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Abstract. In this paper, we introduce new concept of orthogonal cone metric spaces.
We establish new versions of fixed point theorems in incomplete orthogonal cone metric
spaces. As an application, we show the existence and uniqueness of solution of the
periodic boundry value problem.
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1. Introduction

The concept of standard metric spaces is a fundamental tool in topology, functional
analysis and nonlinear analysis. This structure has attracted a considerable atten-
tion from mathematicians because of the development of the fixed point theory in
standard metric spaces.
In recent years, several generalizations of standard metric spaces have appeared.
Huang and Zhang [8] have introduced the concept of cone metric space by replacing
the set of real numbers by an ordered Banach space and proved many fixed point
theorems of contractive type mappings in cone metric space. In 2010, W.S.Du
[2] has shown that many results in fixed point theory on cone metric spaces are
equivalent to ordinary metric spaces. Subsequently, many authors in [2, 7, 9] have
generalized the results of Huang and Zhang [8].

Huang and Zhang [8] considered the concept of cone metric spaces as follows:

Definition 1.1. [8] Let E always be a real Banach space and P a subset of E. P

is called a cone if and only if:

1. P is closed, nonempty, and P 6= {0};
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2. a, b ∈ R, a, b ≥ 0, x, y ∈ P then ax+ by ∈ P ;

3. x ∈ P and −x ∈ P then x = 0.

Given a cone P ⊂ E, we define a partial ordering 6 with respect to P by x 6 y

if and only if y − x ∈ P . We shall write x < y to indicate that x 6 y but x 6= y,
while x ≪ y will stand for y−x ∈ intP , intP denotes the interior of P . The cone
P is called normal if there is a number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y =⇒ ‖ x ‖≤ K ‖ y ‖ .

The least positive number satisfying above is called the normal constant of P .

The cone P is called regular if every increasing sequence which is bounded from
above is convergent. That is, if {xn} is sequence such that

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ y,

for some y ∈ E, then there exists x ∈ E such that ‖ xn − x ‖→ 0 as n −→ ∞.
Equivalently the cone P is regular if and only if every decreasing sequence which is
bounded from below is convergent. It is well known that a regular cone is a normal
cone.

Definition 1.2. [8] Let X be a nonempty set. Suppose the mapping d : X×X → E

satisfies

• (d1) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

• (d2) d(x, y) = d(y, x) for all x, y ∈ X;

• (d3) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

It is obvious that cone metric spaces generalize metric spaces.

Example 1.1. Let E = R
2, P = {(x, y) ∈ E|x, y ≥ 0} ⊂ R

2, X = R and d : X ×X → E

such that d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Then (X, d) is a cone
metic space.

Definition 1.3. [8] Let (X, d) be a cone metric space. Let {xn} be a sequence in
X and x ∈ X. If for every c ∈ E with 0 ≪ c there is N such that for all n > N ,
d(xn, x) ≪ c, then {xn} is said to be convergent and {xn} converges to x and x is
the limit of {xn}. We denote this by

lim
n→∞

xn = x orxn → x (n → ∞).

Definition 1.4. [8] Let (X, d) be a cone metric space, {xn} be a sequence in X.
If for any c ∈ E with 0 ≪ c, there is N such that for all n,m > N , d(xn, xm) ≪ c,
then {xn} is called a Cauchy sequence in X.
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Definition 1.5. [8] Let (X, d) be a cone metric space if every Cauchy sequence is
convergent in X, then X is called a complete cone metric space.

Huang and Zhang [8] also proved the following fixed point theorem in cone metric
spaces.

Theorem 1.1. [8] Let (X, d) be a complete cone metric space, P be a normal cone
with normal constant K. Suppose the mapping T : X → X satisfies the contractive
condition

d(Tx, T y) ≤ kd(x, y),

for all x, y ∈ X where k ∈ [0, 1) is a constant. Then T has a unique fixed point in
X and for any x ∈ X, an iterative sequence {T nx} converges to the fixed point.

Eshaghi and et.al. [3] introduced the notion of orthogonal sets as follows (also
see [11, 1, 4, 5, 6, 10]):

Definition 1.6. [3] Let X 6= φ and ⊥ ⊆ X×X be a binary relation. If ⊥ satisfies
the following condition

∃x0; ((∀y; y⊥x0) or (∀y;x0⊥y)),

it is called an orthogonal set (briefly O-set). We denote this O-set by (X,⊥).

Definition 1.7. Let (X,⊥) be an O-set. A sequence {xn}n∈N is called an orthog-
onal sequence (briefly O-sequence) if

(

(∀n;xn⊥xn+1) or (∀n;xn+1⊥xn)
)

.

for more information refer to [3].

Definition 1.8. [3] Let (X, d,⊥) be an orthogonal metric space ((X,⊥) is an O-
set and (X, d) is a metric space). The space X is orthogonally complete (briefly
O-complete) if every Cauchy O-sequence is convergent.

It is easy to see that every complete metric space is O-complete and the converse
is not true (see [3]).

Definition 1.9. [3] Let (X, d,⊥) be an orthogonal metric space and 0 < k < 1.

1. A mapping f : X → X is said to be orthogonal contractive (⊥−contractive)
mapping with Lipschitz constant k if

d(fx, fy) ≤ kd(x, y) if x⊥y.

2. A mapping f : X → X is called an orthogonal preserving (⊥−preserving)
mapping if x⊥y then f(x)⊥f(y).
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3. A mapping f : X → X is an orthogonal continuous (⊥−continuous) mapping
in a ∈ X if for each O-sequence {an}n∈N in X if an → a then f(an) → f(a).
Also f is ⊥−continuous on X if f is ⊥−continuous in each a ∈ X.

They also, proved the following theorem which can be considered as a real
extension of Banach fixed point theorem [11, 1, 3, 4, 5, 6, 10].

Theorem 1.2. [3] Let (X, d,⊥) be an O-complete metric space (not necessarily
complete metric space). Let f : X → X be ⊥−continuous, ⊥−contraction (with
Lipschitz constant k) and ⊥−preserving, then f has a unique fixed point x∗ in X.
Also, f is a Picard operator, that is, lim fn(x) = x∗ for all x ∈ X.

Let us consider the following periodic boundry value problem

(1.1)

{

u
′

(t) = f(t, u(t)),

u(t0) = u(T ),

where t ∈ I = [0, T ], T > 0 and f : I × R → R is a continuous function. Suppose
that there exists β > 0, µ > 0 with µ < β such that for x, y ∈ R we have

(1.2) 0 ≤
∣

∣

∣
[f(t, y) + βy]− [f(t, x) + βx]

∣

∣

∣
≤ µ|y − x|.

Inspired and motivated by the above results, we introduce new concept of
orthogonal cone metric space. In such space, we establish new versions of fixed
point theorems. As an application, we show the existence and uniqueness of
solution of the periodic boundry value problem 1.1.

2. Main Results

In this section, we shall introduce a new definitions to prove the main results. We
begin with the following definition. In the following part, we shall suppose E is a
Banach space, P is a cone in E with intP 6= φ and ≤ is partial ordering with
respect to P.

Definition 2.1. Let (X,⊥) be a nonempty orthogonal set. Suppose the mapping
d : X ×X → E satisfies

• (d1) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

• (d2) d(x, y) = d(y, x) for all x, y ∈ X;

• (d3) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.
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Then d is called a cone metric on (X,⊥) and (X, d,⊥) is called an orthogonal cone
metric space.

We have the concept of orthogonal complete cone metric space as follows:

Definition 2.2. Let (X, d,⊥) be an orthogonal cone metric space, if every Cauchy
O-sequence is convergent in X, then X is called an orthogonal complete cone metric
space.

It is easy to see that every complete cone metric space is O-complete and the
converse is not true. In the next example, X is O-complete cone metric space and
it is not complete.

Example 2.1. Let E = R, P = [0,∞) and X = [0, 1). Suppose x⊥y if x ≤ y. (X,⊥)
is an O-set. Clearly, X with metric d : X × X → E such that d(x, y) = |x − y| is not
complete cone metric space but it is O-complete cone metric space. Because if {xk} is
an arbitrary Cauchy O-sequence in X, then there exists a subsequence {xkn} of {xk} for
which {xkn} ≤ 1

2
for all n. It follows that {xkn} converges to a x ∈ [0, 1

2
] ⊂ X. On

the other hand, we know that every Cauchy sequence with a convergent subsequence is
convergent. It follows that {xk} is convergent.

In the following example, we shall prove a theorem that can be considered as
the main result of our paper.

Theorem 2.1. Let (X, d,⊥) be an orthogonal complete cone metric space (not nec-
essarily complete cone metric space), P be a normal cone with normal constant K.
Suppose the mapping T : X → X is ⊥-preserving, ⊥-continuous and ⊥-contraction
Lipschitz constant k ∈ [0, 1). Then T has a unique fixed point in X. In addition T

is a picard operator.

Proof. By definition of orthogonality, there exists x0 ∈ X such that

(∀x ∈ X, x⊥x0) or (∀x ∈ X, x0⊥x).

It follows that x0⊥T (x0) or T (x0)⊥x0. Let

x1 := T (x0), x2 := T (x1) = T 2(x0), · · · , xn+1 := Txn = T n(x0).

We have

d(xn+1, xn) = d(Txn, T xn−1)

≤ kd(xn, xn−1)

≤ k2d(xn−1, xn−2)

...

≤ knd(x1, x0).
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So for n > m,

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm−1, xm),

≤ (kn−1 + kn−2 + · · ·+ km)d(x1, x0),

≤
km

1− k
d(x1, x0).

We get ‖d(xn, xm)‖ ≤ km

1−k
K‖d(x1, x0)‖. This implies that d(xn, xm) → 0 (n,m →

∞). Hence the O-sequence {xn} is Cauchy. By completeness of X , there exists x∗

in X such that xn → x∗ (n → ∞). On the other hand, T is ⊥-continuous and hence
Txn → Tx∗ as n tends to infinity and T (x∗) = limn→∞ T (xn) = limn→∞ xn+1 = x∗.
Therefore x∗ is a fixed point of T .

To prove the uniqueness of the fixed point, let y∗ ∈ X be a fixed point of T .
Then we have T n(y∗) = y∗ for all n ∈ N. By our choice of x0 in the first part of
the proof, we have

x0⊥y∗ or y∗⊥x0.

Since T is ⊥-preserving, we have

T n(x0)⊥T n(y∗) or T n(y∗)⊥T n(x0),

for all n ∈ N. On the other hand, T is ⊥-contraction, then we have for all n ∈ N,

d(x∗, y∗) = d(T n(x∗), T n(y∗))

≤ d(T n(x∗), T n(x0)) + d(T n(x0), T
n(y∗))

≤ kn[d(x∗, x0) + d(x0, y
∗)].

Also we have
‖d(x∗, y∗)‖ ≤ K(kn[‖d(x∗, x0)‖ + ‖d(x0, y

∗)‖]).

As n goes to infinity, we get x∗ = y∗.

Finally, we show that T is a Picard operator. Let x ∈ X be arbitrary. Similarly,
then

[x0⊥x∗ and x0⊥x] or [x∗⊥x0 and x⊥x0].

Now, since T is ⊥-preserving, then

[T n(x0)⊥T n(x∗) and T n(x0)⊥T (x)] or [T n(x∗)⊥T n(x0) and T (x)⊥T n(x0)],

for all n ∈ N. Hence for all n ∈ N, we get

d(T n(x), T n(x0)) ≤ kd(T n−1(x), T n−1(x0)) ≤ · · · ≤ knd(x, x0).

Letting n → ∞ we have limn→∞ T n(x) = x∗. This completes the proof.

Here, we obtain another fixed point theorem by replacing ⊥-contractive condition
by another slightly modified condition.
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Theorem 2.2. Let (X, d,⊥) be an orthogonal complete cone metric space, P be
a normal cone with normal constant K. Let T : X → X be ⊥-preserving, ⊥-
continuous mapping satisfying the following ⊥-contractive condition

d(Tx, T y) ≤ a(d(x, y)) + b[d(x, Tx) + d(y, T y)] + c[d(x, T y) + d(y, Tx)],

for x, y ∈ X with x⊥y and the constants a, b, c ∈ [0, 1) and a + b + c < 1. Then T

has a unique fixed point in X.

Proof. By definition of orthogonality, there exists x0 ∈ X such that

(∀x ∈ X, x⊥x0) or (∀x ∈ X, x0⊥x).

It follows that x0⊥T (x0) or T (x0)⊥x0. Let

x1 := T (x0), x2 := T (x1) = T 2(x0), · · · , xn+1 := Txn = T n(x0).

We have

d(xn+1, xn) = d(Txn, T xn−1)

≤ a(d(xn, xn−1)) + b[d(xn, T xn) + d(xn−1, T xn−1)] + c[d(xn, T xn−1) + d(xn−1, T xn)]

≤ a(d(xn, xn−1)) + b[d(xn, xn+1) + d(xn−1, xn)] + c[d(xn, xn) + d(xn−1, xn+1)]

≤ a(d(xn, xn−1)) + b[d(xn, xn+1) + d(xn−1, xn)] + c[d(xn−1, xn) + d(xn, xn+1)].

Therefore,
d(xn+1, xn)(1− b− c) = d(xn, xn−1)(a+ b+ c),

and we get

d(xn+1, xn) ≤ d(xn, xn−1)
a+ b+ c

1− b− c
.

Substituting k = a+b+c
1−b−c

and as 0 ≤ k < 1 we have

d(xn+1, xn) ≤ kd(xn, xn−1) ≤ · · · ≤ knd(x1, x0).

For any m ≥ 1, p ≥ 1, it follows that

d(xm+p, xm) ≤ d(xm+p, xm+p−1) + d(xm+p−1, xm)

≤ d(xm+p, xm+p−1) + d(xm+p−1, xm+p−2) + d(xm+p−2, xm)

≤ d(xm+p, xm+p−1) + d(xm+p−1, xm+p−2) + d(xm+p−2, xm+p−3)

+ · · ·+ d(xm+2, xm+1) + d(xm+1, xm)

≤ km+p−1d(x1, x0) + km+p−2d(x1, x0) + km+p−3d(x1, x0)

+ · · ·+ kmd(x1, x0)

≤ (km+p−1 + km+p−2 + km+p−3 + · · ·+ km)d(x1, x0)

≤
km

1− k
d(x1, x0).
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So we have

‖d(xm+p, xm)‖ ≤ K
km

1− k
‖d(x1, x0)‖.

Letting m −→ ∞ we conclude that {xn} is a Cauchy O-sequence. Since (X, d) is a
complete orthogonal cone metric space, there exists x∗ ∈ X such that xn → x∗ as
n −→ ∞.

Next, we claim that x∗ is a fixed point of T .

d(Tx∗, x∗) ≤ d(Tx∗, T xn) + d(Txn, x
∗)

≤ d(Tx∗, T xn) + d(xn+1, x
∗),

and we have

d(Tx∗, x∗) ≤ a(d(x∗, xn)) + b[d(x∗, T x∗) + d(xn, T xn)]

+ c[d(x∗, T xn) + d(xn, T x
∗)] + d(xn+1, x

∗)

≤ a((d(x∗, xn)) + b[d(x∗, T x∗) + d(xn, xn+1)]

+ c[d(x∗, xn+1) + d(xn, T x
∗)] + d(xn+1, x

∗)

≤ a((d(x∗, xn)) + b[d(x∗, T x∗) + d(xn, x
∗) + d(x∗, xn+1)]

+ c[d(x∗, xn+1) + d(xn, x
∗) + d(x∗, T x∗)] + d(xn+1, x

∗).

So
d(Tx∗, x∗)(1 − b− c) ≤ d(x∗, xn)(a+ b+ c) + d(x∗, xn+1)(1 + b+ c),

and

d(Tx∗, x∗) ≤
d(x∗, xn)(a+ b+ c) + d(x∗, xn+1)(1 + b+ c)

(1 − b− c)
.

Therefore

‖d(Tx∗, x∗)‖ ≤ K(
(a+ b+ c)

(1− b − c)
‖d(x∗, xn)‖+

(1 + b+ c)

(1 − b− c)
‖d(x∗, xn+1)‖).

Letting n −→ ∞, we have Tx∗ = x∗.

Finally, we need to prove that the fixed point is unique.

If there is another fixed point y∗, then

d(x∗, y∗) = d(Tx∗, T y∗)

≤ a(d(x∗, y∗)) + b[d(x∗, T x∗) + d(y∗, T y∗)] + c[d(x∗, T y∗) + d(y∗, T x∗)]

≤ a(d(x∗, y∗)) + b[d(x∗, T x∗) + d(y∗, T y∗)]

+ c[d(x∗, T x∗) + d(Tx∗, T y∗) + d(y∗, T y∗) + d(Ty∗, T x∗)]

= (a+ 2c)d(x∗, y∗).

(1− a− 2c)d(x∗, y∗) ≤ 0,

this implies that

‖d(x∗, y∗)‖ = 0.

Hence x∗ = y∗. Therefore the proof is completed.
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3. Application in differential equations

In this section, we apply results in the previous section to show the existence and
uniqueness of solution of the following periodic boundary value problem 1.1 where
t ∈ I = [0, T ], T > 0 and f : I × R → R is a continuous function. Let
X = {u ∈ C(I,R);u(t) > 1 {for almost every} t ∈ I}. Consider the Banach
space E = R and P = [0,∞). Define partial ordering ≤ with respect to P by a ≤ b

if and only if b− a ∈ P .

Suppose the mapping d : X ×X → E by

d(x, y) = sup
t∈I

|x(t) − y(t)|,

for x, y ∈ X .

Suppose that there exists β > 0, µ > 0 with µ < β such that for x, y ∈ R we have
1.2.

Theorem 3.1. Under above conditions, for all T > 0 the differential equation 1.1
has a unique solution.

Proof. The problem can be written in integral equation as

x(t) =

∫ T

0

G(t, s)[f(s, x(s)) + βx(s)]ds,

where

G(t, s) =

{

eβ(T+s−t)

eβT−1
, 0 ≤ s ≤ t ≤ T

eβ(s−t)

eβT −1 , 0 ≤ t ≤ s ≤ T
(3.1)

Define the following orthogonality relation ⊥ in X :

x⊥y if x(t)y(t) ≥ y(t),

for almost every t ∈ I. It’s easy to see that (X, d,⊥) is a cone metric space. Since
every x is a continuous function over a closed and bounded subset of the Euclidean
space, this supremum is actually attained in (X, d,⊥). Hence (X, d,⊥) is complete.

Now, we define A : (X, d,⊥) → (X, d,⊥) as follows:

(Ax)(t) =

∫ T

0

G(t, s)[f(s, x(s)) + βx(s)]ds,

for all t ∈ I.

Note that the fixed points of A are the solutions of 1.1.
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First, we claim that for every x ∈ X , Ax ∈ X . To see this, for every t ∈ I and
x ∈ X , we have

Ax(t) =

∫ T

0

G(t, s)[f(s, x(s)) + βx(s)]ds

=

∫ T

0

G(t, s)f(s, x(s))ds +

∫ T

0

G(t, s)βx(s)ds

>

∫ T

0

G(t, s)f(s, x(s))ds + β

∫ T

0

G(t, s)ds

=

∫ T

0

G(t, s)f(s, x(s))ds + β
1

eβT − 1
(
1

β
eβ(T+s−t)]t0 +

1

β
eβ(s−t)]Tt )

=

∫ T

0

G(t, s)f(s, x(s))ds + β
1

β

=

∫ T

0

G(t, s)f(s, x(s))ds + 1.

one can conclude that Ax(t) > 1 and we have Ax ∈ X .

Now, we check that the hypotheses in Theorem 2.1 is satisfied. To this end, we
prove the following statements:

1. A is ⊥-preserving,

2. A is ⊥-contraction,

3. A is ⊥-continuous

1. We recall that A is ⊥-preserving if for every x, y ∈ X , x⊥y we have Ax⊥Ay.
We have shown above that Ax(t) > 1 for all t ∈ I, which implies that
Ax(t)Ay(t) ≥ Ay(t) for all t ∈ I. So Ax⊥Ay if x⊥y.

2. Let x, y ∈ X and x⊥y, we have

|Ax(t) −Ay(t)| =
∣

∣

∫ T

0

G(t, s)[f(s, x(s)) + βx(s) − f(s, y(s))− βy(s)]ds
∣

∣

≤

∫ T

0

|G(t, s)||µ(x(t) − y(t))|ds

≤ µ|x(t) − y(t)|

∫ T

0

G(t, s)ds

=
µ

β
|x(t)− y(t)|.

So,

(3.2) d(Ax,Ay) = sup
t∈I

|Ax(t) −Ay(t)| ≤
µ

β
sup
t∈I

|x(t) − y(t)| =
µ

β
d(x, y).
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The inequality 3.2 shows that A is ⊥-contraction with Lipschitz constant
λ = µ

β
< 1.

3. Let {xn} be an O-sequence in X such that {xn} converges to some x ∈ X .
Since A is ⊥-preserving, {Axn} is an O-sequence. For each n ∈ N, by (2), we
have

|Axn −Ax| ≤ λ|xn − x|.

As n tends to infinity, it follows that A is ⊥-continuous.

The mapping A defined above satisfies the hypotheses of the Theorem 2.1. Thus,
the existence and uniqueness of its fixed point x∗ ∈ X has been guaranteed by
Theorem 2.1. As we noted above, x∗ is a unique solution to differential equation
1.1.
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