FACTA UNIVERSITATIS (NIS)
SER. MATH. INFORM. Vol. 35, No 3 (2020), 775-788
https://doi.org/10.22190/FUMI20037750

TAUBERIAN THEOREMS FOR THE WEIGHTED MEAN
METHOD OF SUMMABILITY OF INTEGRALS

Firat ézsarag and Ibrahim Canak

(© by University of Ni§, Serbia | Creative Commons Licence: CC BY-NC-ND
Abstract. Let g be a positive weight function on R4 := [0, 00) which is integrable in
Lebesgue’s sense over every finite interval (0, z) for 0 < 2 < oo, in symbol: q € L},.(R+)
such that Q(z) := [; q(t)dt # 0 for each z > 0, Q(0) = 0 and Q(z) — oo as x — oc.
Given a real or complex-valued function f € L,.(R+), we define s(x) := Jo f(t)dt and

0(2) = s(z), 7{™(z) := ! Z7'(7"71) T m =
@)= @) @) = g [ ATV anar @ > 0.m =120,

provided that Q(z) > 0.
We say that fooo f(x)dx is summable to L by the m-th iteration of weighted mean
method determined by the function q(z), or for short, (N, q,m) integrable to a finite

number L if
lim Tém)(a:) = L.
xTr—r0o0

In this case, we write s(z) — L(N,q,m).

It is known that if the limit lim, oo s(z) = L exists, then limg oo Tém)(a:) =L
also exists. However, the converse of this implication is not always true. Some suitable
conditions together with the existence of the limit limz_, o Tém)(l'), which is so called
Tauberian conditions, may imply convergence of limy_ o s().

In this paper, one- and two-sided Tauberian conditions in terms of the generating
function and its generalizations for (N, g, m) summable integrals of real- or complex-
valued functions have been obtained. Some classical type Tauberian theorems given
for Cesaro summability (C,1) and weighted mean method of summability (N, q) have
been extended and generalized.

Keywords: Tauberian conditions; weight function; summable integrals; finite interval.

1. Introduction

Let g be a positive weight function on R} := [0,00) which is integrable in
Lebesgue’s sense over every finite interval (0,x) for 0 < z < oo, in symbol: ¢ €
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L},.(Ry) such that Q(z) := [ q(t)dt # 0 for each z > 0, Q(0) = 0 and Q(x) — oo
as :E — 00. leen a real or complex—valued function f € L}, .(R:), we define
= [ f(t)dt and
1 x
70 () = s(a), 7™ (z) = / P (g8t (x> 0,m = 1,2,..),
Q(z) Jo

provided that Q(z) >0
For each integer m > 0, we define vqm) (z) by

e m=0
Ur(zm)(x) = Q(loc) fox (m 1) ym =1
6] f t)dt ,m > 2.
The identity
(1) 7" @) (@) = o (@)

is known as the weighted Kronecker identity for the weighted mean method of
summability.

It is clear from (1.1) that

Q@) d_m () — i)
($) diL’ (.Z‘) - Uq (l‘)
for each integer m > 0 (see [14]). Here, we call vé (z) the generator of T, (m 1)( )
for each integer m > 1.

We say that fo z)dz is summable to L by the m-th iteration of weighted
mean method determlned by the function g(z), or for short, (N, g, m) summable to
a finite number L if
(1.2) lim T( )(x) = L.

T—r0O0

It is obvious that (N, g, m) summability reduces to the ordinary convergence for
m = 0and (N,q,1) is the (N, ¢) method. If g(z) = 1 on R, then (N, g, m) method
is the Holder method of order m and (N,q,1) method is the Cesaro summability
method (C,1).

Tt is well known that condition Q(x) — oo as x — 00 is a necessary and sufficient
condition that the existence of the integral

(1.3) /000 s(x)dx =L

implies (1.2). That is, the (N, ¢, m) summability method is regular, where m is a
nonnegative integer. However, the converse of this implication is not always true.
Notice that some suitable condition on s(z) together with (1.2) may imply (1.3).
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Such a condition is called a Tauberian condition and resulting theorem is said to
be a Tauberian theorem.

Méricz [8] and Fekete and Moricz [6] obtained one-sided and two-sided Taube-
rian conditions for the weighted mean method (I, q) of integrals. Following these
works, Totur and Okur [13] proved one-sided boundedness of vgo) (z) is a Tauberian
condition for the weighted mean method of summability (V,q) of integrals. From

the fact that condition v((zo)(;v) > —C implies slow decreasing of s(z), Totur and
Okur [13] generalized their first result and proved that slow decrease of s(x) is also
a Tauberian condition for (N, ¢) method. For a detailed study and some interesting
results related to Tauberian theorems for the weighted mean method of summabil-
ity, we refer the reader to Borwein and Kratz [1], Canak and Totur [2], Canak and
Totur [3], Canak and Totur [4], Ozsarac and Canak [9], Sezer and Canak [10], Tietz
and Zeller [11] and Totur and Canak [12], etc.

In this paper, one- and two-sided Tauberian conditions in terms of the generating
function and its generalizations for summable integrals by m-th iteration of weighted
means of real- or complex-valued functions have been obtained, respectively. Some
classical type Tauberian theorems given for Cesaro summability (C, 1) and weighted

mean method of summability (N, ¢) have been extended and generalized.

2. Main results

For the main results of the paper, we need the following definitions and notations.

Definition 2.1. ([7]) A positive function @ is called regularly varying of index

a >0 if Qo)
Q)
(2.1) i Q(x) =

It easily follows from Definition 2.1 that for all p > 1 and sufficiently large =z,
P o Q) 3

2(p*=1) 7 Q(pz) = Q(z) = 2(p*— 1)

and for all 0 < p < 1 and sufficiently large x,
P Q) _ 3p”

2(1=p2) ~ Q(x) = Q(pz) ~ 2(1 - p*)

p > 0.

(2.2)

(2.3)

We note that if (2.1) holds, then the following equivalent conditions are clearly
satisfied (see [5]):

(2.4) lim inf Q) <1, forevery p>1
Z—00 pgj)

and

(2.5) lim inf Qlpz) <1, forevery 0 < p< 1.

Q)
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First, we consider real-valued functions and prove the following Tauberian the-
orems.
Theorem 2.1. Let (2.1) be satisfied. If a real-valued function f € L} . (R4) is
such that its integral function s (z) is (N,q,m) summable to L and vém_l) (z) is

one-sided bounded, then s(x) is (N,q,m — 1) summable to L.

Corollary 2.1. ([15]) Let (2.1) be satisfied. If a real-valued function f € L}, . (R4)

is such that its integral function s (z) is (N, q,1) summable to L and u,f,o) (z) is one-
sided bounded, then s (x) converges to L.

Theorem 2.2. Let (2.4) be satisfied. If a real-valued function f € L} . (Ry) is

such that its integral function s (z) is (N,q,m) summable to L and Tém_l) () is

slowly decreasing, then s (x) is (W, q,m — 1) summable to L.

Corollary 2.2. ([13]) Let (2.4) be satisfied. If a real-valued function f € Lj,, (Ry)
is such that its integral function s (x) is (N, q, 1) summoable to L and slowly decreas-

ing, then s (x) converges to L.

A real-valued function s(x) defined on R is said to be slowly decreasing if

(2.6) lim liminf min (s(¢) —s(x)) > 0.

p—1t x—o00 x<t<px
Note that condition (2.6) can be equivalently reformulated as follows:

(2.7 lim liminf min (s(x)—s(t)) > 0.

p—1— x—00 pr<t<zx
Second, we consider complex-valued functions and prove the following Tauberian
theorems.

Theorem 2.3. Let (2.1) be satisfied. If a complez-valued function f € Li . (Ry)

loc

is such that its integral function s () is (N,q,m) summable to L and v((lmfl) (x) is

bounded, then s (x) is (N,q,m — 1) summable to L.

Corollary 2.3. Let (2.1) be satisfied. If a complez-valued function f € L, (Ry)

loc
is such that its integral function s(z) is (N,q,1) summable to L and vL(IO) (z) is
bounded, then s (x) converges to L.

Theorem 2.4. Let (2.4) be satisfied. If a complez-valued function f € L, (Ry)

loc
is such that its integral function s (z) is (N,q,m) summable to L and Témfl) (x) is

slowly oscillating, then s (x) is (N,q,m — 1) summable to L.

Corollary 2.4. Let (2.4) be satisfied. If a complez-valued function f € L. (Ry)
is such that its integral function s (x) is (N, q, 1) summable to L and slowly oscil-
lating, then s (x) converges to L.
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A complex-valued function s(z) defined on R is said to be slowly oscillating if

(2.8) lim limsup max |s(t) —s(x)] =0.

p—=1t psco w<t<

Note that condition (2.8) can be equivalently reformulated as follows:

(2.9) lim limsup max |s(x)—s(t)] =0.

p—1" oo prtlz

3. An auxiliary result
The following two representations of s () — 7',51) () will be needed in the proofs
of our main results.

Lemma 3.1. ([13])
(i) For p > 1 and sufficiently large x,

s@) W () = —Qr) ),
@)= @) = Gon o (1 e -7 @)
1 "

- M/(S(t)—s(l‘))q(t)dt.

x

(ii) For 0 < p < 1 and sufficiently large x,

s(x) -1V (x) = M W () — 7 (px
@) =7 @) Q(@—Q(px)(q () =757 (p ))
1 xr
' MZ“(@—s@))q(t)dt.

4. Proofs of main results

Proof of Theorem 2.1 Suppose that s (z) is (N,q,m) summable to L and

vémfl) (z) is one-sided bounded. By Lemma 3.1 (i), we have
7_ém—l) (.1‘) . Tém) (.1‘) _ 5 (pcj)(pxg? (x) ( (m) (pa:) (m) (m))
T S(m=1) (5 _ ~(m=1) (,
Q(px)Q(x)x/(q (0 =" @) a0y
Q) ) () o)
Q(pw)—Q(w)<q (o) =77 @)

X

t
d
- Q(px /@T z)dz | q(t)dt.

X
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Since vgm_l) (x) is one-sided bounded, we get
Té D (z) - Té )(z) < 00— Q@ (Té ) (px) — 7'(5 ) (m))
pT t
C q(z)
e/ (/ Q <z>dz) 10
_ Q (px) (m) _ (m)
Qa1 qG@ (3" 09 =7 @)
pxT
c Q1)
* QG0 -ew / TR
o Qm) (o) () — ) Q (pz)
(1) T0m) — @y (0 (o) = 7™ (@) + Clog 55
By (2.2) and (N, q,m) summability of s(z), we have
: Q (pz) (m) _ _(m) _
(4.2) tlgrgo Q00) - Q@) (Tq (pz) — 74 (m)) =0.
Taking (4.2) into account in (4.1), we obtain
liiri}sip (Tém_l) () — Tém) (x)) < 1i£solip (C’ log %((p;))) = C'log p®.
Letting p — 17 in the last inequality, we have
(4.3) lim sup (Témfl) () — Tém) (x)) <0.
Similarly, from Lemma 3.1 (ii), we have
R N O
t =00 / (7D (@) = 740 (1)) q (1)
_ Q (px) Z(m) () _ (m)
2w - QGn (47 @ = )
S SR (g
T QW Q) / (/ & ) dz) a(t) .
Since v,gm_l) (x) is one-sided bounded, we get
Té D (z) - Té )(z) > 0@ - Q0 (7’5 ) (z) — 7'(5 ) (pa:))




Tauberian Theorems for the Weighted Mean Method of Summability of Integrals 781

e ([,
Q(x)@(px)/(/@u)d)q“)dt

_ Q) ) () ) (e
eI AR
- c [ 1o, Q@)
Q(z)—@(px)plq“” Bamn”
_ Q (pz) ) () — 2 o)) — Olo Q (z)
“4 Q(l‘)—Q(pw)(" () =7 (e )) L8 Q (pa)
By (2.3) and (N, ¢, m) summability of s(z), we obtain
im —Q (pz) 7(m) (2} — 7(m) (pr)) =
(45) Jm 0G4 @ = ) =
Taking (4.5) into account in (4.4), we obtain
. m—1 m o Qz) \ _ o
llgirisotip (Té ) (z) — Té ) (ac)) > —hmrr_1>1£f <Clog 0 (pa:)) = —C'log p*.

Letting p — 17 in the last inequality, we have

(4.6) lim sup (Tém_l) (x) — T(;m) (x)) > 0.

T—>00

Combining (4.3) and (4.6), we obtain s (z) is (N, g, m — 1) summable to L. [J
Proof of Theorem 2.2 Suppose that s (z) is (W,q,m) summable to L and

Tém_l) (z) is slowly decreasing. By Lemma 3.1 (i), we have

A @) - @) = Gon e (p%("_’ % o (7 (e =7 (=)
- G0 (A O =7 @) g
< G gt (W7 60 -7 @)
- TGI—0® / 0(0) min (") (0 =" (@)
= G0 e (e - )
(4.7) = min (7m0 (@) -7 (@)
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Taking the lim sup of both sides of (4.7), we get

lim sup (Tém_l) (x) — T[;m) (:r)) < lim sup % (Tém) (pz) — Tcgm) (x))

T—>00 Tr—r00

(4.8) —liminf min (Témfl) (t) — Témfl) (x)) .

rz—o0 r<ltlpx

By (2.4), we have

| Qer) 1 (i Q00 )
0<h£$£pM—l+(hxn_1>1£f oI —1) < o0.

Since s () is (W, q, m) summable to L, the first term on the right-hand side vanishes
in (4.8). From this, we obtain

lim sup (Témfl) (x) — Tq(m) (x)) < —liminf min (Témfl) (t) —im=1 (x)) .

T—00 r—00 z<t<px

Taking the limit of (4.8) as p — 11, we have

(4.9) lim sup (’Témil) () — Tém) (x)) <0.

T—00

Similarly, by Lemma 3.1 (ii), we have

WD @) =1 (@) = G () @) = 7™ ()
* -0 / (7 @) =m0 0) a (e d
> Gl () @) = 7™ ()
4 m / 00) min (7077 (@) = )
= w4 @ =i )
(4.10) + min (Tgm—” () — 7D (t)).

From (4.10), we get

lim inf (Témfl) () — Tém) (x)) > lim inf Q(;)Q(_ipé) (Tém) () — Tém) (pa:))

z—00 T—00 (bz)

(4.11) +liminf min (T(gmfl) (x) — Témfl) (t)) .

z—o0 pr<t<z
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By (2.4), we have

it 5200 (i 23
P gm —Qim ~ P om )

Since s () is (N, q, m) summable to L, the first term on the right-hand side vanishes
in (4.11). From this, we obtain

lim inf (T(gm_l) (z) — Tém) (a:)) > liminf min (Tq(m_l) (x) — Tém_l) (t)) .

T — 00 r—0o0 prlt<wz

Taking the limit of (4.11) as p — 17, we have

(4.12) lim inf (ngm*) () — r{m™ (x)) > 0.

T—00

Combining (4.9) and (4.12), we obtain s (z) is (N,g,m — 1) summable to L. [
Proof of Theorem 2.3 Suppose that s (z) is (N,q,m) summable to L and
o™V (2) is bounded. By Lemma 3.1 (i), we have

M= () — 7(m) ( —Q(px) ™) (pz) — 7™ (2
@A @) < Gon g A e = @)

pT

1
* Q(px)—cz(x>/

; iT(mfl) 2) dz
" Q(Px)—Q(x)//dzq (2)dz|q(t)dt.
(m

Since vq - (x) is bounded, we get

7 () - 70 ()] < Q (px) ’T(m) (p) — 7™ (x)‘

(4.13)

IN
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By (2.2) and (N, q,m) summability of s(z), we have

lim Q (pz)
z—oo Q (pr) — Q ()

Taking the lim sup of both sides of (4.13) gives

Tém) (px) — Tém) (x)‘ =0.

lim sup Tém_l) (x) — Tém) (x)‘ < limsup (C log ]ZQ(([);))) = C'log p*.

Tr—r00 T—>00

Letting p — 17 in last inequality, we have

(4.14) lim sup "T(m_l) (x) — T(Sm) (x)‘ <0.

q
T—00

Similarly, from Lemma 3.1 (ii), we have

(1) () — 7 (x)’ < P (px)

™ (@) =" (pa)|

Q(z) - Q(px)

+

D (@) = 7D (1) g () dt

Q(fﬂ)—lQ(pw)/

—Q (p) (M) () — 7(m) (pg
G- apm [+ W - on)

q

x

Q(x) —IQ(pw)/

pT

x

d
/ﬁﬁgm*l) (2)dz

t

+

q (t)dt.

Since vgm_l) (x) is bounded, we get

m=1) () _ —(m) (o P (pz)
I oYy

) (@) = 7" (pa)|

v awawm /| FGH

px |t

(t)dt

- Q) ’ (m) () — r{m) (Pl‘)‘

Q@) —Qpx) I

% QW
* Q(x)—Q(pw)/Q(t)ng(t)dt

Q) w4 ) (g 0
T -aGm 7" @~ )] + Clog

q
By (2.3) and (N, p, m) summability of s(z), we have

lim Q (px)
e—oo P (z) — Q (px)

Q (x)
Q (px)

(4.15) <

q

(M (z) — Tém) (px)’ =0.
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From (4.15), we get

lim su (m=1) (2} — 7(m) (g ’ < limsu <Clo Q(z) > = C'log p“.
msup |7y (x) = 7™ (2)| < m sup 80 (o) gp

Letting p — 17 in last inequality, we have

(4.16) lim sup ‘Témil) () — Tém) (x)‘ <0.

T—00

From either (4.14) or (4.16), we conclude s (z) is (N, g,m — 1) summable to L. [J
Proof of Theorem 2.4 Suppose that s (z) is (W,q,m) summable to L and

Tém_l) (x) is slowly oscillating. By Lemma 3.1 (i), we have
m— m Q (pz) m m
Tq( Y (x) qu( (@) = Q(pr) — Q(x) ‘Té ) (px) *Té ) (x)’
pT
1 / (m—1) (m—1)
+ T, t)y—r1," x t)dt
R Tol AU LD
< 17 r)—171, " (T
< Qa7 0 -7 @)
px
1
- - (m=1) () — £(m=1)
+ Q0pr) =0 @) /q (t) zgzgf(m (‘Tq (t) =, (x)D dt
Q (pz) (m) (m)
< =7 x) — 1,7 (
< Qw7 e @)
(4.17) + o max 7m=1) () — r{m=1) (z)‘,
From (4.17), we get
imsup [ (0) = ™) ()] < timas s 7 o) — i o)
(4.18) + lim sup max, <¢<p» Tém_l) (t) — Tém_l) (l‘)’ .
r—r00
By (2.4), we have
. Q (px) ( - Q) )‘1
0 <limsup ———————— =1+ | liminf -1 < 00.
z—o0 Q(p7) — Q (2) e—=o Q ()

Since s (x) is (N, q, m) summable to L, the first term on the right side vanishes in
(4.18). From this, we obtain

limsup |7V (z) — 7™ (2 ‘ < limsup max
T—00 a ( ) 4 ( ) z—o00 T<t<pz

() = o (@)
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Taking the limit of (4.18) as p — 1, we have

(4.19) lim sup ‘Tq(m_l) (x) — Tém) (x)‘ <0.

T—00

Similarly, by Lemma 3.1 (ii), we have

WD (@) =1 @] = G 1) (@) = i (o)
S ToRTm / @) = e
* TI-aw / 1),z ([0 @) =m0 )
S Tr el KRR
(4.20) o max | (@) - 7Y (t)‘.

From (4.20), we get

limsup |[7(™ Y (2) — 7™ (2)| < limsup 282
q q Q=)

™ (@) = 7™ (pa)

T—00 T—00 ~Qlpz)
(4.21) + lirrisupprréetué Tq(mil) (x) — Témfl) (t)‘ .
xT [e'e) TSTST

By (2.4), we have

o Qpr) :<. Q(m)_)l
SR @ Qe P )

Since s () is (W, q, m) summable to L, the first term on the right-hand side vanishes
in (4.21). From this, we obtain

limsup |[7(™ Y (2) — (™) (1 ‘ < limsup max
w—)oop 1 ( ) 1 ( ) o w—)ooppwgtgw

7mD (@) — r{m Y (1))
Taking the limit of (4.21) as p — 17, we have

(4.22) lim sup ‘Témfl) (z) — Tém) (x)‘ <0.

T—r00

From either (4.19) or (4.22), we conclude s (z) is (N, q,m — 1) summable to L. [



Tauberian Theorems for the Weighted Mean Method of Summability of Integrals 787

5. Conclusion

In this paper, we introduce Tauberian conditions in terms of the generator and
its generalizations for summable integrals by m-th iteration of weighted means of
real- or complex-valued functions, respectively. Tauberian conditions for summable
double integrals by m-th iteration of weighted means of real- or complex-valued
functions will be illustrated in a forthcoming work.
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