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Abstract. The motivation of this study is to determine the analytic solution of initial
boundary value problem including time fractional differential equation with Neumann
boundary conditions in one dimension. By making use of seperation of variables, the
solution is constructed in the form of a Fourier series with respect to the eigenfunctions
of a corresponding Sturm-Liouville eigenvalue problem.
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1. Introduction

As PDE:s of fractional order play an important role in modelling numerous pro-
cesses and systems in various scientific research areas such as applied mathematics,
physics chemistry etc., the interest in this topic has become enourmous. Since the
fractional derivative is non-local, the model with fractional derivative for physical
problems turns out to be the best choice to analyze the behaviour of the complex
non linear processes. That is why this has attracted an increasing number of re-
searchers. The derivatives in the sense of Caputo is one of the most common since
modelling of physical processes with fractional differential equations including Ca-
puto derivative is much better than other models. In literature, increasing number
of studies can be found supporting this conclusion [1], 2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [14], [15], [16], [17]. Especially there are various studies on fractional
diffusion equations: Exact analytical solutions of heat equations are obtained by
using operational method [18]. The existence, uniqueness and regularity of solution
of impulsive sub-diffusion equation are established by means of eigenfunction ex-
pansion [19]. The anomalous diffusion models with non-singular power-law kernel
have been investigated and constructed [20]. Moreover, the Caputo derivative of
constant is zero which is not hold by many fractional derivatives. The solutions of
fractional PDEs and ODEs are determined in terms of Mittag-Leffler function.
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2. Preliminary Results
In this section, we recall fundamental definition and well known results about

fractional derivative in Caputo sense.

Definition 2.1. The ¢'* order fractional derivative of u(t) in Caputo sense is
defined as

1 t

2.1 D (t) = 7/ t— )" M (s)ds, t € [to, to + T

(21) 0 =55 | =9 (s)ds, € [to,to + 7]

where (™) (t) = le:w ,n—1 < g < n. Note that Caputo fractional derivative is equal

to integer order derivative when the order of the derivative is integer.

Definition 2.2. The ¢'" order Caputo fractional derivative for 0 < ¢ < 1 is defined
as

(2.2) D (t) = ﬁ/t (t —s) %/ (s)ds,t € [to, to + T

The two-parameter Mittag—LefHler function which is taken into account in eigen-
value problem, is given by

o0

(t —to)
(2.3) Eap (Mt —to)® Z Fakiﬁ L, >0
=0

including constant A. Especially, for g = 0, @« = 8 = g we have

> q
(2.4) B 5 (A9 Z N ’\t 39> 0.

Mittag—Leffler function coincides with exponential function i.e., Fy 1 () = e

for ¢ = 1. For details see [13, 21].

We determined the solution of following time fractional differential equation with
Neumann boundary and initial conditions in this study:

(2.5) Diu(z,t; ) = ugy (2, 0) — yu (2, t; ) ,
(2.6) Uy (Oa t) = Uy (l’ t) =
(2.7) u(z,0) = f(z)

where 0<a<1, 0<z<l,0<t<T,vyeR.
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3. Main Results

By means of separation of variables method, the solution to the problem (2.5)-
(2.7) is constructed in analytical form. Thus, a solution to the problem (2.5)-(2.7)
has the following form:

(3.1) u(z,t;a) = X(z) T(t Q)
where 0 < <, 0<t<T.
Plugging (3.1) into (2.5) and arranging it, we have

Dy (Tta)  _ X"(2)

Ty T Xw -

(3.2)

The equation (3.2) produces a fractional differential equation with respect to
time and an ordinary differential equation with respect to space. The first ordinary
differential equation is obtained by taking the equation on the right hand side of
Eq. (3.2). Hence, with boundary conditions (2.6), we have the following problem:

(3.3) X" (2) + N2X () =0

(3.4) X' (0) = X' (1) =0

The solution of eigenvalue problem (3.3)-(3.4) is accomplished by making use of
the exponantial function of the following form:

(3.5) X (z) =€
Hence, the characteristic equation is computed in the following form:
(3.6) 4N =0

Case 1. If A =0, the Eq.(3.6) has two coincident roots r; = 79, leading to the
general solution of the eigenvalue problem (3.3)-(3.4) having the following form:

(37) X (CL‘) = kix + ko
(3.8) X' (x) =k
The first boundary condition yields

This result leads to



246 S. Cetinkaya, A. Demir and H. Kodal Sevindir

(3.10) X ({L‘) == ]{32

Similarly, the second boundary condition leads to

(3.11) X'()=k=0=k =0

Hence, we obtain the solution as follows:

(3.12) XO (l‘) = kg

Case 2. If A < 0, the Eq.(3.6) has distinct real roots 1, r2 leading to the general
solution of the eigenvalue problem (3.3)-(3.4) and having the following form:

(3.13) X () = 1% + cpe™®

(3.14) X' (z) =r1c1e™" + rocee™”

The first boundary condition yields
(3.15) X'(0) =ric; + 19 =0=¢; = —:—202
1

This result leads to

(3.16) X (z) = —7;202€T11 + coe™®
T1

Similarly, the last boundary condition leads to

(3.17) X ()= —2cpem! + cpe™ =0 = ¢y =0
1

which implies that ¢; = 0. Therefore, X () = 0 which means that we don’t
have any solution for A < 0.

Case 3. If A > 0, the Eq.(3.6) has two complex conjugate roots lead to the
general solution of the eigenvalue problem (3.3)-(3.4) and have the following form:
(3.18) X (z) = cycos (A\x) + cosin(Az)

(3.19) X' (z) = —c1Asin (Az) + caAcos(Az)

The first boundary condition yields

(3.20) X' (0)=0=ceA=c2=0
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This result leads to
(3.21) X (z) = cicos (Ax)
Similarly, the last boundary condition leads to
(3.22) X'(1) = —c1Asin(N) =0
which implies that

(3.23) sin (Al) =0

Let nm = A\,l. Hence, the eigenvalues can be determined as follows:

(3.24) )\nzzl,)\1<)\2<)\3<...

The representation of the solution is obtained as follows:
(3.25) X, (x) = cos (@) n=1,2,3,...
The second equation in (3.2) for every eigenvalue )\, is determined as follows:

Dy (T'(t;a))

(3.26) THa)

=-(¥+9)

which yields the following solution

(3.27) T, (t;0) = By <— ((mlm‘)? + v) ta> n=1,23,...

The solution for every eigenvalue A, is constructed as follows:

2
Up (z,t;0) = Xy (2) Ty, (6;0) = Eg 1 <— ((m;x) +’y> to‘> cos (?) ,n=20,1,2,3,...
(3.28)

Hence the general solution becomes

(3.20)  wu(z,tia)=do+ gdncos (”lﬂ) Eas <— ((’”lm)2 +w> ta>

Note that boundary conditions and fractional differential equation are satisfied
by this solution. The coefficients in (3.29) are obtained by making use of initial
condition (2.7):
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(3.30) w(z,0) = f(z) = do + Tidncos (?)
<f(x), cos (T) > = <do, cos (lmlm> >+§:ldn<cos (?) , COS (lmlm> >
(3.31)

We obtain the coefficients d,, for n =0,1,2,3, ... as follows:

l
(3.32) dp = %/0 f(z)dx

! nwx
(3.33) dp, = %/0 cos (T) f(z)dx

4. TIllustrative Example

In this part, we first take the following partial differential equation with Neu-
mann boundary and initial conditions:

U (T,1) = Uy (2, 8) —u(2,1),0< 2 <1,0<t < T

Uy (0,8) =0, u, (1,¢) =0,0<t<T
(4.1) u(z,0) =cos(mz) 0 < x <1
which has the solution in the following form:

(4.2) u (z,t) = cos(mz) e (7 +1)t,

Secondly, we take the following time fractional differential equation with Neu-
mann boundary and initial conditions:

(4.3) Diu(x,t) = Ugy (z,t) —u(z,t), 0<a<1,0<2<1, 0<t<T
(4.4) g (0,8) = ug (1,6) = 0,0 < t < T

(4.5) u(z,0) =cos(mz),0 <z <1

The application of seperation of variables method yields the following equation:
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DT (o) X' (@)

T (ta) T X (2) = A

(4.6)

The equation (4.6) produces a fractional differential equation with respect to
time and a differential equation with respect to space. The first fractional differential
equation is obtained by taking the equation on the right hand side of Eq. (4.6).
Hence, with boundary conditions (4.4), we have the following problem:

(4.7) X" (2) + XN2X () =0

(4.8) X' (0)=0, X'(1)=0

Hence the eigenvalue problem (4.7)-(4.8) yields the following solution:

(4.9) X, (x) =cos(nmx) ,n=1,2,3,...

By using the similar calculations as in (3.27), T;, (t;a) for n = 1,2,3,... is
determined in the following form:

(4.10) T, () = Fay (f ((mr)2 + 1) t“) n=1,2,3,...

For each eigenvalue \,, we obtain the following solution:

Un (z,t;0) = X, () Ty, (G0) = Egn (— ((mr)2 + 1) t”) cos (nmx) n=0,1,2,3,...
(4.11)

Hence, the general solution is established as follows:

(4.12) u(x,t;a) =do + i dpcos (nmz) Eg (— ((mr)2 + 1) to‘)
n=1

Note that the general solution (4.12) satisfies both boundary conditions (4.4)
and the fractional equation (4.3). We determine the coefficients d,, in such a way
that the general solution (4.12) satisfes the initial condition (4.5). Plugging¢t = 0
in to the general solution (4.12) and making equal to the initial condition (4.5), we
have

(4.13) u(z,0) =do+ i dycos (nmx)

n=1
Via the inner product we obtain the coefficients d,, forn = 0,1, 2, 3, ... as follows:

z=1

(4.14) dy = %/0 f(z)dx = /o cos(mx) dx = lsin(mc) =0

m =0
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and

2 [t nwr !
(4.15) dn, = 7/0 cos (T) f(z)dx = 2/0 cos (nmx) cos (wx) dx

Thus d,, =0 for n # 1.

For n = 1 we get

1
1
dy = 2/0 cos? () do = 2 [;C + Esin (2mx) }

Thus

u(z,t; ) = cos(mx) o (— (7% +1)t%)

It is important to note that plugging & = 1 in to the solution (4.17) gives the
solution (4.2) which confirm the accuracy of the method we apply.

5. Conclusion

In this research, the analytic solution of initial boundary value problem with
Neumann boundary conditions in one dimension has been constructed. By using
the separation of variables, the solution is formed in the form of a Fourier series
with respect to the eigenfunctions of a corresponding Sturm-Liouville eigenvalue
problem.
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