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Abstract. In this study, firstly, we studied some properties of I2-convergence. Then,
we introduced I2-Cauchy and I∗2 -Cauchy sequence of double sequences of functions
in 2-normed space. Also, we investigated the relationships between them for double
sequences of functions in 2-normed spaces.
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1. Introduction and Background

Throughout the paper, N denotes the set of all positive integers and R the set
of all real numbers. The concept of convergence of a sequence of real numbers has
been extended to statistical convergence independently by Fast [15] and Schoenberg
[36]. Gökhan et al. [20] introduced the notion of pointwise and uniform statistical
convergence of double sequences of real-valued functions. The idea of I-convergence
was introduced by Kostyrko et al. [28] as a generalization of statistical convergence
which is based on the structure of the ideal I of subset of N [15, 16]. Gezer and
Karakuş [19] investigated I-pointwise and uniform convergence and I∗-pointwise
and uniform convergence of function sequences and they examined the relation
between them. Baláz et al. [5] investigated I-convergence and I-continuity of real
functions. Das et al. [7] introduced the concept of I-convergence of double sequences
in a metric space and studied some properties of this convergence. Dündar and
Altay [8, 10] studied the concepts of pointwise and uniformly I2-convergence and
I∗2 -convergence of double sequences of functions and investigated some properties
about them. Furthermore, Dündar [13] investigated some results of I2-convergence
of double sequences of functions. Also, a lot of development has been made about
double sequences of functions (see [9, 11,14,30,34,40–42]).
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The concept of 2-normed spaces was initially introduced by Gähler [17, 18] in
the 1960’s. Statistical convergence and statistical Cauchy sequence of functions in
2-normed space were studied by Yegül and Dündar [43]. Yegül and Dündar [44]
introduced concepts of pointwise and uniform convergence, statistical convergence
and statistical Cauchy double sequences of functions in 2-normed space. Also,
Yegül and Dündar [45] introduced concepts of I2-convergence and I∗2 -convergence of
double sequences of functions in 2-normed space. Recently, Arslan and Dündar [1,2]
inroduced I-convergence and I-Cauchy sequences of functions in 2-normed spaces.
Futhermore, there has been a lot of development in this area (see [3, 4, 6, 26, 27, 29,
31–33,37–39]).

2. Definitions and Notations

Now, we recall the concept of density, statistical convergence, 2-normed space and
some fundamental definitions and notations (See [1, 2, 7, 12, 16, 18–25,28, 31, 35, 43–
45]).

Let X be a real vector space of dimension d, where 2 ≤ d <∞. A 2-norm on X
is a function ‖·, ·‖ : X ×X → R which satisfies the following statements:

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent.

(ii) ‖x, y‖ = ‖y, x‖.

(iii) ‖αx, y‖ = |α|‖x, y‖, α ∈ R.

(iv) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖.

The pair (X, ‖·, ·‖) is then called a 2-normed space. As an example of a 2-normed
space we may take X = R2 being equipped with the 2-norm ‖x, y‖ := the area of
the parallelogram based on the vectors x and y which may be given explicitly by
the formula ‖x, y‖ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R2.

In this study, we suppose X to be a 2-normed space having dimension d; where
2 ≤ d <∞.

Throughout the paper, we let X and Y be two 2-normed spaces, {fn}n∈N and
{gn}n∈N be two sequences of functions and f, g be two functions from X to Y.

The sequence of functions {fn}n∈N is said to be convergent to f if fn(x) →
f(x)(‖., .‖Y ) for each x ∈ X. We write fn → f(‖., .‖Y ). This can be expressed by
the formula (∀y ∈ Y )(∀x ∈ X)(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)‖fn(x)− f(x), y‖ < ε.

A family of sets I ⊆ 2N is called an ideal if and only if
(i) Ø ∈ I, (ii) For each A,B ∈ I we have A ∪ B ∈ I, (iii) For each A ∈ I

and each B ⊆ A we have B ∈ I.
An ideal is called nontrivial if N /∈ I and nontrivial ideal is called admissible if

{n} ∈ I for each n ∈ N.
A family of sets F ⊆ 2N is called a filter if and only if
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(i) Ø /∈ F , (ii) For each A,B ∈ F we have A ∩B ∈ F , (iii) For each A ∈ F
and each B ⊇ A we have B ∈ F .
I is nontrivial ideal in N if and only if F(I) = {M ⊂ N : (∃A ∈ I)(M = N\A)}

is a filter in N.
A nontrivial ideal I2 of N× N is called strongly admissible ideal if {i} × N and

N× {i} belong to I2 for each i ∈ N .
Throughout the paper we take I2 as a strongly admissible ideal in N× N.
It is evident that a strongly admissible ideal is admissible also.
I02 = {A ⊂ N × N : (∃m(A) ∈ N)(i, j ≥ m(A) ⇒ (i, j) 6∈ A)}. Then I02 is a

strongly admissible ideal and clearly an ideal I2 is strongly admissible if and only
if I02 ⊂ I2.

The sequence of functions {fn} is said to be I-convergent (pointwise) to f , if for
every ε > 0 and each nonzero z ∈ Y A(ε, z) = {n ∈ N : ‖fn(x)− f(x), z‖ ≥ ε} ∈ I
or I − lim

n→∞
‖fn(x)− f(x), z‖Y = 0, for each x ∈ X. This can be expressed by the

formula (∀z ∈ Y ) (∀ε > 0) (∃M ∈ I) (∀n0 ∈ N\M) (∀x ∈ X)(∀n ≥ n0) ‖fn(x) −
f(x), z‖ ≤ ε. In this case, we write fn →I f(‖., .‖Y ).

The sequence of functions {fn} is said to be I∗-convergent (pointwise sense) to f ,
if there exists a setM ∈ F(I), (i.e., N\M ∈ I),M = {m1 < m2 < · · · < mk < · · · },
such that for each x ∈ X and each nonzero z ∈ Y lim

k→∞
‖fnk

(x), z‖ = ‖f(x), z‖ and
we write I∗ − lim

n→∞
‖fn(x), z‖ = ‖f(x), z‖ or fn →I∗ f(‖., .‖Y ).

The sequence of functions {fn} is said to be I-Cauchy sequence, if for every ε > 0
and each x ∈ X there exists s = s(ε, x) ∈ N such that {n ∈ N : ‖fn(x)− fs(x), z‖ ≥
ε} ∈ I, for each nonzero z ∈ Y.

The sequence of functions {fn} is said to be I∗-Cauchy sequence, if there exists
a set M = {m1 < m2 < · · · < mk < · · · } ⊂ N, such that the subsequence
{fM} = {fmk

} is a Cauchy sequence, i.e., lim
k,p→∞

‖fmk
(x)− fmp(x), z‖ = 0, for each

x ∈ X and each nonzero z ∈ Y .
An admissible ideal I2 ⊂ 2N×N satisfies the property (AP2) if for every countable

family of mutually disjoint sets {E1, E2, ...} belonging to I2, there exists a countable
family of sets {F1, F2, ...} such that Ej∆Fj ∈ I02 , i.e., Ej∆Fj is included in the finite
union of rows and columns in N × N for each j ∈ N and F =

⋃∞
j=1 Fj ∈ I2 (hence

Fj ∈ I2 for each j ∈ N).

Throughout the paper, we let I2 ⊂ 2N×N be a strongly admissible ideal, X and
Y be two 2-normed spaces, {fmn}(m,n)∈N×N, {gmn}(m,n)∈N×N and {hmn}(m,n)∈N×N
be three double sequences of functions, f , g and k be three functions from X to Y .

A double sequence {fmn} is said to be convergent (pointwise) to f if, for each
point x ∈ X and for each ε > 0, there exists a positive integer k0 = k0(x, ε) such
that for all m,n ≥ k0 implies ‖fmn(x)− f(x), z‖ < ε, for every z ∈ Y. In this case,
we write fmn −→ f(‖., .‖Y ).

The double sequence of functions {fmn} is said to be I2-convergent (pointwise
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sense) to f , if for every ε > 0 and each nonzero z ∈ Y

A(ε, z) = {(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥ ε} ∈ I2,

for each x ∈ X. This can be expressed by the formula

(∀z ∈ Y ) (∀x ∈ X) (∀ε > 0) (∃H ∈ I2) (∀(m,n) 6∈ H) ‖fmn(x)− f(x), z‖ < ε.

In this case, we write I2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖, or fmn →I2 f(‖., .‖Y ).

The double sequence of functions {fmn} in 2-normed space (X, ‖., .‖) is said
to be I∗2 -convergent (pointwise) to f , if there exists a set M ∈ F(I2) (H = N ×
N \M ∈ I2) such that for each x ∈ X, each nonzero z ∈ Y and all (m,n) ∈ M

lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ and we write I∗2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖
or fmn →I∗2 f(‖., .‖Y ).

Lemma 2.1. [45] For each x ∈ X and nonzero z ∈ Y,

I∗2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ implies I2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖.

Lemma 2.2. [45] Let I2 ⊂ 2N×N be an admissible ideal having the property (AP2).
For each x ∈ X and nonzero z ∈ Y,

I2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ implies I∗2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖.

Lemma 2.3. [11] Let {Pi}∞i=1 be a countable collection of subsets of N × N such
that {Pi}∞i=1 ∈ F (I2) for each i, where F(I2) is a filter associate with a strongly
admissible ideal I2 with the property (AP2). Then there exists a set P ⊂ N × N
such that P ∈ F(I2) and the set P\Pi is finite for all i.

Lemma 2.4. [45] For each x ∈ X and each nonzero z ∈ Y, If
I2 − lim

m,n→∞
‖fmn(x), z‖ = ‖f(x), z‖ and I2 − lim

m,n→∞
‖gmn(x), z‖ = ‖g(x), z‖,

then
(i) I2 − lim

m,n→∞
‖fmn(x) + gmn(x), z‖ = ‖f(x) + g(x), z‖,

(ii) I2 − lim
m,n→∞

‖c.fmn(x), z‖ = ‖c.f(x), z‖, c ∈ R,

(iii) I2 − lim
m,n→∞

‖fmn(x).gmn(x), z‖ = ‖f(x).g(x), z‖.

3. Main Results

In this study, firstly, we studied some properties of I2-convergence. Then, we in-
troduced I2-Cauchy and I∗2 -Cauchy sequence of double sequences of functions in
2-normed space. Also, were investigated relationships between them for double
sequences of functions in 2-normed spaces.
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Theorem 3.1. Let I2 ⊂ 2N×N be a strongly admissible ideal with the property
(AP2). Then, for each x ∈ X and each nonzero z ∈ Y , following conditions are
equivalent

(i) I2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖

(ii) There exists {gmn(x)} and {hmn(x)} be two sequences of functions from X
to Y such that

fmn(x) = gmn(x)+hmn(x), lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖ and supp{hmn(x)} ∈ I2,

where supp hmn(x) = {(m,n) ∈ N× N : hmn(x) 6= 0}.

Proof. (i) ⇒ (ii): I2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖, for each x ∈ X and each

nonzero z ∈ Y. Then, by Lemma 2.2 there exists a set M ∈ F(I2) (i.e.,H =
N×N \M ∈ I2) such that for each x ∈ X, each nonzero z ∈ Y and all (m,n) ∈M

lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖.

Let us define the sequence {gmn(x)} by

gmn(x) =

{
fmn(x), (m,n) ∈M,
f(x), (m,n) ∈ N× N \M.

(3.1)

It is clear that {gmn(x)} is a double sequence of functions and lim
m,n→∞

‖gmn(x), z‖ =

‖f(x), z‖ for each x ∈ X and each nonzero z ∈ Y. Besides let

hmn(x) = fmn(x)− gmn(x), (m,n) ∈ N× N(3.2)

for each x ∈ X. Since

{(m,n) ∈ N× N : fmn(x) 6= gmn(x)} ⊂ N× N \M ∈ I2,

for each x ∈ X, so we have

{(m,n) ∈ N× N : hmn(x) 6= 0} ∈ I2.

It follows that supp hmn(x) ∈ I2 and by (3.1) and (3.2) we get fmn(x) = gmn(x) +
hmn(x), for each x ∈ X.

(ii)⇒(i): Assume that there exist two sequences {gmn} and {hmn} such that

fmn(x) = gmn(x) + hmn(x), lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖(3.3)

and supphmn(x) = {(m,n) ∈ N× N : hmn(x) 6= 0} ∈ I2

for each x ∈ X and each nonzero z ∈ Y. We show that I2 − lim
m,n→∞

‖fmn(x), z‖ =

‖f(x), z‖ for each x ∈ X and each nonzero z ∈ Y. Let

M = {(m,n) ∈ N× N : hmn(x) = 0} = N× N \ supphmn(x).(3.4)
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Since supp hmn(x) = {(m,n) ∈ N × N : hmn(x) 6= 0} ∈ I2, then from (3.3)
and (3.4), we have M ∈ F(I2) and fmn(x) = gmn(x) for (m,n) ∈ M. Hence,
we conclude that exists a set M ∈ F(I2), (i.e.,H = N × N \M ∈ I2) such that

lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ and so

I∗2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖

for (m,n) ∈M, each x ∈ X and each nonzero z ∈ Y. By Lemma 2.2 it follows that

I2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖,

for each x ∈ X and each nonzero z ∈ Y. This completes the proof.

Corollary 3.1. Let I2 ⊂ 2N×N be a strongly admissible ideal having the property
(AP2). Then, I2 − lim

m,n→∞
‖fmn(x), z‖ = ‖f(x), z‖ if and only if there exist {gmn}

and {hmn} be two sequences of functions from X to Y such that

fmn(x) = gmn(x)+hmn(x), lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖ and I2− lim
m,n→∞

‖hmn(x), z‖ = 0,

for each x ∈ X and each nonzero z ∈ Y.

Proof. Let I2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖ and {gmn(x)} is sequence defined

by (3.1). Consider the sequence

hmn(x) = fmn(x)− gmn(x), (m,n) ∈ N× N(3.5)

for each x ∈ X. Then, we have

lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖

and since I2 is a strongly admissible ideal so

I2 − lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖,

for each x ∈ X and each nonzero z ∈ Y. By Lemma 2.4 and by (3.5) we have

I2 − lim
m,n→∞

‖hmn(x), z‖ = 0,

for each x ∈ X and each nonzero z ∈ Y. Now, let

fmn(x) = gmn(x) + hmn(x),

where

lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖ and I2 − lim
m,n→∞

‖hmn(x), z‖ = 0,
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for each x ∈ X and each nonzero z ∈ Y. Since I2 is a strongly admissible ideal so

I2 − lim
m,n→∞

‖gmn(x), z‖ = ‖f(x), z‖

and by Lemma 2.4 we get

I2 − lim
m,n→∞

‖fmn(x), z‖ = ‖f(x), z‖,

for each x ∈ X and each nonzero z ∈ Y.

Remark 3.1. In Theorem 3.1 if (ii) is satisfied then the admissible ideal I2 need not
have the property (AP2). Since for each x ∈ X and each nonzero z ∈ Y ,

{(m,n) ∈ N× N : ‖hmn(x), z‖ ≥ ε} ⊂ {(m,n) ∈ N× N : hmn(x) 6= 0} ∈ I2,

for each ε > 0, then
I2 − lim

m,n→∞
‖hmn(x), z‖ = 0.

Hence, we have
I2 − lim

m,n→∞
‖fmn(x), z‖ = ‖f(x), z‖,

for each x ∈ X and each nonzero z ∈ Y.

Definition 3.1. A double sequence of functions {fmn} is said to be I2-Cauchy
sequence, if for every ∀ε > 0 and each x ∈ X there exist s = s(ε, x), t = t(ε, x) ∈ N
such that

{(m,n) ∈ N× N : ‖fmn(x)− fst(x), z‖ ≥ ε} ∈ I2,

for each nonzero z ∈ Y.

Theorem 3.2. If {fmn} is I2-convergent if and only if it is I2-Cauchy sequence
in 2-normed spaces.

Proof. Assume that {fmn} is I2-convergent to f. Then, for ε > 0

A
(ε

2
, z
)

=
{

(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥ ε

2

}
∈ I2,

for each x ∈ X and each nonzero z ∈ Y. This implies that

Ac
(ε

2
, z
)

=
{

(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ < ε

2

}
∈ F(I2).

for each x ∈ X and each nonzero z ∈ Y and thus Ac
(
ε
2 , z
)
is non-empty. So we can

select a positive integers k, l such that (k, l) /∈ A
(
ε
2 , z
)
and ‖fkl(x)− f(x), z‖ < ε

2 .
Now, we define the set

B(ε, z) = {(m,n) ∈ N× N : ‖fmn(x)− fkl(x), z‖ ≥ ε},
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for each x ∈ X and each nonzero z ∈ Y, such that we show that B(ε, z) ⊂ A( ε
2 , z).

Let (m,n) ∈ B(ε, z), then we have

ε ≤ ‖fmn(x)− fkl(x), z‖ ≤ ‖fmn(x)− f(x), z‖+ ‖fkl(x)− f(x), z‖

< ‖fmn(x)− f(x), z‖+
ε

2
,

for each x ∈ X and each nonzero z ∈ Y. This implies that ε
2 < ‖fmn(x) − f(x), z‖

and so, (m,n) ∈ A( ε
2 , z). Hence, we have B(ε, z) ⊂ A( ε

2 , z) and so {fmn} is I2-
Cauchy sequence.

Conversely, assume that {fmn} is I2-Cauchy sequence. We prove that {fmn} is
I2-convergent. Let (εpq) be a strictly decreasing sequence of number converging to
zero since {fmn} is I2-Cauchy sequence, there exist two strictly increasing sequences
(kp) and (lq) of positive integers such that

A(εpq, z) = {(m,n) ∈ N× N : ‖fmn(x)− fkplq (x), z‖ ≥ εpq} ∈ I2, (p, q = 1, 2, ...),

for each x ∈ X and each nonzero z ∈ Y. This implies that

Ø 6= {(m,n) ∈ N× N : ‖fmn(x)− fkplq (x), z‖ < εpq} ∈ F(I2),(3.6)

(p, q = 1, 2, ...), for each x ∈ X and each nonzero z ∈ Y. Let p, q, s and t be four
positive integers such that p 6= q and s 6= t. By (3.6), both the sets

C(εpq, z) = {(m,n) ∈ N× N : ‖fmn(x)− fkplq (x), z‖ < εpq}

and
D(εst, z) = {(m,n) ∈ N× N : ‖fmn(x)− fkslt(x), z‖ < εst}

are non empty sets in F(I2), for each x ∈ X and each nonzero z ∈ Y. Since F(I2)
is a filter on N× N, so

Ø 6= C(εpq, z) ∩D(εst, z) ∈ F(I2).

Therefore, for each pair (p, q) and (s, t) of positive integers with p 6= q and s 6= t,
we can select a pair (m(p,q),(s,t), n(p,q),(s,t)) ∈ N× N such that

‖fmpqstnpqst
(x)− fkplq (x), z‖ < εpq and ‖fmpqstnpqst

(x)− fkslt(x), z‖ < εst,

for each x ∈ X and each nonzero z ∈ Y. It follows that

‖fkplq (x)− fkslt(x), z‖ ≤ ‖fmpqstnpqst
(x)− fkplq (x), z‖

+‖fmpqstnpqst
(x)− fkslt(x), z‖

≤ εpq + εst → 0,

as p, q, s, t→∞. This implies that {fkplq} (p, q = 1, 2, ...) is a Cauchy sequence and
therefore it satisfies the Cauchy convergence criterion. Thus, the sequence {fkplq}
converges to a limit f (say) i,e.,

lim
p,q→∞

‖fkplq , z‖ = ‖f(x), z‖,
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for each x ∈ X and each nonzero z ∈ Y. Also, we have εpq → 0 as p, q →∞, so for
each ε > 0 we can choose positive integers p0, q0 such that

εp0q0 <
ε

2
and ‖fkplq − f(x), z‖ < ε

2
, (for p > p0 and q > q0).(3.7)

Now, we define the set

A(ε, z) = {(m,n) ∈ N× N : ‖fmn(x)− f(x), z‖ ≥ ε},

for each x ∈ X and each nonzero z ∈ Y. We prove that A(ε, z) ⊂ A(εp0q0 , z). Let
(m,n) ∈ A(ε, z), then by second half of (3.7) we have

ε ≤ ‖fmn(x)− f(x), z‖ ≤ ‖fmn(x)− fkp0
lq0

(x), z‖+ ‖fkp0
lq0

(x)− f(x), z‖

≤ ‖fmn(x)− fkp0 lq0
(x), z‖+

ε

2
,

for each x ∈ X and each nonzero z ∈ Y. This implies that

ε

2
< ‖fmn(x)− fkp0 lq0

(x), z‖

and therefore by first half of (3.7)

εp0q0 < ‖fmn(x)− fkp0
lq0

(x), z‖,

for each x ∈ X and each nonzero z ∈ Y . Thus, we have (m,n) ∈ A(εp0q0 , z) and
therefore A(ε, z) ⊂ A(εp0q0 , z). Since A(εp0q0 , z) ∈ I2 so A(ε, z) ∈ I2 by property of
ideal. Hence {fkplq} is I2-convergent.

Definition 3.2. A double sequence of functions {fmn} is said to be I∗2 - Cauchy
sequence, if there exists a set M ∈ F(I2) (i.e.,H = N× N \M ∈ I2) and for every
ε > 0 and each x ∈ X, k0 = k0(ε, x) ∈ N such that for all (m,n), (s, t) ∈ M and
each z ∈ Y

‖fmn(x)− fst(x), z‖ < ε,

whenever m,n, s, t > k0. In this case, we write

lim
m,n,s,t→∞

‖fmn(x)− fst(x), z‖ = 0.

Theorem 3.3. If double sequence of functions {fmn} is a I∗2 -Cauchy sequence,
then it is I2-Cauchy sequence in 2-normed spaces.

Proof. Let {fmn} is a I∗2 -Cauchy sequence in 2-normed spaces. Then, by definition
there exists a set M ∈ F(I2) (i.e.,H = N × N \M ∈ I2) and for every ε > 0 and
each x ∈ X, k0 = k0(ε, x) ∈ N such that for all (m,n), (s, t) ∈M and each z ∈ Y

‖fmn(x)− fst(x), z‖ < ε,
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whenever m,n, s, t > k0. Then, for each x ∈ X and nonzero each z ∈ Y we have

A(ε, z) = {(m,n) ∈ N× N : ‖fmn(x)− fst(x), z‖ ≥ ε}
⊂ H ∪ [M ∩ (({1, 2, 3, ..., (k0 − 1)} × N) ∪ (N× {1, 2, 3, ..., (k0 − 1)}))]

Since I2 is an admissible ideal, then

H ∪ [M ∩ (({1, 2, 3, ..., (k0 − 1)} × N) ∪ (N× {1, 2, 3, ..., (k0 − 1)}))] ∈ I2.

Therefore, we have A(ε, z) ∈ I2 i.e., {fmn} is a I2-Cauchy sequence.

Theorem 3.4. If I∗2 − lim
m,n→∞

‖fmn(x) − f(x), z‖ = 0, then {fmn} is I2-Cauchy
sequence in 2-normed spaces.

Proof. By assumption there exists a set M ∈ F(I2) (i.e.,H = N×N M ∈ I2) such
that lim

m,n→∞
‖fmn(x) − f(x), z‖ = 0 for each x ∈ X and each z ∈ Y. It shows that

for each ε > 0 there exists k0 = k0(ε, x) ∈ N such that for each x ∈ X, each z ∈ Y

‖fmn(x)− f(x), z‖ < ε

2

for all (m,n) ∈M and m,n > k0. Since for each ε > 0,

‖fmn(x)− fst(x), z‖ ≤ ‖fmn(x)− f(x), z‖+ ‖fst(x)− f(x), z‖

<
ε

2
+
ε

2
= ε,

for each x ∈ X, each z ∈ Y and m,n, s, t ≥ k0 we have

lim
m,n,s,t→∞

‖fmn(x)− fst(x), z‖ = 0,

i.e., {fmn} is a I∗2 -Cauchy sequence. Then, by Theorem 3.3 {fmn} is I2-Cauchy
sequence.

Theorem 3.5. Let I2 be an admissible ideal with property (AP2) and a double
sequence of functions {fmn}. Then, the concepts I2-Cauchy double sequence and
I∗2 -Cauchy double sequence of functions coincide in 2-normed spaces.

Proof. By Theorem 3.3 I∗2 -Cauchy sequence implies I2-Cauchy sequence (in this
case I2 need not to have (AP2) condition).

Now, it is sufficient to prove that a double sequence {fmn} is a I∗2 -Cauchy double
sequence under assumption that {fmn} is a I2-Cauchy double sequence. Let {fmn}
is a I2-Cauchy double sequence. Then, for every ε > 0 and each x ∈ X there exists
s = s(ε, z), t = t(ε, z) ∈ N such that

A(ε, z) = {(m,n) ∈ N× N : ‖fmn(x)− fst(x), z‖ ≥ ε} ∈ I2
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for each nonzero z ∈ Y. Let

Pi =

{
(m,n) ∈ N× N : ‖fmn(x)− fsiti(x), z‖ < 1

i

}
, (i = 1, 2, ...),

where s = s( 1
i ), t = t( 1

i ). It is clear that

Pi ∈ F(I2), (i = 1, 2, ...).

Since I2 has (AP2) property then by Lemma 2.3 there exists a set P ⊂ N×N such
that P ∈ F (I2) and P\Pi is finite for all i. Now we show that

lim
m,n,s,t→∞

‖fmn(x)− fst(x), z‖ = 0

for each x ∈ X, (m,n), (s, t) ∈ P and each nonzero z ∈ Y. Let ε > 0 and j ∈ N such
that j > 2

ε , if (m,n), (s, t) ∈ P then P\Pi is a finite set, so there exists k = k(j)
such that (m,n), (s, t) ∈ Pj for all m,n, s, t > k(j). Therefore, for each x ∈ X

‖fmn(x)− fsjtj (x), z‖ < 1

j
and ‖fst(x)− fsjtj (x), z‖ < 1

j
,

for each nonzero z ∈ Y and all m,n, s, t > k(j). Hence, for each x ∈ X it follows
that

‖fmn(x)− fst(x), z‖ ≤ ‖fmn(x)− fsjtj (x), z‖+ ‖fst(x)− fsjtj (x), z‖

<
1

j
+

1

j
=

2

j
< ε

for all m,n, s, t > k(j) and each nonzero z ∈ Y. Therefore, for any ε > 0 and each
x ∈ X there exists k = k(ε, x) such that for m,n, s, t > k and (m,n), (s, t) ∈ P ∈
F(I2)

‖fmn(x)− fst(x), z‖ < ε,

for each nonzero z ∈ Y and so, the sequence {fmn} is a I∗2 -Cauchy sequence in
2-normed space.
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