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Abstract. A set W of vertices in a graph G is called a resolving set for G if for every
pair of distinct vertices u and v of G, there exists a vertex w ∈ W such that the distance
between u and w is different from the distance between v and w. The cardinality of
a minimum resolving set is called the metric dimension of G, denoted by β(G). A
resolving set W for G is fault-tolerant if W \ {w} is also a resolving set, for each w

in W . The fault-tolerant metric dimension of G is the size of a smallest fault-tolerant
resolving set for G, denoted by β′(G). In this paper, we study the fault-tolerant metric
dimension of a family of circulant graphs Xn,3 with connection set C = {1, n

2
, n − 1},

when n is even and circulant graphs Xn,4 with connection set C = {±1,±2}.
Keywords. Circulant graphs; resolving set; fault-tolerant metric dimension.

1. Introduction

The metric dimension problem was introduced independently by Slater [15] and
Harary and Melter [8]. The metric dimension arises in many diverse areas, including
telecommunications [3], connected joints in graphs and chemistry [4], the robot
navigation [12] and geographical routing protocols [13], etc.

For a connected graph G with vertex set V (G) and edge set E(G), the dis-
tance between two vertices u and v in V (G) is the number of edges in a short-
est path connecting them, and is denoted by d(u, v). Consider an ordered set
W = {w1, w2, · · · , wk} ⊆ V (G). For each v ∈ V (G) the code of v with respect
to W is (d(v, w1), d(v, w2), · · · , d(v, wk)), denoted by cW (v). The set W is called a
resolving set for G, if all vertices of G have distinct codes. The minimum cardinality
of a resolving set of G is called the metric dimension of G and is denoted by β(G).
A resolving set of order β(G) is called a metric basis of G [2].
Elements of bases were referred to as sensors in an application given in [5]. If one
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of the sensors does not work properly, we will not have enough information to deal
with the intruder (fire, thief etc). In order to overcome this kind of problems, con-
cept of fault-tolerant metric dimension was presented in [9]. Fault-tolerant resolving
sets provide correct information even when one of the sensors is not working. A
resolving set W of a graph G is fault-tolerant if W \ {w} is also a resolving set, for
each w in W . The fault-tolerant metric dimension of G is the minimum cardinality
of a fault-tolerant resolving set, denoted by β′(G). A fault-tolerant resolving set of
order β′(G) is called a fault-tolerant metric basis.
The circulant graph is a graph with vertex set Zn, an additive group of integers mod-
ulo n, and two vertices labeled i and j are adjacent if and only if i− j (mod n) ∈ C,
where C ⊂ Zn, which is called connection set, has the property that C = −C and
0 /∈ C. The circulant graph is denoted by Xn,∆ where ∆ = |C|.
Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic if there is a
bijective mapping f from V1 to V2 such that uv ∈ E1 if and only if f(u)f(v) ∈ E2.
An automorphism of a graph is an isomorphism from the graph to itself. The set
of all automorphisms of a graph, G, forms a group, denoted by Aut(G). It is well
known that, if G is a circulant graph, then Zn is a subgroup of Aut(G) [7].
In this paper, we consider a family of circulant graphs Xn,3 with connection set
C = {1, n

2
, n−1}, when n is even and prove that the fault-tolerant metric dimension

of this family of graphs is independent of choice of n by showing that β′(Xn,3) = 4,
for all n ≥ 4 and n ≡ 0 (mod 4), in Theorem 2.2, and β′(Xn,3) ≤ 6, for all n ≥ 10
and n ≡ 2 (mod 4), in Theorem 2.4. We also consider a family of circulant graphs
Xn,4 with connection set C = {±1,±2} and prove that the fault-tolerant metric
dimension of this family of graphs is independent of choice of n by showing that
β′(Xn,4) = 4, for all n ≥ 10 and n ≡ 2(mod4), in Theorem 3.1.

2. Fault-Tolerant Metric Dimension Of Circulant Graphs Xn,3

Salman et al. [14] characterized the metric dimension for family of circulant graphs
Xn,3 with connection set C = {1, n

2
, n − 1} for even n. Now we obtain the fault-

tolerant metric dimension of this family of graphs.

Theorem 2.1. [14, Theorem 2.2] Let n be an integer and n ≡ 0 (mod 4). If
k = n

4
, then for any 1 ≤ i ≤ k the set W = {vi, vi+1, vi+2k} is a resolving set and

hence β(Xn,3) = 3.

The following lemma, gave a new family of resolving set of Xn,3 of size 3, where
n ≡ 0 (mod 4).

Lemma 2.1. Let n be an integer, n ≡ 0 (mod 4) and k = n
4
. Then the set W =

{vi, vi+1, vi+2k+1} is a resolving set of Xn,3, for any 1 ≤ i ≤ k.

Proof. Let W = {vi, vi+1, vi+2k+1} for fixed i; 0 ≤ i ≤ k where k = n
4
. We compute

the codes of all v ∈ V (Xn,3) \W . We have

cW (vi+k) = (k, k − 1, k), cW (vi+k+1) = (k, k, k), cW (vi+3k) = (k, k, k − 1),
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cW (vi+3k+1) = (k − 1, k, k), cW (vi+2k) = (1, 2, 1).

The codes of other vertices are listed in Table 1. By a simple computing these codes
are distinct and hence W is a resolving set of Xn,3.

Table 1
Shortest paths between vi vi+1 vi+2k+1

vi+j+1(1 ≤ j ≤ k − 2) j + 1 j j + 1
vi+k+j(2 ≤ j ≤ k − 1) k − j + 1 k − j + 2 k − j + 1
vi+2k+j(2 ≤ j ≤ k − 1) j j − 1 j − 1
vi+3k+j(2 ≤ j ≤ k − 1) k − j k − j + 1 k − j + 2

Theorem 2.2. For all n ≥ 4 and n ≡ 0 (mod 4), β′(Xn,3) = 4.

Proof. From the definition of fault-tolerant metric dimension it can be seen that
β′(G) ≥ β(G)+1 [11]. This implies that β′(Xn,3) ≥ 4 since β(Xn,3) = 3 by Theorem
2.1.

Now for the lower bound, Let W ′ = {vi, vi+1, vi+2k, vi+2k+1} for fixed i; 0 ≤ i ≤
k where k = n

4
. We will show that for each x ∈ W ′, the set W ′\{x} is a resolving set

forXn,3. At first note that Zn is subgroup of Aut(Xn,3) and if f = (vo, v1, · · · , vn−1)
is a cycle of order n, then Zn

∼=< f >. In addition f j(vi) = vi+j . Now we consider
the following cases:

Case 1. Suppose that x = vi. We have

f j({vi+1, vi+2k, vi+2k+1}) = {vj+i+1, vj+i+2k , vj+i+2k+1}

. If j = 2k, then

f j({vi+1, vi+2k, vi+2k+1}) = {vi+2k+1, vi, vi+1},

and

f j({vi+2k+1, vi, vi+1}) = {vi+1, vi+2k, vi+2k+1}.

By Lemma 2.1, {vi, vi+1, vi+2k+1} is a resolving set for Xn,3 and since automor-
phisms of graphs preserves the properties of the graph, we conclude that W ′ \{x} =
{vi+1, vi+2k, vi+2k+1} is a resolving set for Xn,3.

Case 2. Let x = vi+1. We have

f j({vi, vi+1, vi+2k}) = {vj+i, vj+i+1, vj+i+2k}.

If j = 2k, then

f j({vi, vi+1, vi+2k}) = {vi+2k, vi+2k+1, vi}
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. Hence By the same argument of Case 1, the set W ′ \ {x} = {vi+2k, vi+2k+1, vi} is
a resolving set for Xn,3.

Case 3. If x = vi+2k, then according to the Lemma 2.1, W ′ \ {x} is a resolving
set for Xn,3.

Case 4. If x = vi+2k+1, then according to the Theorem 2.1, W ′ \ {x} is a
resolving set for Xn,3.

Therefore, W ′ is the fault-tolerant resolving set for this family of graphs. Thus
β′(Xn,3) ≤ 4, for all n ≥ 10 and n ≡ 2 (mod 4). This completes the proof.

Now we study the fault-tolerant metric dimension of Xn,3 in the case n ≡ 2 (mod 4).

Theorem 2.3. [14, Theorem 2.5] Let n ≥ 6 be an integer and n ≡ 2 (mod 4). If
k = n−2

4
, then W = {vi, vi+1, vi+2k, vi+2k+1} is a resolving set for Xn,3 for any

1 ≤ i ≤ k. In addition β(Xn,3) = 4.

In the following lemma we gave some resolving sets of size 3 for Xn,3.

Lemma 2.2. Let n ≥ 10 be an integer and n ≡ 2 (mod 4). For k = n−2

4
and any

1 ≤ i ≤ k the following sets are resolving sets of size 4 of Xn,3,
i) W1 = {vi, vi+1, vi+2k+1, vi+2k+2};
ii) W2 = {vi+1, vi+2k, vi+2k+2, vi+4k+1};
iii)W3 = {vi, vi+2k+1, vi+2k+2, vi+4k+1}.

Proof. Suppose that k = n−2

4
and W = {vi, vi+1, vi+2k+1, vi+2k+2} where 0 ≤ i ≤ k

. We compute cW1
(v) for v ∈ V (Xn,3) \W1. We have

cW1
(vi+k) = (k, k − 1, k + 1, k), cW1

(vi+k+1) = (k + 1, k, k, k + 1),

cW1
(vi+2k) = (2, 3, 1, 2), cW1

(vi+3k+2) = (k, k + 1, k + 1, k).

The codes of other vertices respect to W1, are shown in Table 2. It is not difficult
to see that all codes are distinct and hence W1 is a resolving set of Xn,3.

Table 2
Shortest paths between vi vi+1 vi+2k+1 vi+2k+2

vi+j+1(1 ≤ j ≤ k − 2) j + 1 j j + 2 j + 1
vi+k+j(2 ≤ j ≤ k − 1 k − j + 2 k − j + 3 k − j + 1 k − j + 2
vi+2k+j+1(2 ≤ j ≤ k) j + 1 j j j − 1
vi+3k+j+1(2 ≤ j ≤ k) k − j + 1 k − j + 2 k − j + 2 k − j + 3

For W2 we have,

cW2
(vi+k) = (k − 1, k, k, k + 1), cW2

(vi+k+1) = (k, k − 1, k + 1, k),
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Table 3
Shortest paths between vi+1 vi+2k vi+2k+2 vi+4k+1

vi+j+1(1 ≤ j ≤ k − 2) j j + 3 j + 1 j + 2
vi+k+j(2 ≤ j ≤ k − 1 k − j + 3 k − j k − j + 2 k − j + 1
vi+2k+j+1(2 ≤ j ≤ k) j j + 1 j − 1 j

vi+3k+j+1(2 ≤ j ≤ k − 1) k − j + 2 k − j + 1 k − j + 3 k − j

cW2
(vi+2k) = (2, 1, 1, 2), cW2

(vi+3k+2) = (k + 1, k, k, k − 1),

and the codes of other vertices are listed Table 3. These codes are distinct and we
conclude that W2 is a resolving set for Xn,3.

Similarly for W3, we have

cW3
(v1) = (1, 2, 1, 2), cW3

(vi+k) = (k, k+1, k, k+1), cW3
(vi+k+1) = (k+1, k, k+1, k),

cW3
(vi+2k) = (2, 1, 2, 1), cW3

(vi+3k+2) = (k, k + 1, k, k − 1),

and for other vertices, the codes are listed in Table 4. By these codes, we conclude
that W3 is a resolving set for Xn,3.

Table 4
Shortest paths between vi vi+2k+1 vi+2k+2 vi+4k+1

vi+j+1(1 ≤ j ≤ k − 2) j + 1 j + 2 j + 1 j + 2
vi+k+j(2 ≤ j ≤ k − 1) k − j + 2 k − j + 1 k − j + 2 k − j + 1
vi+2k+j+1(2 ≤ j ≤ k) j + 1 j j − 1 j

vi+3k+j+1(2 ≤ j ≤ k − 1) k − j + 1 k − j + 2 k − j + 3 k − j

Theorem 2.4. For all n ≥ 6 and n ≡ 2 (mod 4), β′(Xn,3) ≤ 6.

Proof. For n = 6, X6,3 ≃ K3,3. This implies that β′(X6,3) = 6 since β′(Km,n) =
m+ n [6, Proposition 1].
Now suppose that n ≥ 10. Let k = n−2

4
. For a fixed i, where 0 ≤ i ≤ k, consider

the set
W = {vi, vi+1, vi+2k, vi+2k+1, vi+2k+2, vi+4k+1}.

Since W contains the set W1 of Theorem 2.3 (i), so W is a resolving set for Xn,3.
Now we will show that for each x ∈ W ′, the set W ′ \ {x} is a resolving set for Xn,3.
We have the following cases:

Case 1. If x ∈ {vi, vi+2k+1}, then W \ {x} contains a set W2 listed in Lemma
2.2 (ii). Thus W \ {x} is a resolving set for Xn,3.

Case 2. If x = vi+1, then W \ {x} contains a set W3 listed in Lemma 2.2 (iii).
So W \ {x} is a resolving set for Xn,3.
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Case 3. If x = vi+2k, then W \ {x} contains a set W listed in Lemma 2.2 (i).
Hence W \ {x} is a resolving set for Xn,3.

Case 4. If x ∈ {vi+2k+2, vi+4k+1}, then W \ {x} contains a set W ′ listed in
Theorem 2.3. Hence W \ {x} is a resolving set for Xn,3.

Therefore, W is the fault-tolerant resolving set for this family of graphs. Thus
β′(Xn,3) ≤ 6, for all n ≥ 10 and n ≡ 2 (mod 4).

3. Fault-Tolerant Metric Dimension Of Circulant Graphs Xn,4

In this section consider Xn,4 with connection set C = {±1,±2}. In [1], Borchert
and Gosselin showed that dim(Xn,4) = 4 if n = 1 (mod 4) and dim(Xn,4) = 3 oth-
erwise. Now we study the fault-tolerant metric dimension of this family of graphs
in the case n ≡ 2 (mod 4).

In the following lemma we obtain some resolving sets for Xn,4.

Lemma 3.1. Let n ≥ 10 and n ≡ 2 (mod 4). For k = n−2

4
and any 1 ≤ i ≤ k, the

following sets are resolving sets for Xn,4,
i)W1 = {vi, vi+1, vi+2};
ii)W2 = {vi, vi+1, vi+3};
iii)W3 = {vi, vi+2, vi+3}.

Proof. The set W1 is a resolving set by [10, Theorem 5]. For the parts (ii) and
(iii), we prove that the sets W2 and W3 are resolving sets of Xn,4 for i = 0. The
remaining cases, obtained by this fact that Zn is a subgraph of Aut(Xn,4). By a
simple computing we can obtain the codes of vertices respect to W2 and W3. These
codes listed in Table 5 and Table 6. Clearly these codes are distinct and hence the
sets W2 and W3 are resolving sets.

Table 5
Shortest paths between v0 v1 v3

v2 1 1 1

vj (4 ≤ j ≤ n
2
) ⌈ j

2
⌉ ⌈ j−1

2
⌉ ⌈ j−3

2
⌉

vn

2
+1 ⌈n−2

4
⌉ ⌈n

4
⌉ ⌈n−4

4
⌉

vn

2
+2 ⌊n−2

4
⌋ ⌈n−2

4
⌉ ⌈n−2

4
⌉

vn

2
+3 ⌈n−6

4
⌉ ⌈n−4

4
⌉ ⌈n

4
⌉

vj (n
2
+ 4 ≤ j ≤ n− 1) ⌈n−j

2
⌉ ⌊n−j+2

2
⌋ ⌊n−j+4

2
⌋

Theorem 3.1. For n ≥ 10 and n ≡ 2 (mod 4), β′(Xn,4) = 4.
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Table 6
Shortest paths between v0 v2 v3

v1 1 1 1

vj (4 ≤ j ≤ n
2
) ⌈ j

2
⌉ ⌈ j−2

2
⌉ ⌈ j−3

2
⌉

vn

2
+1 ⌈n−2

4
⌉ ⌊n

4
⌋ ⌊n−4

4
⌋

vn

2
+2 ⌊n−2

4
⌋ ⌈n

4
⌉ ⌈n−2

4
⌉

vn

2
+3 ⌈n−6

4
⌉ ⌈n−4

4
⌉ ⌈n

4
⌉

vj (n
2
+ 4 ≤ j ≤ n− 1) ⌈n−j

2
⌉ ⌊n−j+2

2
⌋ ⌊n−j+4

2
⌋

Proof. From the definition of fault-tolerant metric dimension it can be seen that
β′(G) ≥ β(G) + 1 [11]. This implies that β′(Xn,4) ≥ 4 since β(Xn,4) = 3 [1].
Now for the lower bound, consider the set W ′ = {v1, v2, v3, v4}. Since W contains
the set W1 listed in Theorem 3.1, so W is a resolving set for Xn,4. Now we will show
that for each x ∈ W , the set W \ {x} is a resolving set for Xn,4. If x ∈ {v1, v4},
then W \ {x} is a resolving set by setting i = 1 and i = 2 in part (i) of Lemma
3.1. If x = v2, then by setting i = 1 in part (iii) of Lemma 3.1, we conclude that
W \ {x} is a resolving set. Finally {v1, v2, v4} is a resolving set of Xn,4 by Lemma
3.1 (ii). Therefore β′(Xn,4) = 4
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