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Abstract. This short note concerns with two inequalities in the geometry of gradient
Einstein solitons (g, f, A) on a smooth manifold M. These inequalities provide some
relationships between the curvature of the Riemannian metric g and the behavior of
the scalar field f through two quadratic equations satisfied by the scalar A. The simi-
larity with gradient Ricci solitons and a slight generalization involving a g-symmetric
endomorphism A are provided.
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1. Introduction

Let (M™, g) be an n-dimensional Riemannian manifold endowed with a smooth
function f € C°°(M); an excellent textbook in Riemannian geometry is [6]. The
scalar field f yields the Hessian endomorphism: hy : X(M) — X(M), hy(X) =
VxV f, where V is the Levi-Civita connection of g. Then we know the symmetry
of the Hessian tensor field of f: Hy(X,Y) := g(hy(X),Y), namely H;(X,Y) =
H¢(Y,X). What follows is the existence of a g-orthonormal frame field £ =
{Ei}i=1,..n C X(M) and the existence of the eigenvalues A = {A\;}i=1,..n C
C>®(M):

(1.1) hi(E;) = N\ E;.
Hence we express all the geometric objects related to f in terms of the pair (E, )

which we call the spectral data of f:

n n

(1.2) Vf= ZEi(f)Eia IVFIE =D BN he(X) =D (AX)E:,

i=1 i=1
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for X =31, X'E;. Also the Hessian and the Laplacian of f are:

n

(1.3) Hp(X,Y) =Y NXY), Af:=TrgHp=>Y ).
i=1 =1

Let us remark that if V f does not have zeros and Fj is exactly its unit vector field
ie. By = HVfH , then Vf is a geodesic vector field: Vv ¢V f = A\ V f which means
that the flow of V f consists in geodesics of g.

2. Results

Assume now that the triple (g, f, A € R) is a gradient Einstein soliton on M, [2,
p. 67):

R
(2.1) Hf—l—Ric—i—()\—E)g:O,

where Ric is the Ricci tensor field of ¢ and R is the scalar curvature. Einstein
solitons generate self-similar solutions of the Einstein flow (1.1) of [2] and are more

rigid than the well-known Ricci solitons. By considering the Ricci endomorphism
Q € T (M) provided by:

we can express (2.1) as
(2.3) hf‘f’Q'i‘()\—g)I:O

with I the Kronecker endomorphism. From (2.3) we get that @ is also of diagonal
form with respect to the frame E:

n

(24) Q(X)=— Z()\ +)\—E)XEZ, |Q|§:zn:()\i+)\—§>2.

=1 i=1

By developing the second formula above we derive:

- R?
2 _ 2 4 _ ) 2 ) =
| Ric||; = E A;+ (22X —R) ;:1 Ai+n (/\ — AR+ 1 )
) R?
(2.5) _|Hf|g+(2A—R)Af+n< — AR+ T)

Hence the scalar A is a solution of the quadratic equation:

nR ) nR?

which means the non-negativity:

nR . nR2
e osa=(ar- —) = (gl = Iicl + " - A ).
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It follows a lower boundary of the geometry of g in terms of f:
. 1
(2.8) 1 Riclly > [ Hyllg = —(Af)*.

An "exotic” consequence is provided by the case of strict inequality in (2.7), more
precisely, it follows that the data (g, f, A) is doubled by (g, 7 % —R—-\= —%R — )\).

Example 1 i) (Gaussian soliton) We have (M = R", gcqp,) and f(z) = —3|z||.
It results hy = —AI, and Af = —nA. Since ||[H|> = nA?, the left hand side of
(2.6) is:

R R?
nAZ+2 <Af - "7) A <|Hf|§ — || Ric||? + "T - RAf> = A2 +2(—nA)A+n\?

which is exactly zero. Also: A’ = (n\)2—n(nA?—0) = 0 which means the uniqueness
2
of A and the equality case in (2.8): 0 = n\? — @A)

n
ii) A generalization of the previous example is provided on a Ricci-flat manifold by

a smooth function f satisfying a generalization of Hessian structures:

(2.9) Hf = —)\g.

Then Af = —n and ||Hf||? = n)\? exactly as for the Gaussian soliton. Using
Lemma 4.1. of [3, p. 1540] it results form (2.9) that Vf is a particular concircular
vector field: hy = —AI; hence \y = ... = A\, = —\ is the spectral part of the

spectral data of f. If Vf is without zeros it follows from Theorem 3.1. of [3, p.
1539] that (M, g) is locally a warped product manifold with a 1-dimensional basis:
(M, g) = (I CR,gean)xp (F" 1, gp). In fact, Vf = cp(s)% with ¢(s) = —X which
means an affine warping function, ¢(s) = —As+C. O

A new quadratic equation, similar to (2.6), follows from:
(2.10) Af—l—(l—g)R—f—n)\:O

obtained by tracing (2.1). Hence the companion equation of (2.6) is:

—14
(211)  an+2(1-Z)RA+ (|Ric||§ — 1H 2+ 2 R2> —0.

The new inequality is then:

n 2 . n—4
(212)  0<A = (1 - 5) R —n <|ch||§ — 1H13 + * R2>

and it results a lower boundary of the behavior of f in terms of the geometry of g¢:

) R? 1
(2.13) V2 = [ Ricl = = = — S (0 = Ay)°,
i#j
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We remark that (2.8) and (2.13) can be unified in the double inequality:
2.14 2 = Lap)? < micl2 < 2+ X
(214) [HF 2~ = (Af)” < |[Riell < 11y |3 + 2

and the simultaneous equalities for n > 3 hold if and only if R=Af =0 = X and

Hy = —Ric; hence f is a harmonic map on a steady gradient Einstein soliton. The

vanishing of the right-hand side of (2.13) means that g is an Einstein metric; other
R2

interesting aspects concerning the functional Fj := TRicTz On the space of non-flat
g9

metrics appear in [5]. This raises the first future problem to study the similar

2
functional F' J‘? = % on the space of smooth functions which are not linear on
g

M after the name from [6, p. 283]. Remark that for the Hessian structures (2.9)
we have a constant and maximal F} = n.

Example 1 revisited i) (Gaussian soliton) The inequality (2.13) becomes
nA? > 0.
ii) Again, (2.13) means nA? > 0.
iii) (relationship with gradient Ricci solitons) If R = 0, then the gradient Einstein
soliton becomes a gradient Ricci soliton and we remark that (2.14) is exactly the
double inequality (20) of [4, p. 3339]. The explication of this fact is provided by
the following remark. O

Remark An unified proof of the double inequality (2.14) is provided by the
following relation satisfied by an Einstein soliton, which is a direct consequence of
the equations (2.5) and (2.10):

(2.15) n (| Hll; — | Ricll3) = (Af)* — R

and it is important to point out that this equation does not involves the scalar A.
In other words, (2.15) is a universal formula of the gradient Einstein solitons. With
A= A+ % we get that (2.15) holds also for gradient Ricci solitons and hence we
obtain the similarity between gradient Ricci and Einstein solitons with respect to
(2.14). O

Returning to (2.3) we remark that the Ricci endomorphism @ commutes with
h¢ for an Einstein or Ricci gradient soliton. It results the commuting property also
for the Einstein endomorphism:

R
(2.16) FEinsty :=Q — —1I
n

which is the trace-free part of ). We will assume now that the data (g, f, A\, p € R)
satisfies:
(2.17) hy 4+ Q + AN + pEinsty = 0.

The corresponding relation in terms of Ricci endomorphism is:

(2.18) hf+(1+u)Q+</\—%>I=o
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or, for p # —1:
(2.19) h

A uR B
+Q+<1+M_n(1+u)>1_0'

This last equation is an example of p-Einstein soliton as is introduced in Definition

1.1 of [2, p. 67] with p = ﬁ and (f,A) of [2] replaced by ﬁ(f, A).

f
THn

Hence we naturally arrive to the following slight generalization of all the above
considerations. Fix a g-symmetric endomorphism A € 7;*(M) which is also diagonal
with respect to the frame F:

(2.20) A(E;) = piEs,  pi € C(M).
Hence A and hy commutes: Ao hy = hyo A. We introduce:
Definition The data (g, f, A, & € R) is an A-Ricci gradient soliton if:
(2.21) hy+Q+ M+ pA=0.
We get that A commutes also with Q and the corresponding generalization of
(2.15) is:
(2.22)0 [ Hy |12 — | Ricl2 + k2| Al + 24Ty (hy o A)] = (Af + T, A)? — R?

yielding the double inequality:

1 .
12 = (Af + ey AP + g2 Al + 20T ry (g o A) < || Ricl]2 <

R2
(2.23) <N Hyllg + — + w2l Allg + 26Ty (s o A).

There is another problem: to find remarkable endomorphisms commuting with
a given hy. We will finish this note with an example.

Example 2 Suppose that (M, g) is a hypersurface in (N"*! g) and let A = S
be the shape endomorphism of M commuting with hy for the fixed scalar field
feC=(M). If (g, f,\, p € R) is a shape-Ricci gradient soliton on M i.e. (2.21)
holds for S, then denoting by H the mean curvature of M, we get:

1 .
|72 = = (Af + p)? + g2 S|2 + 20Ty (g o S) < |[Riel]? <
2 R2 2 2
(2:24) < IHfI2 + = + w2 SI3 + 20Ty (hy o ).

We point out that immersions of (almost) Ricci solitons into another Riemannian
manifold are studied in [1]. O
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