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A TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION ON
NON-DEGENERATE HYPERSURFACES OF SEMI-RIEMANNIAN
MANIFOLDS

Ajit Barman

Abstract. The objective of the present paper is to study a non-degenerate hypersurface of
a semi-Riemannian manifold with a semi-symmetric non-metric connection.

1. Introduction

Let M™! be a differentiable manifold of class C* and M" a differentiable manifold
immersed in M by a differentiable immersion

i:M— M.
i(M) identical to M, is said to be a hypersurface of M. The differential di of the
immersion i will be denoted by B so that a vector field X in M corresponds to
a vector field BX in M. We suppose that the manifold M is a semi-Riemannian
manifold with the semi-Riemannian metric g of index v, 0 < v < n + 1. Thus the

index of M is the v, which will be denoted by indM = v. If the induced metric tensor
g = gIM defined by

g(X,Y) =g(BX,BY), for all XY in x(M)

is non-degenerate, then the hypersurface M is called a non-degenerate hypersur-
face. Also M is a semi-Riemannian manifold with the induced semi-Riemannian
metric g [15]. If the semi-Riemannian manifolds M and M are both orientable and
we can choose a unit vector field N defined along M such that

- P | 41, for spacelike N
gBX,N) =0, g(N,N)=e = { -1,  for timelike N,
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for all X in x(M), where N is called the unit normal vector field to M and indM =
indMife=1,indM =indM - 1ife = -1.

The hypersurface of a manifold have been studied by several authors such as
De and Kamilya [9], De and Mondal [10], O’Neill [15], Yano and Kon [18], Ylicesan
and Ayyildiz [19], Ylcesan and Yasar [20] and many others.

In 1924, Friedmann and Schouten [12] introduced the idea of semi-symmetric

connection on a differentiable manifold. A linear connection V on a differentiable
manifold (M"*1, g) with Riemannian connection V is said to be a semi-symmetric

connection if the torsion tensor T of the connection V satisfies

(1.1) T(X,Y) = (V)X - (XY,

where 77'is a 1-form and Eis a vector field defined by

(1.2) X) = (X, &),

for all vector fields X € x(M™1), x(M"1) is the set of all differentiable vector fields
on ML,

In 1932, Hayden [13] introduced the idea of semi-symmetric connections on a

Riemannian manifold (|\7|n+1,§). A semi-symmetric connection V is said to be a
semi-symmetric metric connection if

(1.3) Vi =o.

The study of semi-symmetric metric connection was further developed by Yano
[17], Amur and Puijar [2], Chaki and Konar [4], De [5] and many others.

After a long gap the study of a semi-symmetric connection v satisfying
(1.4) V7 # 0.

was initiated by Prvanovi¢ [16] with the name pseudo-metric semi-symmetric con-
nection and was just followed by Andonie [3].

In 1992, Agashe and Chafle [1] introduced and studied a semi-symmetric non-
metric connection. In 1994, Liang [14] studied another type of semi-symmetric
non-metric connection. The semi-symmetric non-metric connections was further
developed by several authors such as De and Biswas [7], Biswas, De and Barua [6],
De and Kamilya ( [8], [9]) and many others.

A non-degenerate hypersurface of semi-Riemannian manifolds is said to be of

constant curvature if the curvature tensor R of a non-degenerate hypersurface M
satisfies the following condition

R(X,Y,Z U) = b'[g(X, Z)g(Y, U) — g(X, U)g(Y, 2)],
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where b’ is a constant.

In this paper we study non-degenerate hypersurfaces of a semi-Riemannian
manifold admitting a semi-symmetric non-metric connection in the sense of Liang
[14].

After introduction in section 2, we study a non-degenerate hypersurface of
semi-Riemannian manifolds admitting a semi-symmetric non-metric connection.
In section 3, we obtain the equations of Gauss and Codazzi-Mainardi with respect
to the semi-symmetric non-metric connection. In this section we also derive the
Ricci tensor and the scalar curvature of a non-degenerate hypersurface of semi-
Riemannian manifolds with respect to the semi-symmetric non-metric connections.
Finally, we observed that a totally geodesic non-degenerate hypersurface M of

semi-Riemannian manifolds M whose curvature tensor vanishes with respect to
the semi-symmetric non-metric connection M is conformally flat.

2. Semi-symmetric non-metric connection

Let M™*! denotes a semi-Riemannian manifold with semi-Riemannian metric 7 of

index v, 0 < v < n+ 1. A linear connection V on M is called a semi-symmetric
non-metric connection [14] if

(2.1) (Ve)(Y, 2Z) = 27(X)7(Y, 2).

Throughout the paper, we will denote by M the semi-Riemannian manifold
admitting a semi-symmetric non-metric connection [14] given by

(2.2) VgY = VoY = (X)Y,

for any vector fields X and Y of M. When M is a non-degenerate hypersurface, we
have the following orthogonal direct sum :

(2.3) x(M) = x(M) @ x(M)*.

According to (2.3), every vector field X on M is decomposed as

(2.4) &=BE&+uN,
where y is a scalar and a contravariant vector field & of the hypersurface M".

We denote by V* the connection on the non-degenerate hypersurface M induced
from the Levi-Civita connection V* on M with respect to the unit spacelike or

timelike normal vector field N. We have the equality

(2.5) Vi BY = B(V}Y) + h*(X, Y)N,
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for arbitrary vector fields X and Y of M, where h* is the second fundamental form
of the non-degenerate hypersurface M. Let us define the connection V on M which

is induced by the semi-symmetric non-metric connection V on M with respect to
the unit spacelike or timelike normal vector field N. We obtain the equation

(2.6) VexBY = B(VxY) + h(X, )N,
where h is the second fundamental form of the non-degenerate hypersurface M.
If h(X,Y) = 0 (respectively, h(X,Y) = a’g(X,Y), where &’ is a scalar), then the

hypersurface is called totally geodesic (respectively, totally umbilical ) [10]. We call
(2.6) the equation of Gauss with respect to the induced connection V.

According to (2.2), we have

2.7) VexBY = Vi, BY — T(BX)BY.

Using (2.5) and (2.6) in (2.7), we get

B(VxY) +h(X, Y)N = B(VY) + h*(X, Y)N
(28) ~T(BX)BY,

which implies

(2.9) VXY = VY = (X)Y,

where
nBY)=n(Y), hCXY)=h(XY).

From (2.9), we conclude that

(2.10) (Vxg)(Y, 2) = 2n(X)g(Y, 2),
and
(2.11) T(X,Y) = n(Y)X = n(X)Y,

forany X,Y, Z in y(M).
From (2.10) and (2.11), we can state the following theorem:

Theorem 2.1. The connection induced on a non-degenerate hypersurface of a semi-
Riemannian manifold with a semi-symmetric non-metric connection with respect to the
unit spacelike or timelike normal vector field is also a semi-symmetric non-metric connec-
tion.
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3. Equations of Gauss and Codazzi-Mainardi

We denote the curvature tensor of M with respect to the Levi-Civita connection v
by
R(X,Y)Z=V.V-Z-VV-Z-V'__7Z
Xy Y X [X,Y]
and that of M with respect to the Levi-Civita connection V* by
R'(X,Y)Z = ViV Z - V{ViZ = Viy ' Z
Then the equation of Gauss is given by
R'(X,Y,Z,U) = R'(BX, BY,BZ,BU) + efh*(X, U)h*(Y, Z) — h'(Y, U)h*(X, 2)},

where

R*(BX, BY, BZ,BU) = 7(R*(BX, BY)BZ,BU),

R'(X,Y,Z,U) = g(R'(X,Y)Z V)

and the equation of Codazzi-Mainardi [15] is given by

R'(BX, BY,BZ, N) = e{(Vih)(Y, Z) — (Vi h)(X, Z)}.

We find the equation of Gauss and Codazzi-Mainardi with respect to the semi-
symmetric non-metric connection. The curvature tensor R of the semi-symmetric
non-metric connection V of M is

(3.1) R(X,Y)Z=V
The equation of Weingarten with respect to the Levi-Civita connection V* is

(3.2) ViuN = —B(HX),

where H is the second fundamental tensor field of type (1,1) of M which is
defined by

(3.3) h*(X,Y) = h(X,Y) = eg(HX, Y),

for any vector fields X and Y in M [15].
Using (2.2), we have

3.4) VaxN = Vi N = n(X)N.
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Because of (2.4), we obtain

n(BX) = fq"(BX,E) = g(BX, B& + uN) = g(BX, B&) = n(X).
Combining (3.2) and (3.4), we get

(3.5) VexN = —B(HX) — n(X)N.
Putting X = BX, Y = BY, Z = BZ in (3.1) and using (2.6) and (3.5), we get

R(BX, BY)BZ = B[R(X, Y)Z + h(X, Z)HY — h(Y, Z)HX]
(3.6) +[(Vxh)(Y, Z) — (Vvh)(X, Z) + h{n(Y)X = n(X)Y, Z}]N,
where
R(X, Y)Z = VxVyZ — VyVxZ - Vixy1Z
is the curvature tensor of the semi-symmetric non-metric connection V.
Combining (3.3) and (3.6), we obtain

R(BX, BY,BZ,BU) = R(X, Y, Z, U) + e[h(X, Z)h(Y, U)
(3.7) ~h(Y, 2)(X, U)]
and
R(BX, BY, BZ,N) = e[(Vxh)(Y, Z) - (Vyh)(X, 2)
(38) +hin()X = n(X)Y, 211,

where

R(X,Y,Z,U) = g(R(X,Y)Z,U)

and _
RXY,Z,U) = g(R(X, Y)Z, U).

The above equations (3.7) and (3.8) are Gauss and Codazzi-Mainardi with re-
spect to the semi-symmetric non-metric connection respectively.
Now if we put R = 0 and h(X, Y) = a/g(X, Y) in (3.7), we get
R(X,Y,Z,U) = —e(@)?[9(X, 2)9(Y, V)
(3.9) —g(X, U)g(Y, 2)].

Therefore, _
R(X,Y,Z,U) = b'[g(X, Z2)g(Y, V) — g(X, U)g(Y, Z)],

where b/ = —e(a’)?.

This result shows that the non-degenerate hypersurface of a semi-Riemannian
manifold is of constant curvature.

Hence we can state the following theorem.
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Theorem 3.1. Let M beatotally umbilical non-degenerate hypersurface of semi-Riemannian

manifolds M with vanishing curvature tensor with respect to the semi-symmetric non-
metric connections, then M is of constant curvature.

Suppose that {Bey, ..., Be,, Be,+1, ...Ben, N} is an orthonormal basis of X(I\~/I). Then
the Ricci tensor of M with respect to the semi-symmetric non-metric connection is

Ric(BY, BZ) = Z €ig(R(Be;, BY)BZ, Be;)
i=1
(3.10) +€7(R(N, BY)BZ,N),

forall Y, Z in xy(M).
Putting X = e and U = ¢; in (3.7) and using (3.3), we have

Z e:R(Be;, BY, BZ, Bey) = Z eig(R(Bei, BY)BZ, Be;) = Ric(Y, Z)
i=1 i=1
(3.11) +e(1 - H(Y,2),

where
n

f= Z eih(ei, &)

i=1

Combining (3.10) and (3.11), we obtain

Ric(BY, BZ) = Ric(Y, Z) + e(1 — f)h(Y, Z)
(3.12) +eg(R(N, BY)BZ,N),

where Ric and Ric are the Ricci tensors with respect to Vand V respectively.

The scalar curvature of M with respect to the semi-symmetric non-metric con-
nection is

n
(3.13) T= Z eiRic(Bei, Be;) + eRic(N, N).
i=1

Putting Y = ¢; and Z = ¢; in (3.12), we get
n

(3.14) Z eiRic(Bei, Be) = r + e(L — f)f + eRic(N, N),
i=1

where  and r are the scalar curvatures with respect to VandV respectively.
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Combining (3.14) and (3.13), we obtain

(3.15) T=r+e(l - f)f +2eRic(N, N).

Therefore, we can state the following theorem.

Theorem 3.2. Let M be non-degenerate hypersurface of a semi-Riemannian manifold M
with respect to the semi-symmetric non-metric connection, then the relation of the Ricci

tensors with respect to V and Vis

Ric(BY, BZ) = Ric(Y, Z) + e(1 — F)h(Y, Z) + e7(R(N, BY)BZ,N)

and also the relation of the scalar curvatures with respect to V and Vis

T=r+e( - f)f +2eRic(N, N).

4. The Weyl Conformal curvature tensor of a non-degenerate hypersurface of
a semi-Riemannian manifold with respect to the semi-symmetric
non-metric connections

We denote the Weyl conformal curvature tensor Cof type (0, 4) of semi-Riemannian

manifolds M"™! and the Wey! conformal curvature tensor C of type (0, 4) of a non-
degenerate hypersurface M" of semi-Riemannian manifolds with respect to the

semi-symmetric non-metric connections V and V respectively, are given by

C(BX, BY,BZ,BU) = R(BX, BY, BZ, BU) — ﬁ[liivc(BY, BZ)i(BX, BU)
—Ric(BX, BZ)7(BY, BU) + Ric(BX, BU)7(BY, BZ)

~Ric(BY,, BU)7(BX, BZ)] + n%l) [7(BY, BZ)7(BX, BU)

n(
(4.1) —7(BX, BZ)g(BY, BU)],

and

€% Y,2,U) = R(X, ¥,Z,U) - —5[Ric(Y, 2)g(X, U) ~ Ric(X, 2)g(Y, U)

+Ric(X, U)g(Y, Z) = Ric(Y, U)g(X, 2)] + (Y, 2)9(X, V)

.
n-Dn-2Y
(4.2) —-g9(X, Z)g(Y, V)],

where _
E(BX, BY,BZ,BU) = fq"(E(BX, BY)BZ, BU)
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and
C(X,Y,Z,U) = g(C(X,Y)Z V).

The Weyl conformal curvature tensor is invariant under any conformal change of
the metric. A flat manifold is conformally flat [11].

Using (3.7), (3.12), (3.15) and (4.2) in (4.1), we get

C(X,Y,Z U) = C(BX, BY, BZ,BU) — e[h(X, Z)h(Y, U)

—h(Y, Z)h(X, U)] - [Ric(BY, BZ)7(BX, BU)

1
(n=1(nh-2)
—Ric(BX, BZ)7(BY, BU) + Ric(BX, BU)7(BY, BZ)

~Ric(BY,, BU)7(BX, BZ)] + 7(BY, BZ)3(BX, BU)

2r
nn-1)(n-2) [

~4(BX, BZ)7(BY,BU)] + — i 5[e(1 - Dih(X, 2)7(BY, BU)
~h(Y, Z)7(BX, BU) — h(X, U)7(BY, BZ)
+h(Y, U)3(BX, BZ)} - e(R(N, BY, BZ, N)7(BX, BU)

—R(N, BX, BZ, N)7(BY, BU) + R(N, BX, BU, N)7(BY, BZ)

— _ 1
+2eS(N, N)][7(BY, BZ)7(BX, BU)
43) ~7(BX, BZ)7(BY, BU)],

where f = h(g;j, &).

Suppose R=0and h(X,Y) = 0, then from (4.3), it follows that

(4.4) C(X,Y,Z, U) =0.

From (4.4), we obtain the following theorem.

Theorem 4.1. A totally geodesic non-degenerate hypersurface M of semi-Riemannian

manifolds M whose curvature tensor vanishes with respect to the semi-symmetric non-
metric connection is conformally flat.
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