execution time
of the algorithms (Tables 4.2, 4.4).

The best minimum and average values of the objective function for each of
dataset and the minimum standard deviations are in italics (Tables 4.1-4.4).

The results of our computational experiments (Tables 4.1-4.4) showed that new
VNS-based algorithm family allows obtaining (lower average value of the objective
function and / or its standard deviation, a smaller spread of the achieved values) in
comparison with the classical algorithms of J-Means and k-means (table 4.5). At
this stage of our research, it is difficult to give a definite preference for any one of
the versions of the VNS algorithm or its combined versions of J-Means-VNS.

The results of computational experiments (Tables 4.1-4.4) are summarized in
Table 4.5, which shows the number of the best achieved values f the objective
function for each of the solved problems (data sets from the UCI and Clustering
Datasets repositories) among all clustering algorithms.

For testing purposes, we also used the results of non-destructive test tests of
prefabricated batches of electrical and radio products, conducted in a specialized
test center to complete the onboard equipment of spacecraft. The best values of the
objective function (minimum value, mean value and standard deviation) are shown
in bold italics (Tables 4.6-4.8).
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Table 4.1: Computational experiments with dataset ”ionosphere” (351 data vectors
of dimensionality 35), 30 sec., 30 attempts

Algorithm Min Max Average | Std.dev.
(the best)
10 clusters
J-Means 1590.34 | 1598.83 | 1594.77 241
k-means 1590.93 | 1598.61 | 1595.28 2.47
k-VNS1 1 586.38 | 1 586,65 | 1 586.52 0.12
k-VNS2 1 586.38 | 1591.99 | 1 588.00 2.36
k-VNS3 1 586.38 | 1591.99 | 1587.24 1.57
J-Means-VNS1 | 1 586.38 | 1586.63 | 1 586.44 0.10
J-Means-VNS2 | 1 586.39 | 1586.63 | 1 586.48 0.12
20 clusters
j-Means 1282.18 | 1299.13 | 1291.92 4.83
k-means 1286.30 | 1310.54 | 1 301,98 5.81
k-VNS1 1239.16 | 1259.56 | 1 246.39 5.18
k-VNS2 1243.94 | 1263.11 | 1252.26 4.96
k-VNS3 1 238.53 | 1265.28 | 1252.53 6.47
J-Means-VNS1 | 1 236.21 | 1 257.85 | 1 245.97 6.48
J-Means-VNS2 | 1245.71 | 1256.18 | 1 249.95 3.09

As seen from the results of our computational experiments, the new algorithms
again gave more stable results.

In addition, we compared the results of performed computational experiments
on data sets of semiconductor devices with the results of various modifications of
the Genetic Algorithm [19] including the Genetic Algorithm with Greedy Heuristic.
Comparative results are shown in Table 4.9. Here, we used the following abbre-
viations [19]: GA classical - genetic algorithm with random recombination, GH -
greedy heuristic procedures in the multistart mode, GAGH FP - Genetic Algorithm
with greedy heuristics and floating point alphabet, LS - local search, GAFS - ge-
netic algorithm with recombination of fixed length subsets [27], IBC - Information
Bottleneck Clustering.

As we see from Table 4.9, in some cases the objective function values achieved
by of our new algorithms turn out to be significantly better and more stable than
the results of the genetic algorithms. At the same time, for some problems, new
algorithms are inferior to genetic algorithms, but not significantly. Nevertheless,
new algorithms are. It should be noted that for medium-sized problems (up to
about 10,000 data vectors, up to 100 clusters), new algorithms lose their advantage
over genetic algorithms if we increase the time limitation significantly.
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Table 4.2: Computational experiments with dataset ”chess” (3196 Boolean data
vectors of dimensionality 37), 30 clusters, 30 attempts

Algorithm Min Max Average | Std.dev.
(the best)
3 min.
J-Means 8 021.22 | 8 102.13 | 8 060.24 21.05
k-means 7989.20 | 8038.81 | 8019.24 13.68
k-VNS1 7 960.82 | 7978.85 | 7967.27 4.99
k-VNS2 7 959.92 | 7989.01 | 7974.27 8.61
k-VNS3 7998.48 | 8 007.96 | 8 003.84 3.51
k-VNSI-RND | 7960.66 | 7978.62 | 7 968.86 5.94
k-VNS2-RND | 7961.89 | 7996.10 | 7 972.31 8.76
k-VNS3-RND | 7987.20 | 8 001.26 | 7 991.42 3.55
J-Means-VNS1 | 7 958.25 | 7 967.75 | 7 961.82 4.65
J-Means-VNS2 | 7 959.03 | 7 970.65 | 7 963.63 4.13
1 hour
J-Means 799743 | 8 031.05 | 8 014.72 10.71
k-means 7970.88 | 8005.28 | 7990.12 9.31
k-VNS1 7 958.26 | 7 969.10 | 7 962.73 3.89
k-VNS2 7 958.25 | 7961.61 | 7 959.34 1.21
k-VNS3 7 958.26 | 7 963.07 | 7 960.22 2.03
k-VNSI-RND | 7 958.24 | 7 965.03 | 7 960.91 1.59
k-VNS2-RND | 7 958.24 | 7 963.09 | 7 959.57 1.56
k-VNS3-RND | 7 958.24 | 7 968.36 | 7 959.49 2.64
J-Means-VNS1 | 7 958.25 | 7 958.28 | 7 958.26 0.02
J-Means-VNS2 | 7 958.25 | 7 960.39 | 7 958.68 0.85

Table 4.3: Computational experiments with dataset ”birch3” (100000 data vectors,
2-dimensional) 100 clusters, 2 hours, 30 attempts

Algorithm Min Max Average Std.dev.
(the best)

J-Means 3.7622E+13 | 3.7965E+13 | 3.7772E+13 0.1162E+12

k-means 7.9247E+13 | 8.8740E+13 | 8.3160E+13 3.0881E+12

k-VNS1 3.7254E+13 | 3.7747TE+13 | 3.7470E+13 0.1711E+12

k-VNS2 4.2138E+4+13 | 6.0108E+13 | 5.1898E+13 7.1913E+12

k-VNS3 3.7253E+413 | 3.7457E+13 | 3.7375E+13 | 0.0743E+12
k-VNS1-RND | 3.7254E+13 | 3.7769E+13 | 3.7494E+13 0.1855E+12
k-VNS2-RND 3.8326E+13 | 4.6185E+13 | 4.0815E+13 2.5432E+12
k-VNS3-RND 3.7313E+13 | 3.7524E+13 | 3.7416E+13 | 0.0618E+12
J-Means-VNS1 | 3.716E+413 | 3.7181E+13 | 3.7174E+13 | 0.0122E+12
J-Means-VNS2 | 3.7242E+13 | 3.7456E+13 | 3.7347E+413 0.107E+12
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Table 4.4: Computational experiments with dataset ”KDDCUP04Bio” (145751 data

vectors of dimensionality 74, normalized), 30 attempts

Algorithm Min Max Average Std.dev.
(the best)
30 clust., 200 min.
J-Means 6280406 | 6288 774 | 6283271 | 47674
k-means 6 310 843 | 6 429 357 | 6 370 635 | 63 853.5
k-VNS1 6 385012 | 6 385150 | 6 385 047 51.3
k-VNS2 6385196 | 6430515 | 6418326 | 17 204.4
k-VNS3 6 267 808 | 6 386 810 | 6 366 953 | 48 570.7
k-VNS1-RND 6385016 | 6385033 | 6385023 6.2
k-VNS2-RND 6 385 149 | 6429 426 | 6410598 | 16 538.2
k-VNS3-RND 6 386 703 | 6 386 808 | 6 386 753 50.4
J-Means-VNS1 6 267 205 | 6 267 395 | 6 267 300 134.3
J-Means-VNS2 6 267 217 | 6 267 421 | 6 267 319 144.2
200 clust., 12 hrs
J-Means 5330344 | 5382908 | 5355903 | 26 785.8
k-means 5336446 | 5381386 | 5366 144 | 25 722.4
k-VNS1 5294 620 | 5307 828 | 5 301 224 | 9 339.5
k-VNS2 5440 814 | 5490400 | 5465 607 | 35 062.8
k-VNS3 No result
k-VNS1-RND 5 310 067 | 5340849 | 5325458 | 21 765.7
k-VNS2-RND 5368 527 | 5399695 | 5384111 | 22 039.6
k-VNS3-RND No result
J-Means-VNS1 5430 120 | 5446 222 | 5438 171 | 11 385.8
J-Means-VNS2 5500410 | 5508985 | 5504697 | 6 063.4
2000 clust., 8 hrs
J-Means 4390 323 | 4404 301 | 4396180 | 5912.2
k-means 4424 475 | 4 426 251 | 4 425 137 786.5
k-VNS1 4 358 583 | 4362 786 | 4 360886 | 2 130.1
k-VNS3 4 311 992 | 4318 547 | 4 315 658 | 2 721.5
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Table 4.5: The numbers of the achieved best values and best averaged values of the
objective function and its standard deviation by each of the algorithms among all
the algorithms

The best position The best The best
Algorithm by minimum (the | position by position by
best value of std.dev. min. and std.dev.
the obj. function) simultaneously
J-Means 0 0 0
k-means 0 1 0
k-VNS1 5 3 2
k-VNS2 3 0 0
k-VNS3 6 1 0
k-VNS1-RND 3 1 0
k-VNS2-RND 1 0 0
k-VNS3-RND 1 3 0
J-Means-VNS1 6 3 3
J-Means-VNS2 5 4 2

Table 4.6: Computational experiments with testing data of semiconductor devices
30T122A. (767 data vectors of dimensionality 13), 10 clusters, 1 minute, 30 at-
tempts

Algorithm Min Max | Average | Std.dev.
(the best)

J-Means 772.66 772.70 | 772.68 0.0191

k-means 772.66 772.66 | 772.66 | 0.0000

k-VNS1 772.66 772.66 | 772.66 | 0.0000

k-VNS2 772.66 772.66 | 772.66 | 0.0000

k-VNS3 772.66 772.66 | 772.66 | 0.0000

k-VNS1-RND 772.66 772.66 | 772.66 | 0.0000
k-VNS2-RND 772.66 772.66 | 772.66 | 0.0000
k-VNS3-RND 772.66 772.66 | 772.66 | 0.0000
J-Means-VNS1 772.66 772.66 | 772.66 | 0.0000
J-Means-VNS2 772.66 772.66 | 772.66 | 0.0000




968 I.P. Rozhnov, V.I. Orlov and L.A. Kazakovtsev

Table 4.7: Computational experiments with testing data of semiconductor devices
5514BC1T2-9A5 (91 data vectors, dimensionality 173) 10 clusters, 2 minutes, 30
attempts

Algorithm Min Max Average | Std.dev.
(the best)

J-Means 7 060.45 | 7085.67 | 7073.55 | 8.5951
k-means 7 046.33 | 7070.83 | 7060.11 8.8727
k-VNS1 7 001.12 | 7009.53 | 7004.48 | 4.3453
k-VNS2 7 001.12 | 7010.59 | 7 002.26 | 2.9880
k-VNS3 7 001.12 | 7009.53 | 7003.01 | 3.1694
J-Means-VNS1 | 7 001.12 | 7 001.12 | 7 001.12 | 0.0000
J-Means-VNS2 | 7 001.12 | 7011.94 | 7 003.88 | 4.4990

Table 4.8: Computational experiments with data of semiconductor devices 1526TL1

(1234 data vectors of dimensionality 157), 2 minutes, 30 attempts

Algorithm Min Max Average | Std.dev.
(the best)

5 clusters
J-Means 63 337.29 | 63 337.56 | 63 337.46 | 0.1211
k-means 63 337.29 | 63 337.29 | 63 337.29 | 0.0000
VNS1 63 337.47 | 63 337.56 | 63 337.55 | 0.0280
VNS2 63 337.56 | 63 337.56 | 63 337.56 | 0.0000
VNS3 63 337.56 | 63 337.56 | 63 337.56 | 0.0000
VNS1-RND 63 337.56 | 63 337.56 | 63 337.56 | 0.0000
VNS2-RND 63 337.56 | 63 337.56 | 63 337.56 | 0.0000
VNS3-RND 63 337.56 | 63 337.56 | 63 337.56 | 0.0000
J-Means-VNS1 | 63 337.56 | 63 337.56 | 63 337.56 | 0.0000
J-Means-VNS2 | 63 337.56 | 63 337.56 | 63 337.56 | 0.0000

10 clusters
J-Means 43 841.97 | 43 843.51 | 43 842.59 | 0.4487
k-means 43 842.10 | 43 844.66 | 43 843.38 0.8346
VNS1 43 841.97 | 43 844.18 | 43 842.34 | 0.9000
VNS2 43 841.97 | 43 844.18 | 43 843.46 1.0817
VNS3 43 841.97 | 43 842.10 | 43 841.99 | 0.0424
J-Means-VNS1 | 43 841.97 | 43 841.97 | 43 841.97 | 0.0000
J-Means-VNS2 | 43 841.97 | 43 844.18 | 43 842.19 | 0.6971
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Table 4.9: Computational experiments with testing data of semiconductor devices
(10 clusters, 1 minute, 30 attempts)

Algorithm Min Max Average | Std.dev.
(the best)
1526TL1 (1234  data vectors, dimensionality 157)
J-Means 43841.97 43843.51 43842.59 | 0.4487
k-means 43842.10 43844.66 43843.38 | 0.8346
k-VNS1 43841.97 43844.18 43842.34 | 0.9000
k-VNS2 43841.97 43844.18 43843.46 1.0817
k-VNS3 43841.97 43842.10 43841.99 | 0.0424
J-Means-VNS1 43841.97 43841.97 43841.97 | 0.0000
J-Means-VNS2 43841.97 43844.18 43842.19 | 0.6971
GAGH+LS 43842.10 43845.73 43843.72 1.3199
GAGHFP. 43841.98 43844.18 43842.6 0.6762
GAFS 43841.98 43842.34 43842.10 | 0.0945
GA classical. 43842.10 43842.88 43842.44 | 0.2349
IBC Noresult
Determ.GH 45021.21 45021.21 45021.21 | 0.0000
2D522B (3711 data vectors, dimensionality 10)
J-Means 7719.98 7720.74 7720.36 1.0174
k-means 7718.57 7722.91 7720.74 2.8714
k-VNS1 7716.88 7717.18 7717.03 0.0738
k-VNS2 7722.32 7726.42 7724.37 1.8752
k-VNS3 7722.81 7725.22 7724.51 1.3946
J-Means-VNS1 7717.22 7721.40 7719.81 1.7851
J-Means-VNS2 7717.90 7720.14 7719.92 1.4016
GAGH+LS 7714.13 7715.50 7714.61 0.3837
GAGH FP. 7714.15 T714.77 7714.66 | 0.1954
GAFS 7714.14 7714.29 7714.22 0.0612
GA classical. 7714.14 7714.30 7714.21 | 0.0678
DeterministicGH 7902.21 7902.21 7902.21 0.0000
H5503XM1 (3701 data vectors, dimensionality 229)
J-Means 43675.96 43681.52 43678.74 | 1.4126
k-means 43675.90 43684.88 43679.77 | 2.8062
VNS1 43671.89 43671.89 43671.89 | 0.0000
VNS2 43672.24 43674.44 43673.34 | 1.0476
VNS3 43672.84 43675.76 43674.30 1.5916
J-Means-VNS1 43671.89 43671.89 43671.89 | 0.0000
J-Means-VNS2 43673.14 43675.56 43674.35 | 0.9162
GAGH+LS 43702.28 43766.87 43739.69 | 20.3107
GAGH FP. 43678.79 43693.63 43687.01 4.5961
GAFS 43708.14 43736.26 43716.26 | 8.4025
GA classical. 43703.31 43724.42 43715.80 | 6.1660
Deterministic GH 43830.25 43830.25 43830.25 | 0.0000
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5. Conclusions

The results of our computational experiments showed that the new search VINS-

based algorithms allows us to in comparison with known algorithms.

cre

For large-scale problems, as the number of clusters grows and the sample size in-
ases, the comparative efficiency of the new algorithm increases, new VNS-based

algorithms have an advantage. Thus, the arsenal of high-precision methods for solv-
ing the k-means clustering problems was supplemented by new efficient algorithms.
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