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Abstract. In the present paper, we have studied n-Ricci solitons in Lorentzian
a—Sasakian manifolds satisfying certain curvature conditions. The existence of n—Ricci
soliton in a Lorentzian a—Sasakian manifold has been proved by a concrete example.
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tensor.

1. Introduction

In 1985, J. A. Oubina [14] defined and studied a new class of almost contact
metric manifolds known as trans-Sasakian manifolds, which includes a-Sasakian,
B-Kenmotsu and cosymplectic structures. In 2005, A. Yildiz and C. Murathan [5]
studied conformally flat and quasi-conformally flat Lorentzian a—Sasakian mani-
folds. Lorentzian a—Sasakian manifolds have been studied by many authors such
as [1,3,6]. Recently, U. C. De and P. Majhi have studied ¢—Weyl semisymmetric
and ¢—projectively semisymmetric generalized Sasakian space-forms and obtained
some intersesting results [21].

In 1982, R. S. Hamilton [20] introduced the notion of Ricci flow to find a canon-
ical metric on a smooth manifold. Then Ricci flow has become a powerful tool
for the study of Riemannian manifolds, especially for those manifolds with positive
curvature. G. Perelman [12,13] used Ricci flow and its surgery to prove Poincare
conjecture. The Ricci flow is an evolution equation for metrics on a Riemannian
manifold defined as follows:

0
50 (t) = —2Ri;.

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution
to the Ricci flow is called Ricci soliton if it moves only by a one parameter group
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of diffeomorphism and scaling. A Ricci soliton (g, V, A) on a Riemannian manifold
(M, g) is a generalization of an Einstein metric such that [17, 18]

(1.1) (Lvg)(X,Y)+25(X,Y) +2)g(X,Y) =0,

where S is the Ricci tensor, £ is the Lie derivative operator along the vector field
V on M and A is a real number. The Ricci soliton is said to be shrinking, steady
or expanding according to A being negative, zero or positive, respectively. Ricci
solitons in the context of general relativity have been studied by M. Ali and Z.
Ahsan [16].

As a generalization of Ricci solitons, the notion of n-Ricci solitons was intro-
duced by J. T. Cho and M. Kimura [15]. They have studied Ricci solitons of real
hypersurfaces in a non-flat complex space form and they defined n-Ricci soliton,
which satisfies the equation

(1.2) (Lvg)(X,Y) +25(X,Y) 4+ 20g(X,Y) + 2un(X)n(Y) = 0,

where A and p are real number. In particular, if 4 = 0, then the notion n-Ricci
soliton (g, V, A, i) is reduced to the notion of Ricci soliton (g, V, A). Recenty, n—Ricci
solitons have been studied by various authors such as A. Singh and S. Kishor [4],
A. M. Blaga [9], D. G. Prakasha and B. S. Hadimani [11], S. Ghosh [19] and many
others.

The paper is organized as follows: In Section 2, we give a brief introduction
of Lorentzian a—Sasakian manifolds. In Section 3, we discuss 7-Ricci solitons in
Lorentzian a—Sasakian manifolds. Section 4 is devoted to study 7-Ricci solitons
in ¢—projectively semisymmetric Lorentzian a—Sasakian manifolds. In Section 5,
we study n-parallel ¢—tensor Lorentzian a-Sasakian manifolds admitting n—Ricci
solitons. m—Ricci solitons in Lorentzian a—Sasakian manifolds admitting Codazzi
type of Ricci tensor and cyclic parallel Ricci tensor have been studied in Section 6.
In Section 7, we study n-Ricci solitons in recurrent Lorentzian a-Sasakian manifolds.
Finally, we construct an example of 3-dimensional Lorentzian a—Sasakian manifold
which admits an n—Ricci soliton.

2. Preliminaries

A differentiable manifold of dimension n is called a Lorentzian a—Sasakian man-
ifold if it admits a (1, 1)—tensor field ¢, a contravariant vector field £, a covariant
vector field n and a Lorentzian metric g which satisfy [5]

(2.1) n() = -1,

(2.2) ¢’ X = X +n(X)¢,

(2.3) p¢ =0, n(¢X)=0,

(2.4) 9(¢X,¢Y) = g(X,Y) + n(X)n(Y),
(2.5) 9(X, &) = n(X)
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for all vector fields X, Y on M.
Also Lorentzian av—Sasakian manifolds satisfy

(2.6) Vxé = —a¢X,

(2.7) (Vxn)Y = —ag(¢X,Y),

where V denotes the operator of covariant differentiation with respect to the Lorentzian
metric g and a € R.

Furthermore, on a Lorentzian a—Sasakian manifold M, the following relations
hold [5, 6]:

(28)  g(R(X,Y)Z,€) =n(R(X,Y)Z) = o®[g(Y, Z)n(X) — (X, Z)n(Y)],

(2.9) REX)Y = a?[g(X.Y)E — n(Y)X],

(2.10) R(X,Y)E = a’[p(Y)X —n(X)Y],

(2.11) R(E,X) = o?[X + n(X)e],

(2.12) S(X.) = (n—1)a’n(X), (€)= —(n— 1),
(2.13) Q€ = (n— 1)a’,

(2.14) (Vx)Y = ag(X.Y)¢ - an(¥)X

for any vector fields X, Y and Z on M.

Definition 2.1. A Lorentzian a—Sasakian manifold M is said to be a generalized
n-Einstein manifold if its Ricci tensor S is of the form [7]

S(X,Y) =ag(X,Y) + bn(X)n(Y) + cg(¢X,Y),
where a,b and ¢ are smooth functions on M. If c =0, b =c =0 and b = 0, then

the manifold is said to be an n—Einstein, Einstein and a special type of generalized
n-Einstein manifold, respectively.

Definition 2.2. The projective curvature tensor C' in an n—dimensional Lorentzian
a-Sasakian manifold M is defined by

(2.15) P(X,Y)Z =R(X,Y)Z — %[S(Y, Z)X - 8(X, Z2)Y),

where R is the Riemannian curvature tensor and r is the scalar curvature of the
manifold.
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3. n-Ricci solitions in Lorentzian a—Sasakian manifolds

Suppose that a Lorentzian a«—Sasakian manifold admits an n-Ricci soliton (g, £, A, ).
Then (1.2) holds and thus we have

(3.1) (£e9)(X,Y) +25(X,Y) 4+ 209(X,Y) + 2un(X)n(Y) = 0.
In a Lorentzian a—Sasakian manifold, we find
(3.2) (£¢9)(X,Y) = g(Vx&Y) +g(X, Vy§) = —2ag9(X, ¢Y).

Combining (3.1) and (3.2), it follows that

(3-3) S(X,Y) = =M(X,Y) + ag(¢X,Y) — un(X)n(Y).
It yields

(3.4) QX = -2X + apX — un(X)E.

By taking ¥ = ¢ in (3.3) and using (2.1), (2.3) and (2.5), we get
(3.5) S(X,€) = (1= Mn(X).

Thus from (2.12) and (3.5), we obtain
(3.6) p—A=(n—1)a?
Hence in view of (3.3) and (3.6), we can state the following theorem:

Theorem 3.1. If (g,&, A\, 1) is an n-Ricci soliton in a Lorentzian a—Sasakian
manifold, then the manifold is a generalized n-Einstein manifold of the form (3.3)
and p— A= (n—1)a?.

In particular, if we take y = 0 in (3.3) and (3.6), then we obtain
(3.8) A= —(n—1)a?
respectively. Thus we have

Corollary 3.1. 1If(g,&, A) is a Ricci soliton in a Lorentzian a— Sasakian manifold,
then the manifold is a special type of genralized n-Einstein manifold and its Ricci
solition is always shrinking.

Now, let (g, V, A, ) be a Ricci soliton in a Lorentzian a—Sasakian manifold such
that V' is pointwise collinear with £, i.e., V = b€, where b is a function. Then (1.2)
holds and we have

bg(Vx&,Y) + (X0)n(Y) + bg(X, Vy &) + (Yb)n(X)
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+25(X,Y) +2X9(X,Y) +2un(X)n(Y) =0
which in view of (2.6) takes the form

(3.9) —2bag(¢X,Y) + (Xb)n(Y) + (Yb)n(X)

+25(X,Y) +209(X,Y) + 2un(X)n(Y) = 0.
Putting Y = ¢ in (3.9) and using (2.1), (2.3), (2.5) and (2.12), we find
(3.10) —(Xb) +[(éb) +2(n — 1)a® + 2\ — 2un(X) = 0.
Again putting X = £ in (3.10) and using (2.1), we get
(3.11) (€b) +(n—1)a® + X — pu=0.
Combining the equations (3.10) and (3.11), it follows that
(3.12) db=[(n—1)a? + X\ — uln.
Now applying d on (3.12), we get
(313) [(n—Da?+AX—pln=0 = pu—-A=(n-1a% dn#0.

Thus from (3.12) and (3.13), we obtain db = 0, i.e., b is a constant. Therefore, (3.9)
takes form

(3.14) S(X,Y)=-X(X,Y) 4+ bag(¢X,Y) — un(X)n(Y).

Hence in view of (3.13) and (3.14), we can state the following theorem:

Theorem 3.2. If(g,&, A, 1) is an n-Ricci soliton in an n—dimensional Lorentzian
a—Sasakian manifold, such that V is pointwise collinear with &, then V is a constant
multiple of & and the manifold is a generalized n-Einstein manifold of the form (3.14)
and p— X = (n—1)a2.

4. 7-Ricci solitions in ¢-projectively semisymmetric Lorentzian
a—Sasakian manifolds

Definition 4.1. A Lorentzian a—Sasakian manifold is said to be ¢—projectively
semisymmetric if [20]

PX,Y) ¢=0

for all X,Y on M.
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Let M be an n-dimensional ¢—projectively semisymmetric Lorentzian a—Sasakian
manifold admits n-Ricci soliton. Therefore P(X,Y) - ¢ = 0 turns into

(4.1) (P(X,Y)-$)Z = P(X,Y)6Z — 6P(X,Y)Z = 0
for any vector fields X,Y, Z € x(M). From (2.15), it follows that

42)  P(X,Y)6Z = R(X,Y)6Z — ﬁ[sm 67)X — S(X,62)Y),

43)  6P(X,Y)Z = 6R(X,Y)Z — ﬁ[sm 2)6X — S(X, Z)6Y].

Combining the equations (4.1), (4.2) and (4.3), we have

(4.4) R(X,Y)$Z — ¢R(X,Y)Z — ﬁ[S(Y, 0Z)X — S(X,$Z)Y]

+———[S(Y, 2)6X — S(X, Z)¢¥] = 0

n—1
which by taking ¥ = ¢ and using (2.3), (2.9) and (2.12) is reduced to
(4.5) S(X,0Z) = (n—1)a?g(X,d2).
In view of (3.3), (4.5) takes the form
(4.6) A+ (n = 1)a?lg(X, $2) — ag(¢X, $Z) = 0.
By replacing X by ¢X in (4.6) and using (2.2), we get
(4.7) A+ (n - 1)a?lg(pX, Z) — ag(X, $Z) = 0.
By adding (4.6) and (4.7), we obtain
A+ (n = 1)a® —al(9(X, ¢2) + g(X,$Z)) = 0

from which it follows that A = —(n — 1)a? + a and hence from (3.6), we get u = a.
Thus we can state the following theorem:

Theorem 4.1. If(g,&, A\, u) is ann-Ricci soliton in an n-dimensional ¢— projectively
semisymmetric Lorentzian a—Sasakian manifold, then X = —(n — 1)a® + a and

w=q.
Now from the relations (3.3), (3.6) and (4.7), we obtain
(4.8) S(X,Y) = (n—1)a?g(X,Y).
Thus we have

Corollary 4.1. An n-dimensional ¢—projectively semisymmetric Lorentzian
a—Sasakian manifold admitting an n-Ricci soliton (g,&, A, 1) is an Einstein mani-

fold.
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5. n-parallel ¢—tensor Lorentzian a-Sasakian manifolds admitting
n—Ricci solitons

In this section, we study the n—parallel ¢—tensor in Lorentzian a-Sasakian
manifolds. If the (1, 1) tensor ¢ is n—parallel, then we have [10]

(5.1) J(Vx)Y,2) =0
for all X,Y,Z € x(M). From (2.14) and (5.1), we get
(5.2) 9(X,Y)n(Z)—n(¥)g(X,Z)=0, where a#0.
Putting Z = ¢ in (5.2), we find
9(X,Y) = —n(X)n(Y)

which by replacing Y by QY and using (2.12) yields
(5.3) S(X,Y) = —a2(n — Dn(X)n(Y).
From (3.3) and (5.3), it follows that

A(X,Y) = ag(6X,Y) + (1 — (n — Da?)(X)n(¥) = 0
which by replacing Y by ¢Y becomes
(5.4) M(X, 6Y) — ag(6X, 6Y) = 0.
Now by replacing X by ¢X in (5.4) and using (2.2), we find
(5.5) A(6X,6Y) - ag(X,6Y) = 0.

By adding (5.4) and (5.5), we obtain A\ = « and hence from (3.6) we get p =
a+ (n — 1)a?. Thus we have the following theorem:

Theorem 5.1. If (g,&, A\, u) is an n-Ricci soliton in an n-dimensional Lorentzian
a—Sasakian manifold and if the tensor ¢ is n—parallel , then A = a and p =
a+(n—1)a?.

Now from the relations (3.3), (3.6) and (5.5), we obtain

(5.6) S(X,Y) = —(n—1)a’*n(X)n(Y).

Thus we have

Corollary 5.1. If(g,&, A\, ) is an n-Ricci soliton in an n-dimensional Lorentzian

a—Sasakian manifold and if the tensor ¢ is n—parallel, then the manifold is a special
type of n— Einstein manifold.
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6. n—Ricci solitons in Lorentzian a¢—Sasakian manifolds admitting
Codazzi type of Ricci tensor and cyclic parallel Ricci tensor

In this section, we consider n—Ricci solitons in Lorentzian a—Sasakian manifolds
admitting Codazzi type of Ricci tensor and cyclic parallel Ricci tensor. A. Gray
[2] introduced the notion of cyclic parallel Ricei tensor and Codazzi type of Ricei
tensor.

Definition 6.1. A Lorentzian a—Sasakian manifold is said to have Codazzi type
of Ricci tensor if its Ricci tensor S of type (0, 2) is non-zero and satisfies the following
condition

(VxS)(Y, 2) = (Vy9)(X, Z)
for all X,Y,Z € x(M),
Taking covariant derivative of (3.3) and making use of (2.7) and (2.14), we find
(6.1) (VxS)Y, Z) = ?[g(X, Y )n(Z) — g(X, Z)(Y)]

+oplg(oX, Y )n(Z) + g(6X, Z)n(Y)].
If the Ricci tensor S is of Codazzi type, then
(6.2) (VxS)(Y, 2) = (T S)(X, 2).
In view of (6.1), (6.2) takes the form
a?[g(Y, Z)n(X) = 9(X, Z)n(Y)] + aplg(¢X, Z)n(Y) — g(4Y., Z)n(X)] = 0
which by putting X = £ and using (2.1), (2.3)-(2.5) gives

(6.3) ag(9Y,¢Z) — ng(¢Y,Z) =0, a#0.
Now by replacing Z by ¢Z in (6.3) and using (2.2), we find
(6.4) ag(eY, Z) — pg(9Y,pZ) = 0.

By adding (6.3) and (6.4), we obtain g = « and hence from (3.6) we get A =
a — (n — 1)a?. Thus we have the following:

Theorem 6.1. Let (g,&, A, 1) be an n— Ricci soliton in an n-dimensional Lorentzian
a—Sasakian manifold and if the manifold has Ricci tensor of Codazzi type, then
A=a—(n—-1)a? and u = «a.

Definition 6.2. A Lorentzian av—Sasakian manifold is said to have cyclic parallel
Ricci tensor if its Ricci tensor S of type (0, 2) is non-zero and satisfies the following
condition

(6.5) (VxS)(Y,2) + (VyS)(Z,X) + (Vz9)(X,Y) =0
for all X,Y, Z € x(M).
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Let (g,&, A\, pt) be an n—Ricci soliton in an n-dimensional Lorentzian a—Sasakian
manifold and the manifold has cyclic parallel Ricci tensor, then (6.5) holds. Taking
covariant derivative of (3.3) and making use of (2.7) and (2.14), we find

(6.6) (VxS)(Y, Z) = ®[9(X,Y)n(Z) — g(X, Z)n(Y)]

+oplg(eX,Y)n(Z) + g(¢ X, Z)n(Y))].
Similarly, we have

(6.7) (VyS)(Z,X) = a®[g(Y, Z)n(X) — g(Y. X)n(Z)]

+apulg(eY, Z)n(X) + g(8Y, X)n(Z)],

(6.8) (V29)(X,Y) = a®[g(Z, X)n(Y) — g(Z,Y )n(X)]

+aplg(eZ, X)n(Y) + g(¢Z, Y )n(X)].
By using (6.6)-(6.8) in (6.5), we obtain
aplg(eX,YIn(Z) + g(¢X, Z)n(Y) + g(¢Y, Z)n(X)] = 0
which by taking Z = £ reduces to
(6.9) apg(¢X,Y) =0.
Since the manifold under consideration is non-cosymplectic and g(¢X,Y) # 0, in
general, therefore (6.9) yields p = 0. Therefore the n—Ricci soliton becomes Ricci

soliton. Thus we have the following:

Theorem 6.2. An n— Ricci soliton in a non-cosymplectic Lorentzian a— Sasakian
manifold whose Ricci tensor is of Codazzi-type becomes a Ricci soliton.

7. n-Ricci solitons on recurrent Lorentzian a-Sasakian manifolds

Definition 7.1. An n-dimensional Lorentzian a-Sasakian manifold is said to be
recurrent if there exists a non-zero 1-form A such that [8]

(7.1) (VxR)(Y,Z)W = A(X)R(Y, Z)W

for all vector fields X,Y, Z and W on M. If the 1-form A vanishes, then the manifold
reduces to a symmetric manifold.
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Assume that M is a recurrent Lorentzian a-Sasakian manifold. Therefore the cur-
vature tensor of the manifold satisfies (7.1). By a suitable contraction of (7.1), we
get

(7.2) (VxS)(Z,W)=A(X)S(Z,W).

This implies that

(7.3) VxS(Z,W) - S(VxZ,W)—S(Z,VxW) = A(X)S(Z,W)

which by taking W = ¢ and using (2.6) and (2.12) yields

(7.4) S(Z,0X) = (n—1)a’g(¢X, Z) + (n — )aA(X)n(Z), a#0.

In view of (3.3), (7.4) takes the form

(7.5) ag(X, Z) + an(X)n(Z) = A+ (n — 1)a®]g(¢ X, Z) + (n — DaA(X)n(Z).

Suppose the associated 1-form A is equal to the associated 1-form 7, then from
(7.5), we have

(7.6) ag(X,2) = A+ (n —1)a’]g(6X, Z) + (n — 2)an(X)n(Z).
By replacing Z by ¢Z in (7.6), we get
(7.7) ag(X,¢Z) = A+ (n - 1)a’g(X, ¢2)

which by replacing X by ¢X and using (2.2), becomes

(7.8) ag(¢X,6Z) = A + (n —1)a®]g(X, 62).
By adding (7.7) and (7.8), we obtain A = —(n — 1)a? — a and hence from (3.6) we
get 4 = —a. Thus we can state the following:

Theorem 7.1. If (g,&, A\, 1) is an n— Ricci soliton in an n-dimensional recurrent
Lorentzian a-Sasakian manifold, then A = —(n — 1)a® — a and p = —a.

Now from the relations (3.3), (3.6) and (7.7), we obtain
(7.9) S(X,Y) = (n—1)a?g(X,Y).
Thus we have

Corollary 7.1. An n-dimensional recurrent Lorentzian a-Sasakian manifold ad-
mitting an n-Ricci soliton (g,&, A\, 1) is an Einstein manifold.

Example. We consider the 3-dimensional manifold M = {(ac, y,2) ER3: 2z > 0},
where (z,y, z) are the standard coordinates of R3. Let e1, e and e3 be the vector
fields on M given by

— R —e *(— . = a— =
er=e , ea=¢e +8y)’ e3 =« &,
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which are linearly independent at each point p of M. Let g be the Lorentzian like
(semi-Riemannian) metric defined by

gler,e1) = g(ez,e2) =1, gles,ez) = —1, gler,e2) = g(e1,e3) = g(ez,e3) = 0.

Let 7 be the 1-form defined by n(X) = g(X,e3) = g(X, &) for all X € x(M), and
let ¢ be the (1,1)-tensor field defined by

pe1 =e1, ¢es = ez, ¢ez =0.
By applying linearity of ¢ and g, we have
n(€) =9(6,6) = -1, ¢*X =X +0(X)¢ and g(pX,9Y) = g(X,Y) +n(X)n(Y)

for all X,Y € x(M). Thus for e3 = &, the structure (¢, &,n, g) defines a Lorentzian
almost paracontact metric structure on M.
Then we have

[e1,e2] =0, [e1,e3] = aer, [ea,e3] = aes.
The Levi-Civita connection V of the Lorentzian metric g is given by
29(VxY,2) = Xg(Y,2) +Yg(Z, X) — Zg(X,Y) — g(X, [V, Z]) + g(Y,[Z, X]) + 9(Z, [X,Y]),
which is known as Koszul’s formula. Using Koszul’s formula, we can easily calculate

(7.10) Ve, €1 =aes, Ve ea=0, V.es3=aer, Ve =0,

Ve,e2 = ae3, Ve,e3 =aea, Ve,e1 =0, Vgea=0, Vge3=0.
Also, one can easily verify that
Vxé=—apX and (Vx9)Y =ag(X,Y){—an(¥)X.

Therefore, the manifold is a Lorentzian a-Sasakian manifold. From the above re-
sults, we can easily obtain the components of the curvature tensor as follows:

(7.11)  R(e1,ea)e; = —a’es, Rley,ez)e; = —a’es, R(ea,es)e; =0,

R(e1,e2)es = a’ey, R(ey,e3)es =0, R(es, e3)es = —a’es,

R(ey,ez)es =0, R(ey,e3)es = —a’e, R(eq, e3)es = —aZe,
from which it is clear that

(7.12) R(X,Y)Z =a*[g(Y,2)X — g(X, Z)Y].
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Hence the manifold (M, ¢,&, g) is a Lorentzian a-Sasakian manifold of constant
curvature o2. With the help of the above results we get the components of Ricci
tensor and scalar curvature as follows:

(7.13) S(er,e1) = S(ea, ex) = 202, S(es,e3) = —2a2,

Therefore, r = 2?21 €:S(ei,e;) = 6a% where ¢ = g(e;,e;). From the equation
(3.3) and (7.13), we obtain A = a(1 — 2a) and p = a. Thus the data (g,&, A, ) for
A =a(l —2«a) and p = « defines an n—Ricci soliton on (M, ¢, &, 1, g).
Acknowledgement. The authors are thankful to the editor and anonymous ref-
erees for their valuable suggestions in the improvement of the paper.

REFERENCES

1. A. Barman, On Lorentzian a—Sasakian manifolds admitting a type of semi-symmetric
metric connection, Novi Sad J. Math., 44(2014), 77-88.

2. A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7(1978),
259-280.

3. A. Haseeb and R. Prasad, On concircular curvature tensor in a Lorentzian a—Sasakian
manifold with respect to the quarter-symmetric non-metric connection, Acta et Com-
men. Univ. Tart. de Mathematica, 22(2018), 279-292.

4. A. Singh and S. Kishor, Some types of n-Ricci solitons on Lorentzian para-Sasakian
manifolds, Facta Universitatis (NIS), 33(2018), 217-230.

5. A. Yildiz and C. Murathan, On Lorentzian a—Sasakian manifolds, Kyungpook Math.
J., 45(2005), 95-103.

6. A. Yildiz, M. Turan and C. Murathan, A class of Lorentzian a—Sasakian manifolds,
Kyungpook Math. J., 49(2009), 789-799.

7. A. Yildiz, U. C. De and E. Ata, On a type of Lorentzain para-Sasakian Manifolds,
Math. Reports, 16(66), 1(2014), 61-67.

8. A. G. Walkar, On Ruse’s spaces of recurrent curvature, Proc. London Math. Soc.,
52(1950), 36-64.

9. A. M. Blaga, n-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat,
30(2016), 489-496.

10. D. E. Blair, Riemannian Geometry of contact and symlectic manifolds, Birkhauser,
Boston, (2002).

11. D. G. Prakasha and B. S. Hadimani, n-Ricci solitons on para-Sasakian manifolds, J.
Geom., 108(2017), 383-392.

12. G. Perelman, Ricci flow with surgery on three manifolds,
http://arXiv.org/abs/math/0303109, 2003, 1-22.

13. G. Perelman, The entropy formula for the Ricci flow and its geometric applications,
http://arXiv.org/abs/math /0211159, 2002, 1-39.

14. J. A. Oubina, New classes of contact metric structures, Publ. Math. Debrecen,
32(1985), 187-193.



n—Ricci Solitons in Lorentzian a—SaSakian Manifolds 725

15. J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space
form, Tohoku Math. J., 61(2009), 205-212.

16. M. Ali and Z. Ahsan, Gravitational field of Schwarzschild soliton, Arab J. Math. Sci.,
21(2015), 15-21.

17. M. Turan, U. C. De and A. Yildiz, Ricci solitons and gradient Ricci solitons in three-
dimensional trans-Sasakian manifolds, Filomat, 26(2012), 363-370.

18. R. Sharma, Certain results on K-contact and (K, u)-contact manifolds, J. Geom.,
89(2008), 138-147.

19. S. Ghosh, n— Ricci solitons on quasi-Sasakian manifolds, Analele Universitatii de Vest,
Timisoara Seria Matematica Informatica, LVI(2018), 73-85.

20. R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Con-
temp. Math., 71, American Math. Soc., (1988), 237-262.

21. U. C. De and P. Majhi, ¢—semisymmetric generalized Sasakian space-forms, Arab J.
Math. Sci., 21(2015), 170-178.

Abdul Haseeb

Department of Mathematics, Faculty of Science
Jazan University, Jazan

Kingdom of Saudi Arabia.
malikhaseeb80@gmail.com, haseeb@jazanu.edu.sa

Rajendra Prasad

Department of Mathematics and Astronomy
University of Lucknow, Lucknow-226007
India.

rp.manpur@rediffmail.com



