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Abstract. Three types of orthogonal polynomials (Chebyshev, Chelyshkov, and Leg-
endre) are employed as basis functions in a collocation scheme to solve a nonlinear
cubic initial value problem arising in population growth models. The method reduces
the given problem to a set of algebraic equations consist of polynomial coefficients.
Our main goal is to present a comparative study of these polynomials and to asses
their performances and accuracies applied to the logistic population equation. Numer-
ical applications are given to demonstrate the validity and applicability of the method.
Comparisons are also made between the present method based on different basis func-
tions and other existing approximation algorithms..
Keywords: Liouville-Caputo fractional derivative; Chebyshev and Chelyshkov poly-
nomials; Collocation method; Logistic population model; Legendre polynomial.

1. Introduction

In the present work, we are aiming to find the approximate solutions of the fractional-
order growth equation of single species with multiplicative Allee effect. This equa-
tion is governed by the following nonlinear ordinary differential equation [1]

D
(µ)
∗ y(t) = r y(t)

(
1− y(t)

k

)
(y(t)−m), 0 < t ≤ R <∞,(1.1)

with the initial condition
y(0) = λ ≥ 0.(1.2)

Here, r, m, and k are positive constants denoting respectively per capita growth

rate, Allee effect threshold and the carrying capacity of the environment. Here, D
(µ)
∗
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is the standard Liouville-Caputo fractional derivative operator and 0 < µ ≤ 1. The
fractional model (1.1) can be obtained by using the fractional derivative operator on
the corresponding inter-order equation. The investigation of the stability of equilib-
rium points of (1.1) along with the sufficient conditions to ensure the existence and
uniqueness of the coresponding solution are considered in [1]. To the best of our
knowledge, the following approximative and numerical schemes are developed for
the model problem (1.1)-(1.2). These include the Adams-type predictor-corrector
method [1], Bessel-collocation method [27], and the spectral tau method based on
shifted Jacobi polynomials [10].

The logistic population model is considered as an important type of nonlin-
ear differential equations due to its ability to model several biological and social
phenomena. Different variations of the population modelling are considered in the
literature [19]. Among others, the following linear and nonlinear models can be
mentioned, cf. [20, 10, 13, 26]

D
(µ)
∗ y(t) = rµ y(t),(1.3)

D
(µ)
∗ y(t) = r y(t)

(
1− y(t)

)
,(1.4)

D
(µ)
∗ y(t) = rµ y(t)

(
1− y(t)

)
.(1.5)

Historically, the origin of fractional differential equations traced back to New-
ton and Leibniz more than three centuries ago. To model many real world prob-
lems, it has turned out the use of fractional-order derivatives are more adequate
rather than integer-order ones. That is due to the fact that fractional derivatives
and integrals enable the description of the memory properties of various materi-
als and processes [21, 15]. Therefore, one needs to extend the concept of ordinary
differentiation as well as integration to an arbitrary non-integer order. The result-
ing fractional-order equations can be rarely solved exactly or analytically. Conse-
quently, approximate and numerical techniques are playing an important role in
identifying the solutions behaviour of such fractional equations. Indeed, the exact
analytical solution of the aforementioned population models is not known except
for the linear model (1.3) whose solution is written in terms of Mittag-Leffer infinite
series, cf. [26].

Recently, considerable attention has been given to the establishment of tech-
niques for the solution of the fractional differential equations using orthogonal func-
tions. The main characteristic of this technique is that it reduces the solution of
differential equations to the solution of a system of algebraic equations. Historically
this approach originated from the use of Fourier [18], Walsh [7] and block-pulse func-
tions [22] and was later extended to other classical orthogonal polynomials such as
Chebyshev, Legendre, Hermite, and Laguerre polynomials [23]. In most of the
presented works, the use of numerical techniques in conjunction with operational
matrices for differentiation and integration operators of some orthogonal polynomi-
als, for the solution of fractional differential equations on finite and infinite intervals,
produced highly accurate solutions for such equations, see [3] for a recent review.
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As already mentioned, the model problem (1.1)-(1.2) is known to possess no ex-
act solutions in general. In this manuscript, we will propose approximation meth-
ods as extension of the previous works [17], [11, 12], [27], [14], and [25] for solv-
ing (1.1)-(1.2). We use the fractional-order polynomials including the Chebyshev,
Chelyshkov, and Legendre functions to approximate the solution of (1.1) accurately
on the interval [0, R]. The main idea of the proposed technique based on using
these (orthogonal) functions along with collocation points is that it converts the
differential or integral operator involved in (1.1)-(1.2) to an algebraic form, thus
greatly reducing the computational effort.

Our manuscript is organized as follows. In the next section, some fundamental
definitions of fractional calculus and relevant properties are presented. Then, in sub-
sequent subsections a brief review of the properties of the Chebyshev, Chelyshkov,
and Legendre polynomials is outlined. Section 3. is devoted to the presentation
of the proposed collocation scheme applied to nonlinear logistic population initial
value problem. Hence, the error estimation technique based on the residual func-
tion is developed for the present method. In computational Section 4., we apply
the proposed method to the some test problems and report our numerical findings.
We end the paper with few concluding remarks in Section 5.

2. Basic definitions

In this section, first some properties of the fractional calculus theory are presented.
Afterwards, the definitions of fractional Chebyshev, Chelyshkov, and Legendre poly-
nomials are recalled and some properties of them required for our subsequent sec-
tions are reviewed.

2.1. Fractional calculus

Definition 2.1. Suppose that f(t) is n-times continuously differentiable. The

fractional derivative D
(µ)
∗ of f(t) of order µ > 0 in the Liouville-Caputo’s sense is

defined as

D
(µ)
∗ f(t) =

{
In−µf (n)(t), if n− 1 < µ < n,
f (n)(t), if µ = n, n ∈ N,

(2.1)

where

Iµf(t) =
1

Γ(µ)

∫ t

0

f(s)

(t− s)1−µ
ds, t > 0.

The properties of the operator D
(µ)
∗ can be found in [21, 15]. We make use of the

followings

D
(µ)
∗ (C) = 0 (C is a constant),(2.2)

D
(µ)
∗ tγ =(2.3)
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Γ(γ + 1)

Γ(γ + 1− µ)
tγ−µ, for γ ∈ N0 and γ ≥ dµe, or γ /∈ N0 and γ > bµc,

0, for γ ∈ N0 and γ < dµe.

We have used the ceiling function dµe to denote the smallest integer greater than
or equal to µ, and the floor function bµc to denote the largest integer less than or
equal to µ.

2.2. Chebyshev functions

It is known that the classical Chebyshev polynomials are defined on [−1, 1]. Starting
with T0(z) = 1 and T1(z) = z, these polynomials satisfy the following recurrence
relation [2]

Tn+1(z) = 2z Tn(z)− Tn−1(z), n = 1, 2, . . . .

By introducing the change of variable z = 1−2( tR )α, α > 0, one obtains the shifted
version of the polynomials defined on [0, R] and will be denoted by Tαn (t) = Tn(z).
The explicit analytical form of Tαn (t) of degree (αn) is given for n = 0, 1, . . .

Tαn (t) =

n∑
k=0

cn,k t
αk, cn,k = (−1)k

n 22k (n+ k − 1)!

(n− k)!Rαk (2k)!
, k = 0, 1, . . . , n,(2.4)

with c0,k = 1 for all k = 0, 1, . . . , n. It is proved in [17] that the set of fractional
polynomial functions {Tα0 , Tα1 , . . .} is orthogonal on [0, R] with respect to the weight

function w(t) = tα/2−1
√
Rα−tα ; i.e.

∫ R

0

Tαn (t)Tαm(t)w(t)dt =
π

2α
dnδmn, n,m ≥ 0.

Here, δmn is Kronecker delta function, d0 = 2 while dn = 1 for n ≥ 1. Our aim is to
find an approximate solution of model (1.1) expressed in the truncated Chebyshev
series form (3.1)

yN,α(t) =

N∑
n=0

an T
α
n (t), 0 ≤ t ≤ R,(2.5)

where the unknown coefficients an, n = 0, 1, . . . , N are sought. To proceed, we write
Tαn (t), n = 0, 1, . . . , N in the matrix form as follows

Tα(t) = Bα(t) D1 ⇔ Tt
α(t) = Dt

1 Bt
α(t),(2.6)

here, a superscript t denotes the matrix transpose operation and

Tα(t) = [Tα0 (t) Tα1 (t) . . . TαN (t)] , Bα(t) =
[
1 tα t2α . . . tNα

]
.
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The upper triangular (N + 1)× (N + 1) matrix D1 takes the form

D1 =



1 1 1 1 . . . 1 1
0 c1,1 c2,1 c3,1 . . . cN−1,1 cN,1
0 0 c2,2 c3,2 . . . cN−1,2 cN,2
...

...
. . .

. . .
. . .

...
...

0 0 0 . . . 0 cN−1,N−1 cN,N−1
0 0 0 . . . 0 0 cN,N


.

By means of (2.6) one can write the relation (2.5) in the matrix form

yN,α(t) = Bα(t) D1 A,(2.7)

where the vector of unknown is A = [a0 a1 . . . aN ]t.

2.3. Chelyshkov functions

The Chelyshkov polynomials were originally introduced by Chelyshkov [6, 5]. These
polynomials are orthogonal over the interval [0, 1] with respect to the weight function
w(x) = 1, and are explicitly defined by

Cn,N (t) =

N−n∑
k=0

(−1)k
(
N − n
k

)(
N + n+ k + 1

N − n

)
tn+k, n = 0, 1, . . . , N.(2.8)

These polynomials satisfy the following orthogonality relation∫ 1

0

Cn,N (t)Cm,N (t)dt =
δnm

n+m+ 1
.

Moreover, they can be obtained through the Jacobi polynomials Pα,βm (t), where
α, β > −1, and m ≥ 0 as

Cn,N (t) = (−1)N−n tn P 0,2n+1
N−n (t).

Now, we construct the fractional-order version of (2.8) by replacing t → tα as
follows [25]

Cαn,N (t) =

N∑
k=n

(−1)k−n
(
N − n
k − n

)(
N + k + 1

N − n

)( tα
R

)k
, n = 0, 1, . . . , N.(2.9)

It also is not a difficult task to show that the set of fractional polynomial functions
{Cα0,N , Cα1,N , . . .} is orthogonal on [0, R] with respect to the weight function w(t) ≡
tα−1. This implies that∫ R

0

Cαn,N (t)Cαm,N (t)w(t)dt =
Rδnm

α(2n+ 1)
, n,m ≥ 0.
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The Chelyshkov basis polynomials given by equation (2.9) can be written in the
matrix form [16, 25]

Cα(t) =
[
Cα0,N (t) Cα1,N (t) . . . CαN,N (t)

]
= Bα(t) D2,(2.10)

where D2 is an (N + 1)× (N + 1) matrix. If N is odd, the matrix D2 becomes

D2 =



(
N
0

)(
N+1
N

)
0 . . . 0 0

−r
(
N
1

)(
N+2
N

)
r
(
N−1
0

)(
N+2
N−1

)
. . . 0 0

...
...

. . .
...

...

rN−1
(
N
N−1

)(
2N
N

)
−rN−1

(
N−1
N−2

)(
2N
N−1

)
. . . rN−1

(
1
0

)(
2N
1

)
0

−rN
(
N
N

)(
2N+1
N

)
rN
(
N−1
N−1

)(
2N+1
N−1

)
. . . rN

(
1
1

)(
2N+1

1

)
rN


,

where we have used r = 1/R. If N is even we have

D2 =



(
N
0

)(
N+1
N

)
0 . . . 0 0

−r
(
N
1

)(
N+2
N

)
r
(
N−1
0

)(
N+2
N−1

)
. . . 0 0

...
...

. . .
...

...

−rN−1
(
N
N−1

)(
2N
N

)
rN−1

(
N−1
N−2

)(
2N
N−1

)
. . . rN−1

(
1
0

)(
2N
1

)
0

rN
(
N
N

)(
2N+1
N

)
−rN

(
N−1
N−1

)(
2N+1
N−1

)
. . . −rN

(
1
1

)(
2N+1

1

)
rN


.

Analogously, we approximate y(t) in terms of the truncated Chelyshkov series form

as yN,α(t) =
∑N
n=0 an C

α
n,N (t). Using (2.10) one may rewrite yN,α(t) as follows

yN,α(t) = Bα(t) D2 A.(2.11)

2.4. Legendre functions

The orthogonal Legendre polynomials are originally defined on [−1, 1]. Utilizing
the change of variable x = ( 2t

R −1) one can obtain the shifted Legendre polynomials
defined in [0, R] and satisfies in the following recurrence relation [2]

Pn+1(t) =
2n+ 1

n+ 1
(
2t

R
− 1)Pn(t)− n

n+ 1
Pn−1(t), n = 1, 2, . . . ,

with P0(t) = 1 and P1(t) = 2t
R −1. The analytical form of Pn(t) is explicitly defined

for n = 0, 1, . . .

Pn(t) =

n∑
k=0

ln,k t
k, ln,k = (−1)n+k

(n+ k)!

(n− k)!Rk (k!)2
, k = 0, 1, . . . , n.(2.12)
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Based on the shifted Legendre polynomials (2.12) one generates an orthogonal set
of fractional-order Legendre functions by setting t → tα for 0 < α ≤ 1, see [14].
They take the form

Pαn (t) =

n∑
k=0

ln,k t
kα, n = 0, 1, . . . .(2.13)

It is proved in [14] that the set of fractional polynomial functions {Pα0 , Pα1 , . . .} is
orthogonal on [0, R] with respect to the weight function w(t) ≡ tα−1; i.e.∫ R

0

Pαn (t)Pαm(t)w(t)dt =
R

α(2n+ 1)
δnm, n,m ≥ 0.

The main important properties of the fractional-order Legendre functions can be
found in [14] and [24].

Now, let us approximate the solution y(t) of (1.1) in terms of fractional-order

Legendre functions. Thus one gets yN,α(t) =
∑N
n=0 an P

α
n (t) or equivalently

yN,α(t) = Pα(t) A, Pα(t) = [Pα0 (t) Pα1 (t) . . . PαN (t)].(2.14)

In a similar way as the Chebyshev and Chelyshkov functions, we write Pαn (t) in
the matrix form as follows

Pα(t) = Bα(t) Dt
3 ⇔ Pt

α(t) = D3 Bt
α(t),(2.15)

where the monomial basis vector Bα(t) is previously defined in (2.6). Moreover,
the matrix D3 in this case is a lower triangular matrix whose entries are obtained
via (2.12) and has the form

D3 =



l0,0 l1,0 l2,0 . . . lN−1,0 lN,0
0 l1,1 l2,1 . . . lN−1,1 lN,1
0 0 l2,2 . . . lN−1,2 lN,2
...

...
. . .

. . .
...

...
0 0 0 . . . lN−1,N−1 lN,N−1
0 0 0 . . . 0 lN,N


.

Therefore, an equivalent form of (2.14) can be written as

yN,α(t) = Bα(t) D3 A.(2.16)

Ultimately, to obtain a solution in the form (2.11), (2.11), or (2.16) of the prob-
lem (1.1) on the interval 0 < t ≤ R, we will use the collocation points defined
by

ti =
R

N
i, i = 0, 1, . . . , N.(2.17)
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3. Description of the method

Now, suppose that we approximate the solution y(t) of the nonlinear logistic popu-
lation equation (1.1) in terms of (N +1)-terms Chebyshev, Chelyshkov or Legendre
polynomials series denoted by yN,α(t) on the interval [0, R]. As previously stated,
in the vector form one may write

y(t) ≈ yN,α(t) = Bα(t) U A.(3.1)

Depending on which polynomial basis function we use in the approximation, the
matrix U can be either D1, D2 or D3. These matrices are previously defined
in (2.6), (2.10), and (2.15) respectively. Putting the collocation points (2.17)
into (3.1), we arrive at a system of matrix equations

yN,α(ti) = Bα(ti) U A, i = 0, 1, . . . , N.

These equations can be written in a single and compact representation as follows

Y = B U A,(3.2)

where

Y =


yN,α(t0)
yN,α(t1)

...
yN,α(tN )

 , B =


Bα(t0)
Bα(t1)

...
Bα(tN )

 .
By taking the fractional derivative of order µ from the both sides of (3.1), we

get

D
(µ)
∗ yN,α(t) = D

(µ)
∗ Bα(t) U A.(3.3)

The calculation of D
(µ)
∗ Tα(t) can be easily obtained via the property (2.2) and (2.3)

as follows
B(µ)
α (t) = D

(µ)
∗ Bα(t) = [0 D

(µ)
∗ tα . . . D

(µ)
∗ tαN ].

To obtain a system of matrix equations for the fractional derivative, we insert the
collocation points (2.17) into (3.3) to get

D
(µ)
∗ yN,α(ti) = B(µ)

α (ti) U A, i = 0, 1 . . . , N,

which can be written in the matrix form

Y(µ) = B(µ) U A,(3.4)

where

Y(µ) =


D

(µ)
∗ yN,α(t0)

D
(µ)
∗ yN,α(t1)

...

D
(µ)
∗ yN,α(tN )

 , B(µ) =


B

(µ)
α (t0)

B
(µ)
α (t1)

...

B
(µ)
α (tN )

 .
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To continue, we approximate the nonlinear term y2(t). By substituting the
collocation points into y2N,α(t) we arrive at the following matrix representation

Y2 =


y2N,α(t0)

y2N,α(t1)
...

y2N,α(tN )

 =


yN,α(t0) 0 . . . 0

0 yN,α(t1) . . . 0
...

...
. . .

...
0 0 . . . yN,α(tN )




yN,α(t0)
yN,α(t1)

...
yN,α(tN )

 ,
which is equivalent to

Y2 = Ŷ Y.(3.5)

Also, the matrix Ŷ can be written as a product of three block diagonal matrices as

Ŷ = B̂ Q̂ Â,(3.6)

where

B̂ =


Bα(t0) 0 . . . 0

0 Bα(t1) . . . 0
...

...
. . .

...
0 0 . . . Bα(tN )

 , and

Q̂ =


U 0 . . . 0
0 U . . . 0
...

...
. . .

...
0 0 . . . U

 , Â =


A 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 . . . A

 .
Similarly, by inserting the collocation points (2.17) into the y3(t) we arrive at

the following matrix representation

Y3 =


y3N,α(t0)

y3N,α(t1)
...

y3N,α(tN )

 =


y2N,α(t0) 0 . . . 0

0 y2N,α(t1) . . . 0
...

...
. . .

...
0 0 . . . y2N,α(tN )




yN,α(t0)
yN,α(t1)

...
yN,α(tN )

 ,
which implies that

Y3 = (Ŷ)2 Y,(3.7)

where Ŷ is defined in (3.6).

Now, we are able to compute the Chebyshev, Chelyshkov, and Legendre solu-
tions of (1.1). The collocation procedure is based on calculating these polynomial
coefficients by means of collocation points defined in (2.17). To proceed, inserting
the collocation points into the fractional logistic population differential equation to
get the system

D
(µ)
∗ y(ti) = −rmy(ti) + r(1 +

m

k
) y2(ti)−

r

k
y3(ti), i = 0, 1, . . . , N.
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In the matrix form we may write the above equations as

Y(µ) + M Y −N Y2 + K Y3 = Z,(3.8)

where the coefficient matrices M, N, and K of size (N+1)×(N+1) and the vector
Z of size (N + 1)× 1 have the following forms

M =


rm 0 . . . 0
0 rm . . . 0
...

...
. . .

...
0 0 . . . rm

 , N =


r(1 +

m

k
) 0 . . . 0

0 r(1 +
m

k
) . . . 0

...
...

. . .
...

0 0 . . . r(1 +
m

k
)

 ,

K =



r

k
0 . . . 0

0
r

k
. . . 0

...
...

. . .
...

0 0 . . .
r

k

 , Z =


0
0
...
0

 .

By putting the relations (3.2), (3.4), and (3.5), (3.7) into (3.8), the fundamental
matrix equation is obtained

W A = Z,(3.9)

where
W := B(µ) U + M B U−N B̂ Q̂ Â B U + K (B̂ Q̂ Â)2 B U.

Obviously, (3.9) is a nonlinear matrix equation with an, n = 0, 1, . . . , N , being the
unknowns Chebyshev, Chelyshkov, or Legendre coefficients. To take into account
the initial condition y(0) = λ, we tend t → 0 in (3.1) to get the following matrix
representation

Ỹ0 A = λ, Ỹ0 := Bα(0) U = [y00 y01 . . . y0N ]t.

Consequently, by replacing the first row of the augmented matrix [W; Z] by the row

matrix [Ỹ0;λ], we arrive at the nonlinear algebraic system

W̃ A = Z̃.

Thus, the unknown Chebyshev, Chelyshkov, or Legendre coefficients in (3.1) will
be calculated via solving this nonlinear system of equations. This task can be
performed using for instance the Newton’s iterative method.

3.1. Accuracy of solutions

Since the exact solution of the fractional logistic population differential equation is
not known, we need to measure the accuracy of the proposed collocation scheme.
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Due to the fact that the truncated Chebyshev, Chelyshkov, and Legendre se-
ries (2.5), (2.8), and (2.12) are approximate solutions of (1.1), we expect that
the residual obtained by inserting the computed approximated solutions yN,α(t)
into the differential equation becomes approximately small. This implies that for
t = ts ∈ [0, R], s = 0, 1, . . .

EN,α(ts) = D
(µ)
∗ yN,α(ts) + C0 yN,α(ts)− C1 y

2
N,α(ts) + C2 y

3
N,α(ts) ∼= 0,(3.10)

where C0 = rm, C1 = r + rm/k, C2 = r/k, and EN,α(ts) ≤ 10−`s (`s is positive
integer). If max 10−`s ≤ 10−` (` positive integer) is prescribed, then the truncation
limit N is increased until the difference EN,α(ts) at each of the points becomes
smaller than the prescribed 10−`, see [4, 27]. Here, we note that the µth-order
fractional derivative of the approximate solution (3.10) is computed by using the
property (2.3). As the error function is clearly zero at the collocation points (2.17),
one expect that EN,α(t) tend to zero as N increased. This says that the smallness
of the residual error function means that the approximate solutions are close to the
exact solution.

4. Numerical Applications

To illustrate the accuracy and effectiveness of the proposed polynomials collocation
methods, two test examples are solved in this section. For comparison, we also
implement the collocation spectral method based on the Bessel functions of the
first kind in [27].

To start, we take µ = 1/3 in (1.1) and set α = 10/21 as the order of basis
functions. The parameters are considered as λ = 0.8, r = 1/2, m = 1, and k =
10. The approximate solutions yN,α(t) of this model problem using Chebyshev,
Chelyshkov, and Legendre basis functions for N = 6 in the interval 0 ≤ t ≤ 5 are
obtained as follows, respectively:

yCheb
6, 1021

(t) = 0.000403175741883 t
20
7 − 0.0437836398275 t

10
7 − 0.129582980375 t

10
21

+0.0581143648443 t
20
21 + 0.0188356028419 t

40
21 − 0.00426036069079 t

50
21 + 0.8,

yChel
6, 1021

= 0.000431604305758 t
20
7 − 0.0459657062667 t

10
7 − 0.137940445153 t

10
21

+0.0610146767185 t
20
21 + 0.0200210715840 t

40
21 − 0.00455595754387 t

50
21 + 0.8,

yLeg
6, 1021

= 0.000403170590320 t
20
7 − 0.04378450703 t

10
7 − 0.129583270558 t

10
21

+0.0581151779775 t
20
21 + 0.0188359825223 t

40
21 − 0.00426039646904 t

50
21 + 0.8.

The corresponding approximation by means of Bessel function of the first kind takes
the form [27]

yBes6, 1021
= 0.000431603553833 t

20
7 − 0.0459656939040 t

10
7 − 0.137940444198 t

10
21

+ 0.0610146708563 t
20
21 + 0.020021055753 t

40
21 − 0.0045559512912 t

50
21 + 0.8.
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The above results show clearly a similarity between the solutions obtained by the
Chebyshev and Legendre collocation schemes. The same conclusion can be made
from the two others polynomials obtained via Chelyshkov and Bessel functions. To
further justify this fact, we plot the above approximations in Fig. 4.1. To vali-
date our results, we also employ the predictor-corrector PECE method of Adams-
Bashforth-Moulton type described in [8] using µ = 1/3 and step size h = 1/100.

Furthermore, we calculate the error function defined in (3.10) for the above
approximations. The results are depicted in Fig. 4.2, left plot, in which we used
µ = 1/3 and α = 10/21. If one uses the same µ as α, a slightly better result
is obtained; the right plot in Fig. 4.2 shows the corresponding error functions.
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Fig. 4.1: The approximated Chebyshev/Chelyshkov/Legendre/Bessel series solu-
tions y6,α(t) using µ = 1/3, α = 10/21 for r = 1/2, m = 1, and k = 10.

Indeed, using µ equals to α give rises to the following approximations

yCheb
6, 13

(t) = 0.00145592739178 t− 0.000408618142451 t2 − 0.0770406217645 t
1
3

−0.0235193760879 t
2
3 − 0.00399643402926 t

4
3 + 0.00264600147359 t

5
3 + 0.8,

yChel
6, 13

= −0.0008400274797318 t− 0.000452218849990 t2 − 0.08228036902327 t
1
3

−0.02412078745183 t
2
3 − 0.002486450422357 t

4
3 + 0.002555336195047 t

5
3 + 0.8,

yLeg
6, 13

= 0.0007238288842966 t− 0.000383633654034 t2 − 0.0772002548625 t
1
3

−0.02298707225931 t
2
3 − 0.00348653436761 t

4
3 + 0.002467593603573 t

5
3 + 0.8,
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Fig. 4.2: Comparison of the error functions using Chebyshev, Chelyshkov, Legen-
dre, and Bessel functions with µ = 1/3, α = 10/21 (left) and µ, α = 1/3 (right) for
r = 1/2, m = 1, k = 10 and N = 6.

yBes
6, 13

= −0.0005578958339751 t− 0.0004622063664707 t2 − 0.08222082885753 t
1
3

−0.02432274380530 t
2
3 − 0.002685716064483 t

4
3 + 0.002625907960449 t

5
3 + 0.8.

In Table 4.1, we report the numerical results correspond to N = 11 obtained
by the Chebyshev, Chelyshkov, and Legendre-collocation procedures using using
µ = 1/3 and α = 10/21 at some points t ∈ [0, 5]. A comparison in this table is
made with the Bessel polynomials approach from [27].

In the second experiment, we set µ = 8/10, α = 6/7 and use the parameters
r = 1/2, m = 1, k = 10 as for the first case. In this case, we first consider the
approximate solutions y3,α(t) obtained via (3.9) of the model (1.1) for different
polynomials in the interval [0, 5]. These polynomials of fractional order α = 6/7 are
obtained as follows

yCheb3, 67
(t) = 0.00135308957515058 t18/7 − 0.0141863508549924 t12/7

− 0.0530254117658248 t6/7 + 0.8,

yLeg
3, 67

(t) = 0.00135308957514853 t18/7 − 0.0141863508549652 t12/7

− 0.0530254117658408 t6/7 + 0.8,

yChel3, 67
(t) = 0.00239567782739856 t18/7 − 0.0181886989840546 t12/7

− 0.0713242913743184 t6/7 + 0.8,

yBes3, 67
(t) = 0.00239567440428439 t18/7 − 0.0181886759461094 t12/7

− 0.0713243387363622 t6/7 + 0.8.
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Table 4.1: Comparison of numerical approximations in fractional Chebyshev,
Chelyshkov, and Legendre-collocation methods for N = 11, µ = 1/3, and α = 10/21
with r = 1/2, m = 1, k = 10.

t Chebyshev Chelyshkov Legendre Bessel [27]

0.0 0.800000000000000 0.799999278128293 0.800000002346789 0.8

0.1 0.756938514122078 0.750720355971572 0.756800106479977 0.757299929343

0.5 0.718356585092500 0.717065283660215 0.718315644610171 0.719053533865

0.8 0.701146284741409 0.700526184555178 0.701115558982678 0.701988430676

1.1 0.687275920912118 0.687016466289264 0.687250477599117 0.688230723198

1.5 0.671748232619617 0.671810217070104 0.671726923772954 0.672823131171

1.8 0.661581827887138 0.661820098256081 0.661562638423935 0.662731306189

2.1 0.652336198269439 0.652716988678142 0.652318667387550 0.653550389695

2.5 0.641119373021142 0.641655992776889 0.641103504792762 0.642407766286

2.8 0.633377305676302 0.634012066595954 0.633362385608193 0.634713985075

3.1 0.626111073800506 0.626830874127975 0.626096980389975 0.627490786996

3.5 0.617051206659663 0.617867674288841 0.617038187117911 0.618481357894

3.8 0.610663124253371 0.611542868110921 0.610650880180289 0.612126624513

4.1 0.604580099793391 0.605518095678698 0.604568481573332 0.606073610313

4.5 0.596890007487173 0.597899498980620 0.596878825634452 0.598418968647

4.8 0.591404597688423 0.592459282464779 0.591393696691324 0.592957119829

5.0 0.587869951320244 0.588945877644788 0.587859669371108 0.589436884397

In the next experiments, we fix N = 3 and µ = 8/10, α = 6/7. We employ
the error function (3.10) and compare the results obtained by different polynomial
functions. Table 4.2 demonstrates the numerical values of these error functions at
some points t ∈ [0, 5]. As the above approximations show, the errors E3, 67

(t) for the

Chebyshev and Legendre as well as Chelyshkov and Bessel (our implementation) are
approximately similar. Note, in the last column we reports the results from [27]. To
see whether the error function EN,α(t) is a decreasing function of N or not, we fix
µ = 8/10 and α = 6/7 as above but use various N = 3, 6 and N = 10 in simulation.
We select the Chebyshev and Chelyshkov as the basis functions among others. The
results are visualized in Fig. 4.3. While the left picture illustrates the Chebyshev
error functions, the right one is obtained via Chelyshkov collocation procedure.

Next, to see the effect of using various values of α ≥ µ, we fix N = 7 and
µ = 8/10. Hence, we exploit several values of α = µ, 58/70, 6/7 and compute the
numerical solutions at some points in [0, 5]. The results are shown in Table. 4.3
while using the Chelyshkov basis functions. To justify our results we compare the
computed solutions in this table with Bessel collocation approach [27]. The last two
columns are obtained using µ = 8/10, α = 6/7 and n = 6, 11 respectively. Looking
at Table 4.3 reveals that using Chelyshkov collocation method with N = 7 but
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Table 4.2: Comparison of error functions in fractional Chebyshev/Legendre and
Chelyshkov/Bessel collocation methods for N = 3, µ = 8/10, and α = 6/7 with
r = 1/2, m = 1, k = 10.

t Chebyshev Chelyshkov Legendre Bessel Bessel [27]

0.0 5.8666667−02 7.3600000−02 5.8666667−02 7.3600000−02 7.36000000000−02
0.1 1.2372352−02 1.1880958−02 1.2372352−02 1.1880924−02 8.91567095017−03
0.5 5.5046468−03 4.3507888−03 5.5046468−03 4.3507667−03 1.99296107666−03
0.8 3.0589969−03 2.1210125−03 3.0589969−03 2.1209978−03 8.46185079361−04
1.1 1.5039416−03 9.0326860−04 1.5039416−03 9.0325952−04 3.41262782597−04
1.5 2.9615144−04 1.4128415−04 2.9615144−04 1.4128047−04 5.49335472238−05
1.8 1.6982381−04 6.4923105−05 1.6982381−04 6.4924075−05 2.79352687459−05
2.1 3.7838526−04 1.0764412−04 3.7838526−04 1.0764336−04 5.62760899174−05
2.5 3.9162970−04 5.7880301−05 3.9162970−04 5.7878565−05 5.21372970094−05
2.8 2.8292735−04 1.1166955−05 2.8292735−04 1.1165393−05 3.51686446321−05
3.1 1.2750623−04 9.5410734−06 1.2750623−04 9.5417305−06 1.49559607016−05
3.5 8.4963558−05 2.0244083−05 8.4963558−05 2.0245750−05 9.35893830234−06
3.8 2.0838829−04 7.7239067−05 2.0838829−04 7.7243331−05 2.21148978971−05
4.1 2.7510980−04 1.4112847−04 2.7510980−04 1.4113610−04 2.83498750927−05
4.5 2.4829257−04 1.7908045−04 2.4829257−04 1.7909384−04 2.48914327358−05
4.8 1.2896874−04 1.1530618−04 1.2896874−04 1.1532493−04 1.27732345915−05
5.0 5.6388995−10 9.6146640−11 5.6379307−10 2.2949767−08 0
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Fig. 4.3: comparison of error functions using Chebyshev (left) and Chelyshkov
functions (right) with µ = 8/10, α = 6/7, and different N = 3, 6, 10.

α = 58/70 one gets a comparable result while using Bessel basis functions with
N = 11.
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Table 4.3: Comparison of numerical solutions in Chelyshkov collocation method for
N = 7, µ = 8/10, and different α = 8/10, 58/70, 6/7 with r = 1/2, m = 1, k = 10.

Chelyshkov (µ = 8
10 , N = 7) Bessel [27] (µ = 8

10 , α = 6
7 )

t α = 8
10 α = 58

70 α = 6
7 N = 6 N = 11

0.0 0.80000000000 0.8000000000 0.80000000000 0.8 0.8

0.1 0.78718882912 0.78758463172 0.78802089791 0.788007903475 0.787696000559

0.5 0.74982396960 0.75025364375 0.75075459981 0.750739706221 0.750242595254

0.8 0.72356379677 0.72398067700 0.72446611403 0.724456716829 0.723972085247

1.1 0.69746594429 0.69787925083 0.69835946985 0.698352878145 0.697875832476

1.5 0.66253413522 0.66294840744 0.66342949839 0.663422970008 0.662946544268

1.8 0.63620080581 0.63661604251 0.63709835065 0.637090911256 0.636614170560

2.1 0.60981684229 0.61023179673 0.61071381759 0.610705745410 0.610230091937

2.5 0.57473447564 0.57514638100 0.57562483235 0.575616794783 0.575145107178

2.8 0.54865002906 0.54905746525 0.54953072965 0.549523095432 0.549056408163

3.1 0.52290039893 0.52330146175 0.52376737213 0.523760058308 0.523300477415

3.5 0.48930161944 0.48969130186 0.49014406249 0.490136706629 0.489690377445

3.8 0.46480191614 0.46518106852 0.46562160232 0.465614022991 0.465180289715

4.1 0.44101520794 0.44138236008 0.44180893517 0.441801414133 0.441381760632

4.5 0.41055630328 0.41090564596 0.41131160135 0.411305250793 0.410905049742

4.8 0.38874292431 0.38907789139 0.38946730819 0.389462357675 0.389077139783

5.0 0.37472016558 0.37504515130 0.37542301726 0.375418410434 0.375044417235

5. Conclusions

In this manuscript, an approximation algorithm based on different polynomials is
developed for solving the nonlinear fractional-order logistic population equation
modelling the single species multiplicative Allee effect. Exploiting the fractional
Chebyshev, Chelyshkov, and Legendre functions along with the collocation points
we convert the differential equation into an algebraic system of nonlinear equations.
Numerical test problems are given to demonstrate efficiency and accuracy of the
proposed method. Moreover, the performance of these three basis functions has
assessed and a comparison between them and other existing schemes is made. Fur-
thermore, the reliability of the proposed technique is checked through defining the
residual error functions. Referring to graphs and tables we conclude that using the
fractional Chelyshkov function produces a more accurate result compared to Cheby-
shev and Legendre basis functions. The proposed technique can be easily applied
to other logistic population models (1.3)-(1.5) and other problems in science and
engineering.
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