SER. MATH. INFORM. Vol. 35, No 3 (2020), 775-788 https://doi.org/10.22190/FUMI2003775O

TAUBERIAN THEOREMS FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY OF INTEGRALS

Fırat Özsaraç and İbrahim Çanak

© by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND **Abstract.** Let q be a positive weight function on $\mathbf{R}_+ := [0, \infty)$ which is integrable in Lebesgue's sense over every finite interval (0, x) for $0 < x < \infty$, in symbol: $q \in L^1_{loc}(\mathbf{R}_+)$ such that $Q(x) := \int_0^x q(t)dt \neq 0$ for each x > 0, Q(0) = 0 and $Q(x) \to \infty$ as $x \to \infty$. Given a real or complex-valued function $f \in L^1_{loc}(\mathbf{R}_+)$, we define $s(x) := \int_0^x f(t)dt$ and

$$\tau_q^{(0)}(x) := s(x), \tau_q^{(m)}(x) := \frac{1}{Q(x)} \int_0^x \tau_q^{(m-1)}(t) q(t) dt \ (x > 0, m = 1, 2, \ldots),$$

provided that Q(x) > 0.

We say that $\int_0^\infty f(x)dx$ is summable to L by the m-th iteration of weighted mean method determined by the function q(x), or for short, (\overline{N}, q, m) integrable to a finite number L if

$$\lim_{x \to \infty} \tau_q^{(m)}(x) = L.$$

In this case, we write $s(x) \to L(\overline{N}, q, m)$.

It is known that if the limit $\lim_{x\to\infty} s(x) = L$ exists, then $\lim_{x\to\infty} \tau_q^{(m)}(x) = L$ also exists. However, the converse of this implication is not always true. Some suitable conditions together with the existence of the limit $\lim_{x\to\infty} \tau_q^{(m)}(x)$, which is so called Tauberian conditions, may imply convergence of $\lim_{x\to\infty} s(x)$.

In this paper, one- and two-sided Tauberian conditions in terms of the generating function and its generalizations for (\overline{N},q,m) summable integrals of real- or complex-valued functions have been obtained. Some classical type Tauberian theorems given for Cesàro summability (C,1) and weighted mean method of summability (\overline{N},q) have been extended and generalized.

Keywords: Tauberian conditions; weight function; summable integrals; finite interval.

1. Introduction

Let q be a positive weight function on $\mathbf{R}_+ := [0, \infty)$ which is integrable in Lebesgue's sense over every finite interval (0, x) for $0 < x < \infty$, in symbol: $q \in$

Received September 17, 2019; accepted November 20, 2019.

 $2010\ Mathematics\ Subject\ Classification.$ Primary 40E05; Secondary 40A10 , 40G05

 $L^1_{loc}(\mathbf{R}_+)$ such that $Q(x) := \int_0^x q(t)dt \neq 0$ for each x > 0, Q(0) = 0 and $Q(x) \to \infty$ as $x \to \infty$. Given a real or complex-valued function $f \in L^1_{loc}(\mathbf{R}_+)$, we define $s(x) := \int_0^x f(t)dt$ and

$$\tau_q^{(0)}(x) := s(x), \tau_q^{(m)}(x) := \frac{1}{Q(x)} \int_0^x \tau_q^{(m-1)}(t) q(t) dt \quad (x > 0, m = 1, 2, ...),$$

provided that Q(x) > 0.

For each integer $m \ge 0$, we define $v_q^{(m)}(x)$ by

$$v_q^{(m)}(x) = \begin{cases} \frac{Q(x)}{q(x)} f(x) &, m = 0\\ \frac{1}{Q(x)} \int_0^x f(t) Q(t) dt &, m = 1\\ \frac{1}{Q(x)} \int_0^x v_q^{(m-1)}(t) q(t) dt &, m \ge 2. \end{cases}$$

The identity

(1.1)
$$\tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) = v_q^{(m)}(x)$$

is known as the weighted Kronecker identity for the weighted mean method of summability.

It is clear from (1.1) that

$$\frac{Q(x)}{q(x)}\frac{d}{dx}\tau_q^{(m)}(x) = v_q^{(m)}(x)$$

for each integer $m \ge 0$ (see [14]). Here, we call $v_q^{(m)}(x)$ the generator of $\tau_q^{(m-1)}(x)$ for each integer $m \ge 1$.

We say that $\int_0^\infty f(x)dx$ is summable to L by the m-th iteration of weighted mean method determined by the function q(x), or for short, (\overline{N}, q, m) summable to a finite number L if

$$\lim_{x \to \infty} \tau_q^{(m)}(x) = L.$$

It is obvious that (\overline{N}, q, m) summability reduces to the ordinary convergence for m=0 and $(\overline{N}, q, 1)$ is the (\overline{N}, q) method. If q(x)=1 on \mathbf{R}_+ , then (\overline{N}, q, m) method is the Hölder method of order m and $(\overline{N}, q, 1)$ method is the Cesàro summability method (C, 1).

It is well known that condition $Q(x) \to \infty$ as $x \to \infty$ is a necessary and sufficient condition that the existence of the integral

$$\int_0^\infty s(x)dx = L$$

implies (1.2). That is, the (\overline{N}, q, m) summability method is regular, where m is a nonnegative integer. However, the converse of this implication is not always true. Notice that some suitable condition on s(x) together with (1.2) may imply (1.3).

Such a condition is called a Tauberian condition and resulting theorem is said to be a Tauberian theorem.

Móricz [8] and Fekete and Móricz [6] obtained one-sided and two-sided Tauberian conditions for the weighted mean method (\overline{N},q) of integrals. Following these works, Totur and Okur [13] proved one-sided boundedness of $v_q^{(0)}(x)$ is a Tauberian condition for the weighted mean method of summability (\overline{N},q) of integrals. From the fact that condition $v_q^{(0)}(x) \geq -C$ implies slow decreasing of s(x), Totur and Okur [13] generalized their first result and proved that slow decrease of s(x) is also a Tauberian condition for (\overline{N},q) method. For a detailed study and some interesting results related to Tauberian theorems for the weighted mean method of summability, we refer the reader to Borwein and Kratz [1], Canak and Totur [2], Canak and Totur [3], Çanak and Totur [4], Özsaraç and Çanak [9], Sezer and Çanak [10], Tietz and Zeller [11] and Totur and Canak [12], etc.

In this paper, one- and two-sided Tauberian conditions in terms of the generating function and its generalizations for summable integrals by m-th iteration of weighted means of real- or complex-valued functions have been obtained, respectively. Some classical type Tauberian theorems given for Cesàro summability (C,1) and weighted mean method of summability (\overline{N},q) have been extended and generalized.

Main results

For the main results of the paper, we need the following definitions and notations.

Definition 2.1. ([7]) A positive function Q is called regularly varying of index $\alpha > 0$ if

(2.1)
$$\lim_{x \to \infty} \frac{Q(\rho x)}{Q(x)} = \rho^{\alpha}, \quad \rho > 0.$$

It easily follows from Definition 2.1 that for all $\rho > 1$ and sufficiently large x,

(2.2)
$$\frac{\rho^{\alpha}}{2(\rho^{\alpha}-1)} \leq \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \leq \frac{3\rho^{\alpha}}{2(\rho^{\alpha}-1)}$$

and for all $0 < \rho < 1$ and sufficiently large x,

(2.3)
$$\frac{\rho^{\alpha}}{2(1-\rho^{\alpha})} \leq \frac{Q(\rho x)}{Q(x) - Q(\rho x)} \leq \frac{3\rho^{\alpha}}{2(1-\rho^{\alpha})}.$$

We note that if (2.1) holds, then the following equivalent conditions are clearly satisfied (see [5]):

$$\liminf_{x\to\infty}\frac{Q(x)}{Q(\rho x)}<1,\ \ \text{for every}\ \ \rho>1$$

and

(2.5)
$$\liminf_{x \to \infty} \frac{Q(\rho x)}{Q(x)} < 1, \text{ for every } 0 < \rho < 1.$$

First, we consider real-valued functions and prove the following Tauberian theorems.

Theorem 2.1. Let (2.1) be satisfied. If a real-valued function $f \in L^1_{loc}(\mathbf{R}_+)$ is such that its integral function s(x) is (\overline{N}, q, m) summable to L and $v_q^{(m-1)}(x)$ is one-sided bounded, then s(x) is $(\overline{N}, q, m-1)$ summable to L.

Corollary 2.1. ([13]) Let (2.1) be satisfied. If a real-valued function $f \in L^1_{loc}(\mathbf{R}_+)$ is such that its integral function s(x) is $(\overline{N}, q, 1)$ summable to L and $v_q^{(0)}(x)$ is one-sided bounded, then s(x) converges to L.

Theorem 2.2. Let (2.4) be satisfied. If a real-valued function $f \in L^1_{loc}(\mathbf{R}_+)$ is such that its integral function s(x) is (\overline{N}, q, m) summable to L and $\tau_q^{(m-1)}(x)$ is slowly decreasing, then s(x) is $(\overline{N}, q, m-1)$ summable to L.

Corollary 2.2. ([13]) Let (2.4) be satisfied. If a real-valued function $f \in L^1_{loc}(\mathbf{R}_+)$ is such that its integral function s(x) is $(\overline{N}, q, 1)$ summable to L and slowly decreasing, then s(x) converges to L.

A real-valued function s(x) defined on \mathbf{R}_{+} is said to be slowly decreasing if

(2.6)
$$\lim_{\rho \to 1^{+}} \liminf_{x \to \infty} \min_{x \le t \le \rho x} \left(s\left(t\right) - s\left(x\right) \right) \ge 0.$$

Note that condition (2.6) can be equivalently reformulated as follows:

$$\lim_{\rho \to 1^{-}} \liminf_{x \to \infty} \min_{\rho x \le t \le x} \left(s\left(x \right) - s\left(t \right) \right) \ge 0.$$

Second, we consider complex-valued functions and prove the following Tauberian theorems.

Theorem 2.3. Let (2.1) be satisfied. If a complex-valued function $f \in L^1_{loc}(\mathbf{R}_+)$ is such that its integral function s(x) is (\overline{N}, q, m) summable to L and $v_q^{(m-1)}(x)$ is bounded, then s(x) is $(\overline{N}, q, m-1)$ summable to L.

Corollary 2.3. Let (2.1) be satisfied. If a complex-valued function $f \in L^1_{loc}(\mathbf{R}_+)$ is such that its integral function s(x) is $(\overline{N}, q, 1)$ summable to L and $v_q^{(0)}(x)$ is bounded, then s(x) converges to L.

Theorem 2.4. Let (2.4) be satisfied. If a complex-valued function $f \in L^1_{loc}(\mathbf{R}_+)$ is such that its integral function s(x) is (\overline{N}, q, m) summable to L and $\tau_q^{(m-1)}(x)$ is slowly oscillating, then s(x) is $(\overline{N}, q, m-1)$ summable to L.

Corollary 2.4. Let (2.4) be satisfied. If a complex-valued function $f \in L^1_{loc}(\mathbf{R}_+)$ is such that its integral function s(x) is $(\overline{N}, q, 1)$ summable to L and slowly oscillating, then s(x) converges to L.

A complex-valued function s(x) defined on \mathbb{R}_+ is said to be slowly oscillating if

(2.8)
$$\lim_{\rho \to 1^{+}} \limsup_{x \to \infty} \max_{x \le t \le \rho x} |s(t) - s(x)| = 0.$$

Note that condition (2.8) can be equivalently reformulated as follows:

(2.9)
$$\lim_{\rho \to 1^{-}} \limsup_{x \to \infty} \max_{\rho x \le t \le x} |s(x) - s(t)| = 0.$$

3. An auxiliary result

The following two representations of $s\left(x\right)-\tau_{q}^{\left(1\right)}\left(x\right)$ will be needed in the proofs of our main results.

Lemma 3.1. (/13/)

(i) For $\rho > 1$ and sufficiently large x,

$$s\left(x\right) - \tau_{q}^{\left(1\right)}\left(x\right) = \frac{Q\left(\rho x\right)}{Q\left(\rho x\right) - Q\left(x\right)} \left(\tau_{q}^{\left(1\right)}\left(\rho x\right) - \tau_{q}^{\left(1\right)}\left(x\right)\right)$$
$$- \frac{1}{Q\left(\rho x\right) - Q\left(x\right)} \int_{x}^{\rho x} \left(s\left(t\right) - s\left(x\right)\right) q\left(t\right) dt.$$

(ii) For $0 < \rho < 1$ and sufficiently large x,

$$s(x) - \tau_q^{(1)}(x) = \frac{Q(\rho x)}{Q(x) - Q(\rho x)} \left(\tau_q^{(1)}(x) - \tau_q^{(1)}(\rho x)\right) + \frac{1}{Q(x) - Q(\rho x)} \int_{\rho x}^{x} (s(x) - s(t)) q(t) dt.$$

4. Proofs of main results

Proof of Theorem 2.1 Suppose that s(x) is (\overline{N}, q, m) summable to L and $v_q^{(m-1)}(x)$ is one-sided bounded. By Lemma 3.1 (i), we have

$$\begin{split} \tau_{q}^{(m-1)}\left(x\right) - \tau_{q}^{(m)}\left(x\right) &= \frac{Q\left(\rho x\right)}{Q\left(\rho x\right) - Q\left(x\right)} \left(\tau_{q}^{(m)}\left(\rho x\right) - \tau_{q}^{(m)}\left(x\right)\right) \\ &- \frac{1}{Q\left(\rho x\right) - Q\left(x\right)} \int_{x}^{\rho x} \left(\tau_{q}^{(m-1)}\left(t\right) - \tau_{q}^{(m-1)}\left(x\right)\right) q\left(t\right) dt \\ &= \frac{Q\left(\rho x\right)}{Q\left(\rho x\right) - Q\left(x\right)} \left(\tau_{q}^{(m)}\left(\rho x\right) - \tau_{q}^{(m)}\left(x\right)\right) \\ &- \frac{1}{Q\left(\rho x\right) - Q\left(x\right)} \int_{x}^{\rho x} \left(\int_{x}^{t} \frac{d}{dz} \tau_{q}^{(m-1)}\left(z\right) dz\right) q\left(t\right) dt. \end{split}$$

Since $v_q^{(m-1)}(x)$ is one-sided bounded, we get

$$\tau_{q}^{(m-1)}(x) - \tau_{q}^{(m)}(x) \leq \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left(\tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right) \\
+ \frac{C}{Q(\rho x) - Q(x)} \int_{x}^{\rho x} \left(\int_{x}^{t} \frac{q(z)}{Q(z)} dz \right) q(t) dt \\
= \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left(\tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right) \\
+ \frac{C}{Q(\rho x) - Q(x)} \int_{x}^{\rho x} q(t) \log \frac{Q(t)}{Q(x)} dt \\
= \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left(\tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right) + C \log \frac{Q(\rho x)}{Q(x)}.$$
(4.1)

By (2.2) and (\overline{N}, q, m) summability of s(x), we have

(4.2)
$$\lim_{x \to \infty} \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left(\tau_q^{(m)}(\rho x) - \tau_q^{(m)}(x) \right) = 0.$$

Taking (4.2) into account in (4.1), we obtain

$$\limsup_{x \to \infty} \left(\tau_q^{(m-1)} \left(x \right) - \tau_q^{(m)} \left(x \right) \right) \le \limsup_{x \to \infty} \left(C \log \frac{Q \left(\rho x \right)}{Q \left(x \right)} \right) = C \log \rho^{\alpha}.$$

Letting $\rho \to 1^+$ in the last inequality, we have

(4.3)
$$\limsup_{x \to \infty} \left(\tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right) \le 0.$$

Similarly, from Lemma 3.1 (ii), we have

$$\begin{split} \tau_{q}^{(m-1)}\left(x\right) - \tau_{q}^{(m)}\left(x\right) &= \frac{Q\left(\rho x\right)}{Q\left(x\right) - Q\left(\rho x\right)} \left(\tau_{q}^{(m)}\left(x\right) - \tau_{q}^{(m)}\left(\rho x\right)\right) \\ &+ \frac{1}{Q\left(x\right) - Q\left(\rho x\right)} \int_{\rho x}^{x} \left(\tau_{q}^{(m-1)}\left(x\right) - \tau_{q}^{(m-1)}\left(t\right)\right) q\left(t\right) dt \\ &= \frac{Q\left(\rho x\right)}{Q\left(x\right) - Q\left(\rho x\right)} \left(\tau_{q}^{(m)}\left(x\right) - \tau_{q}^{(m)}\left(\rho x\right)\right) \\ &+ \frac{1}{Q\left(x\right) - Q\left(\rho x\right)} \int_{\rho x}^{x} \left(\int_{t}^{x} \frac{d}{dz} \tau_{q}^{(m-1)}\left(z\right) dz\right) q\left(t\right) dt. \end{split}$$

Since $v_q^{(m-1)}(x)$ is one-sided bounded, we get

$$\tau_{q}^{\left(m-1\right)}\left(x\right)-\tau_{q}^{\left(m\right)}\left(x\right) \ \geq \ \frac{Q\left(\rho x\right)}{Q\left(x\right)-Q\left(\rho x\right)}\left(\tau_{q}^{\left(m\right)}\left(x\right)-\tau_{q}^{\left(m\right)}\left(\rho x\right)\right)$$

$$-\frac{C}{Q(x) - Q(\rho x)} \int_{\rho x}^{x} \left(\int_{t}^{x} \frac{q(z)}{Q(z)} dz \right) q(t) dt$$

$$= \frac{Q(\rho x)}{Q(x) - Q(\rho x)} \left(\tau_{q}^{(m)}(x) - \tau_{q}^{(m)}(\rho x) \right)$$

$$-\frac{C}{Q(x) - Q(\rho x)} \int_{\rho x}^{x} q(t) \log \frac{Q(x)}{Q(t)} dt$$

$$= \frac{Q(\rho x)}{Q(x) - Q(\rho x)} \left(\tau_{q}^{(m)}(x) - \tau_{q}^{(m)}(\rho x) \right) - C \log \frac{Q(x)}{Q(\rho x)}$$

$$(4.4)$$

By (2.3) and (\overline{N}, q, m) summability of s(x), we obtain

(4.5)
$$\lim_{x \to \infty} \frac{Q(\rho x)}{Q(x) - Q(\rho x)} \left(\tau_q^{(m)}(x) - \tau_q^{(m)}(\rho x) \right) = 0.$$

Taking (4.5) into account in (4.4), we obtain

$$\limsup_{x \to \infty} \left(\tau_q^{(m-1)} \left(x \right) - \tau_q^{(m)} \left(x \right) \right) \ge - \liminf_{x \to \infty} \left(C \log \frac{Q\left(x \right)}{Q\left(\rho x \right)} \right) = -C \log \rho^{\alpha}.$$

Letting $\rho \to 1^-$ in the last inequality, we have

(4.6)
$$\limsup_{x \to \infty} \left(\tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right) \ge 0.$$

Combining (4.3) and (4.6), we obtain s(x) is $(\overline{N}, q, m-1)$ summable to L. \square

Proof of Theorem 2.2 Suppose that s(x) is (\overline{N}, q, m) summable to L and $\tau_q^{(m-1)}(x)$ is slowly decreasing. By Lemma 3.1 (i), we have

$$\tau_{q}^{(m-1)}(x) - \tau_{q}^{(m)}(x) = \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left(\tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right) \\
- \frac{1}{Q(\rho x) - Q(x)} \int_{x}^{\rho x} \left(\tau_{q}^{(m-1)}(t) - \tau_{q}^{(m-1)}(x) \right) q(t) dt \\
\leq \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left(\tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right) \\
- \frac{1}{Q(\rho x) - Q(x)} \int_{x}^{\rho x} q(t) \min_{x \leq t \leq \rho x} \left(\tau_{q}^{(m-1)}(t) - \tau_{q}^{(m-1)}(x) \right) dt \\
= \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left(\tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right) \\
- \min_{x \leq t \leq \rho x} \left(\tau_{q}^{(m-1)}(t) - \tau_{q}^{(m-1)}(x) \right).$$
(4.7)

Taking the $\lim \sup of both sides of (4.7)$, we get

$$\limsup_{x \to \infty} \left(\tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right) \leq \limsup_{x \to \infty} \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left(\tau_q^{(m)}(\rho x) - \tau_q^{(m)}(x) \right)$$

$$- \liminf_{x \to \infty} \min_{x \le t \le \rho x} \left(\tau_q^{(m-1)}(t) - \tau_q^{(m-1)}(x) \right).$$

By (2.4), we have

$$0 < \limsup_{x \to \infty} \frac{Q(\rho x)}{Q(\rho x) - Q(x)} = 1 + \left(\liminf_{x \to \infty} \frac{Q(\rho x)}{Q(x)} - 1 \right)^{-1} < \infty.$$

Since s(x) is (\overline{N}, q, m) summable to L, the first term on the right-hand side vanishes in (4.8). From this, we obtain

$$\limsup_{x \to \infty} \left(\tau_q^{(m-1)}\left(x\right) - \tau_q^{(m)}\left(x\right) \right) \le - \liminf_{x \to \infty} \min_{x \le t \le \rho x} \left(\tau_q^{(m-1)}\left(t\right) - \tau_q^{(m-1)}\left(x\right) \right).$$

Taking the limit of (4.8) as $\rho \to 1^+$, we have

(4.9)
$$\limsup_{x \to \infty} \left(\tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right) \le 0.$$

Similarly, by Lemma 3.1 (ii), we have

$$\begin{split} \tau_{q}^{(m-1)}\left(x\right) - \tau_{q}^{(m)}\left(x\right) &= \frac{Q\left(\rho x\right)}{Q\left(x\right) - Q\left(\rho x\right)} \left(\tau_{q}^{(m)}\left(x\right) - \tau_{q}^{(m)}\left(\rho x\right)\right) \\ &+ \frac{1}{Q\left(x\right) - Q\left(\rho x\right)} \int_{\rho x}^{x} \left(\tau_{q}^{(m-1)}\left(x\right) - \tau_{q}^{(m-1)}\left(t\right)\right) q\left(t\right) dt \\ &\geq \frac{Q\left(\rho x\right)}{Q\left(x\right) - Q\left(\rho x\right)} \left(\tau_{q}^{(m)}\left(x\right) - \tau_{q}^{(m)}\left(\rho x\right)\right) \\ &+ \frac{1}{Q\left(x\right) - Q\left(\rho x\right)} \int_{\rho x}^{x} q\left(t\right) \min_{\rho x \leq t \leq x} \left(\tau_{q}^{(m-1)}\left(x\right) - \tau_{q}^{(m-1)}\left(t\right)\right) dt \\ &= \frac{Q\left(\rho x\right)}{Q\left(x\right) - Q\left(\rho x\right)} \left(\tau_{q}^{(m)}\left(x\right) - \tau_{q}^{(m)}\left(\rho x\right)\right) \\ &+ \min_{\rho x \leq t \leq x} \left(\tau_{q}^{(m-1)}\left(x\right) - \tau_{q}^{(m-1)}\left(t\right)\right). \end{split}$$

From (4.10), we get

$$\lim_{x \to \infty} \inf \left(\tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right) \geq \lim_{x \to \infty} \inf_{Q(x) - Q(\rho x)} \left(\tau_q^{(m)}(x) - \tau_q^{(m)}(\rho x) \right) + \lim_{x \to \infty} \inf_{\rho x \le t \le x} \left(\tau_q^{(m-1)}(x) - \tau_q^{(m-1)}(t) \right).$$

$$0 < \liminf_{x \to \infty} \frac{Q\left(\rho x\right)}{Q\left(x\right) - Q\left(\rho x\right)} = \left(\limsup_{x \to \infty} \frac{Q\left(x\right)}{Q\left(\rho x\right)} - 1\right)^{-1} < \infty.$$

Since s(x) is (\overline{N}, q, m) summable to L, the first term on the right-hand side vanishes in (4.11). From this, we obtain

$$\liminf_{x \to \infty} \left(\tau_q^{(m-1)}\left(x\right) - \tau_q^{(m)}\left(x\right) \right) \ge \liminf_{x \to \infty} \min_{\rho x < t < x} \left(\tau_q^{(m-1)}\left(x\right) - \tau_q^{(m-1)}\left(t\right) \right).$$

Taking the limit of (4.11) as $\rho \to 1^-$, we have

$$\liminf_{x \to \infty} \left(\tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right) \ge 0.$$

Combining (4.9) and (4.12), we obtain s(x) is $(\overline{N}, q, m-1)$ summable to L. \square

Proof of Theorem 2.3 Suppose that s(x) is (\overline{N}, q, m) summable to L and $v_q^{(m-1)}(x)$ is bounded. By Lemma 3.1 (i), we have

$$\left| \tau_{q}^{(m-1)}(x) - \tau_{q}^{(m)}(x) \right| \leq \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left| \tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right|$$

$$+ \frac{1}{Q(\rho x) - Q(x)} \int_{x}^{\rho x} \left| \tau_{q}^{(m-1)}(t) - \tau_{q}^{(m-1)}(x) \right| q(t) dt$$

$$= \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left| \tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right|$$

$$+ \frac{1}{Q(\rho x) - Q(x)} \int_{x}^{\rho x} \left| \int_{x}^{t} \frac{d}{dz} \tau_{q}^{(m-1)}(z) dz \right| q(t) dt.$$

Since $v_q^{(m-1)}(x)$ is bounded, we get

$$\left| \tau_{q}^{(m-1)}(x) - \tau_{q}^{(m)}(x) \right| \leq \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left| \tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right|
+ \frac{C}{Q(\rho x) - Q(x)} \int_{x}^{\rho x} \left| \int_{x}^{t} \frac{q(z)}{Q(z)} dz \right| q(t) dt
= \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left| \tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right|
+ \frac{C}{Q(\rho x) - Q(x)} \int_{x}^{\rho x} q(t) \log \frac{Q(t)}{Q(x)} dt
\leq \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left| \tau_{q}^{(m)}(\rho x) - \tau_{q}^{(m)}(x) \right| + C \log \frac{Q(\rho x)}{Q(x)}.$$
(4.13)

By (2.2) and (\overline{N}, q, m) summability of s(x), we have

$$\lim_{x \to \infty} \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left| \tau_q^{(m)}(\rho x) - \tau_q^{(m)}(x) \right| = 0.$$

Taking the \limsup of both sides of (4.13) gives

$$\limsup_{x \to \infty} \left| \tau_q^{(m-1)} \left(x \right) - \tau_q^{(m)} \left(x \right) \right| \le \limsup_{x \to \infty} \left(C \log \frac{P \left(\rho x \right)}{Q \left(x \right)} \right) = C \log \rho^{\alpha}.$$

Letting $\rho \to 1^+$ in last inequality, we have

$$(4.14) \qquad \qquad \lim \sup_{r \to \infty} \left| \tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right| \le 0.$$

Similarly, from Lemma 3.1 (ii), we have

$$\left| \tau_{q}^{(m-1)}(x) - \tau_{q}^{(m)}(x) \right| \leq \frac{P(\rho x)}{Q(x) - Q(\rho x)} \left| \tau_{q}^{(m)}(x) - \tau_{q}^{(m)}(\rho x) \right|$$

$$+ \frac{1}{Q(x) - Q(\rho x)} \int_{\rho x}^{x} \left| \tau_{q}^{(m-1)}(x) - \tau_{q}^{(m-1)}(t) \right| q(t) dt$$

$$= \frac{Q(\rho x)}{Q(x) - Q(\rho x)} \left| \tau_{q}^{(m)}(x) - \tau_{q}^{(m)}(\rho x) \right|$$

$$+ \frac{1}{Q(x) - Q(\rho x)} \int_{\rho x}^{x} \left| \int_{t}^{x} \frac{d}{dz} \tau_{q}^{(m-1)}(z) dz \right| q(t) dt.$$

Since $v_q^{(m-1)}(x)$ is bounded, we get

$$\left| \tau_{q}^{(m-1)}(x) - \tau_{q}^{(m)}(x) \right| \leq \frac{P(\rho x)}{Q(x) - Q(\rho x)} \left| \tau_{q}^{(m)}(x) - \tau_{q}^{(m)}(\rho x) \right|$$

$$+ \frac{C}{Q(x) - Q(\rho x)} \int_{\rho x}^{x} \left| \int_{t}^{x} \frac{p(z)}{P(z)} dz \right| q(t) dt$$

$$= \frac{Q(\rho x)}{Q(x) - Q(\rho x)} \left| \tau_{q}^{(m)}(x) - \tau_{q}^{(m)}(\rho x) \right|$$

$$+ \frac{C}{Q(x) - Q(\rho x)} \int_{\rho x}^{x} q(t) \log \frac{Q(x)}{Q(t)} dt$$

$$\leq \frac{Q(\rho x)}{Q(x) - Q(\rho x)} \left| \tau_{q}^{(m)}(x) - \tau_{q}^{(m)}(\rho x) \right| + C \log \frac{Q(x)}{Q(\rho x)}.$$

$$(4.15)$$

By (2.3) and (\overline{N}, p, m) summability of s(x), we have

$$\lim_{x \to \infty} \frac{Q(\rho x)}{P(x) - Q(\rho x)} \left| \tau_q^{(m)}(x) - \tau_q^{(m)}(\rho x) \right| = 0.$$

From (4.15), we get

$$\limsup_{x \to \infty} \left| \tau_q^{(m-1)} \left(x \right) - \tau_q^{(m)} \left(x \right) \right| \le \limsup_{x \to \infty} \left(C \log \frac{Q \left(x \right)}{Q \left(\rho x \right)} \right) = C \log \rho^{\alpha}.$$

Letting $\rho \to 1^-$ in last inequality, we have

(4.16)
$$\limsup_{x \to \infty} \left| \tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right| \le 0.$$

From either (4.14) or (4.16), we conclude s(x) is $(\overline{N}, q, m-1)$ summable to L. \square **Proof of Theorem 2.4** Suppose that s(x) is (\overline{N}, q, m) summable to L and $\tau_{q}^{\left(m-1\right)}\left(x\right)$ is slowly oscillating. By Lemma 3.1 (i), we have

$$\begin{aligned} \left| \tau_{q}^{(m-1)}\left(x\right) - \tau_{q}^{(m)}\left(x\right) \right| &= \frac{Q\left(\rho x\right)}{Q\left(\rho x\right) - Q\left(x\right)} \left| \tau_{q}^{(m)}\left(\rho x\right) - \tau_{q}^{(m)}\left(x\right) \right| \\ &+ \frac{1}{Q\left(\rho x\right) - Q\left(x\right)} \int_{x}^{\rho x} \left| \tau_{q}^{(m-1)}\left(t\right) - \tau_{q}^{(m-1)}\left(x\right) \right| q\left(t\right) dt \\ &\leq \frac{Q\left(\rho x\right)}{Q\left(\rho x\right) - Q\left(x\right)} \left| \tau_{q}^{(m)}\left(\rho x\right) - \tau_{q}^{(m)}\left(x\right) \right| \\ &+ \frac{1}{Q\left(\rho x\right) - Q\left(x\right)} \int_{x}^{\rho x} q\left(t\right) \max_{x \leq t \leq \rho x} \left(\left| \tau_{q}^{(m-1)}\left(t\right) - \tau_{q}^{(m-1)}\left(x\right) \right| \right) dt \\ &\leq \frac{Q\left(\rho x\right)}{Q\left(\rho x\right) - Q\left(x\right)} \left| \tau_{q}^{(m)}\left(\rho x\right) - \tau_{q}^{(m)}\left(x\right) \right| \\ &+ \max_{x \leq t \leq \rho x} \left| \tau_{q}^{(m-1)}\left(t\right) - \tau_{q}^{(m-1)}\left(x\right) \right|. \end{aligned}$$

$$(4.17)$$

From (4.17), we get

$$\limsup_{x \to \infty} \left| \tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right| \leq \limsup_{x \to \infty} \frac{Q(\rho x)}{Q(\rho x) - Q(x)} \left| \tau_q^{(m)}(\rho x) - \tau_q^{(m)}(x) \right|$$

$$+ \limsup_{x \to \infty} \max_{x \le t \le \rho x} \left| \tau_q^{(m-1)}(t) - \tau_q^{(m-1)}(x) \right|.$$

By (2.4), we have

$$0 < \limsup_{x \to \infty} \frac{Q(\rho x)}{Q(\rho x) - Q(x)} = 1 + \left(\liminf_{x \to \infty} \frac{Q(\rho x)}{Q(x)} - 1 \right)^{-1} < \infty.$$

Since s(x) is (\overline{N}, q, m) summable to L, the first term on the right side vanishes in (4.18). From this, we obtain

$$\lim\sup_{x\to\infty}\left|\tau_{q}^{(m-1)}\left(x\right)-\tau_{q}^{(m)}\left(x\right)\right|\leq \lim\sup_{x\to\infty}\max_{x\leqslant t\leqslant \rho x}\left|\tau_{q}^{(m-1)}\left(t\right)-\tau_{q}^{(m-1)}\left(x\right)\right|.$$

Taking the limit of (4.18) as $\rho \to 1^+$, we have

$$(4.19) \qquad \lim \sup_{x \to \infty} \left| \tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right| \le 0.$$

Similarly, by Lemma 3.1 (ii), we have

$$\begin{split} \left| \tau_{q}^{(m-1)} \left(x \right) - \tau_{q}^{(m)} \left(x \right) \right| &= \frac{Q \left(\rho x \right)}{Q \left(x \right) - Q \left(\rho x \right)} \left| \tau_{q}^{(m)} \left(x \right) - \tau_{q}^{(m)} \left(\rho x \right) \right| \\ &+ \frac{1}{Q \left(x \right) - Q \left(\rho x \right)} \int_{\rho x}^{x} \left| \tau_{q}^{(m-1)} \left(x \right) - \tau_{q}^{(m-1)} \left(t \right) \right| q \left(t \right) dt \\ &\leq \frac{Q \left(\rho x \right)}{Q \left(x \right) - Q \left(\rho x \right)} \left| \tau_{q}^{(m)} \left(x \right) - \tau_{q}^{(m)} \left(\rho x \right) \right| \\ &+ \frac{1}{Q \left(x \right) - Q \left(\rho x \right)} \int_{\rho x}^{x} q \left(t \right) \max_{\rho x \leq t \leq x} \left(\left| \tau_{q}^{(m-1)} \left(x \right) - \tau_{q}^{(m-1)} \left(t \right) \right| \right) dt \\ &\leq \frac{Q \left(\rho x \right)}{Q \left(x \right) - Q \left(\rho x \right)} \left| \tau_{q}^{(m)} \left(x \right) - \tau_{q}^{(m)} \left(\rho x \right) \right| \\ &+ \max_{\rho x \leq t \leq x} \left| \tau_{q}^{(m-1)} \left(x \right) - \tau_{q}^{(m-1)} \left(t \right) \right|. \end{split}$$

From (4.20), we get

$$\limsup_{x \to \infty} \left| \tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right| \leq \limsup_{x \to \infty} \frac{Q(\rho x)}{Q(x) - Q(\rho x)} \left| \tau_q^{(m)}(x) - \tau_q^{(m)}(\rho x) \right| + \limsup_{x \to \infty} \max_{\rho x \le t \le x} \left| \tau_q^{(m-1)}(x) - \tau_q^{(m-1)}(t) \right|.$$

By (2.4), we have

$$0 < \liminf_{x \to \infty} \frac{Q(\rho x)}{Q(x) - Q(\rho x)} = \left(\limsup_{x \to \infty} \frac{Q(x)}{Q(\rho x)} - 1\right)^{-1} < \infty.$$

Since s(x) is (\overline{N}, q, m) summable to L, the first term on the right-hand side vanishes in (4.21). From this, we obtain

$$\limsup_{x \to \infty} \left| \tau_q^{(m-1)} \left(x \right) - \tau_q^{(m)} \left(x \right) \right| \leq \limsup_{x \to \infty} \max_{\rho x \leq t \leq x} \left| \tau_q^{(m-1)} \left(x \right) - \tau_q^{(m-1)} \left(t \right) \right|.$$

Taking the limit of (4.21) as $\rho \to 1^-$, we have

$$(4.22) \qquad \qquad \lim \sup_{r \to \infty} \left| \tau_q^{(m-1)}(x) - \tau_q^{(m)}(x) \right| \le 0.$$

From either (4.19) or (4.22), we conclude s(x) is $(\overline{N}, q, m-1)$ summable to L. \square

Conclusion

In this paper, we introduce Tauberian conditions in terms of the generator and its generalizations for summable integrals by m-th iteration of weighted means of real- or complex-valued functions, respectively. Tauberian conditions for summable double integrals by m-th iteration of weighted means of real- or complex-valued functions will be illustrated in a forthcoming work.

REFERENCES

- 1. D. Borwein and W. Kratz, W: On relations between weighted mean and power series methods of summability. J. Math. Anal. Appl. 139 (1989), 178–186.
- 2. İ. Çanak and Ü. Totur: Some Tauberian theorems for the weighted mean methods of summability. Comput. Math. Appl. $\mathbf{62}$ (2011), 2609–2615.
- 3. İ. ÇANAK and Ü. TOTUR: Extended Tauberian theorem for the weighted mean method of summability. Ukrainian Math. J. 65 (2013), 1032–1041.
- 4. İ. ÇANAK and Ü. TOTUR: A theorem for the (J,p) summability method. Acta Math. Hungar. 145 (2015), 220-228.
- 5. C. Chen and J. Hsu: Tauberian theorems for weighted means of double sequences. Anal. Math. 26 (2000), 243–262.
- 6. Á. FEKETE and F. MÓRICZ: Necessary and sufficient Tauberian conditions in the case of weighted mean summable integrals over R_+ . II. Publ. Math. Debrecen. 67 (2005), 65 - 78.
- 7. J. Karamata: Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. France. **61** (1933), 55–62.
- 8. F. MÓRICZ: Ordinary convergence follows from statistical summability (C, 1) in the case of slowly decreasing or oscillating sequences. Colloq. Math. 99 (2004), 207–219.
- 9. F. ÖZSARAÇ and İ. ÇANAK: Tauberian theorems for iterations of weighted mean summable integrals. Positivity. 23 (2019), 219-231.
- 10. S. A. Sezer and İ. Çanak: On a Tauberian theorem for the weighted mean method of summability. Kuwait J. Sci. 42 (2015), 1-9.
- 11. H. Tietz and K. Zeller: Tauber-Sätze für bewichtete Mittel. Arch. Math. (Basel). **68** (1997), 214–220.
- 12. Ü. Totur and İ. Çanak: Some general Tauberian conditions for the weighted mean summability method. Comput. Math. Appl. 63 (2012), 999–1006.
- 13. Ü. Totur and M. A. Okur: Alternative proofs of some classical Tauberian theorems for the weighted mean method of integrals. Filomat. 29 (2015), 2281–2287.
- 14. Ü. TOTUR, M. A. OKUR and İ. ÇANAK: One-sided Tauberian conditions for the (\overline{N}, p) summability of integrals. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. **80** (2018), 65–74.

Fırat Özsaraç

Kırıkkale University Department of Mathematics Kırıkkale, Turkey firatozsarac@kku.edu.tr

Ibrahim Çanak Ege University Department of Mathematics İzmir, Turkey ibrahim.canak@ege.edu.tr