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FEKETE-SZEGO PROBLEM FOR CONCAVE UNIVALENT
FUNCTIONS ASSOCIATED WITH FOX-WRIGHT’S
GENERALIZED HYPERGEOMETRIC FUNCTIONS

Thomas Rosy’, S. Sunil Varma ? and Gangadharan Murugusundaramoorthy?

Abstract. We investigate the Fekete-Szegd problem with real and complex parameter A
for the class Co(a) of concave univalent functions defined by Fox-Wright's generalized
hypergeometric function.
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1. Introduction

Let S denote the class of all univalent analytic functions

(1.1) f@)=z+ Z a,z"
n=2

where z € A = {z : |z| < 1}. The problem of maximizing |a3 — /\ﬂ%l is called Fekete-
Szegd problem. The classical Fekete-Szegdinequality by means of Lowner’s method
for f €Sis

=
(1.2) a3 — Aa2 <1+ Zexp(%), Aelo,1)

When A — 1, we have |a3 —a3] < 1 The coefficient functional A (f) = a3 — Aa3 plays
an important role in function theory, namely a3 — a% represents S¢(0)/6, where S¢
denotes the Schwarzian derivative

f// Y f// 2
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of locally univalent functions f in A. The problem of Fekete-Szegd has been solved
for various subclasses of S, such as the class S*(f) , C(f), the subclass of close-to-
convex function, close-to-convex functions of order a type 3, etc. In [3] Bhowmik et
al[4] solved the problem of Fekete-Szegg for the class of concave univalent functions
given by (1.1).

In this paper we solve the Fekete-Szegd problem with real and complex parame-
ter for the class of concave univalent function defined by Fox-Wright'’s generalized
hypergeometric functions.

2. Preliminaries

The study of operators plays an important role in geometric function theory and
its related fields. Many differential and integral operators can be written in terms
of convolution of certain analytic functions. It is observed that this formalism
brings an ease in further mathematical exploration and also helps to understand
the geometric properties of such operators better (see [11, 12, 13, 14]) also see
[21, 15, 22] and the references cited therein.

Let f be defined by (1.1). For g € S given by g(z) = z + ., b,z", the Hadamard
product of f and g is given by

(2.1) (fr)(z)=z+ Z ayb,z", zeA.
n=2

Now we briefly recall the definitions of the special functions and operators used
in this paper. For complex parameters a, ..., ®, % #0,-1,...;7=1,2,...p) and
B1,---. By g—’/ #0,-1,...;7=1,2,...9) by Fox’s H-function we mean the Wright’s
generalized hypergeometric functions ,'W, with irrational Aj, B; > 0, give (rather
general and typical examples of H—functions, not reducible to G—functions):

\y((mﬂmyuqmwAﬁ j)_iirml+mhy“rmp+m%)i
PP\ (B1,B1), -, (Bg, By) £ T(B1 +nBi)... T(B; +nBy) n!

— Hl,p —Zl (1 - al,Al),. ,(1 — OCP,AP)
pa+l 0,1),(1 = B1,B1),...,(1 =By, By) |

2.2)

q P
withl+ ) B, - Y, A, 20,(p,g e N =1,2,3,...) and for suitably bounded values
n=1

n=1
of |z|.

Note that when A; = --- = A, = By = --- = B; = 1, they turn into the generalized
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hypergeometric functions

@, 1), (1) fire
S, “1’1 v “P’l cz) = || Py, .y Bry By i 2),
(,Blr )/ /(ﬁqr ) lfllr(ﬁ])

2.3)

p<q+1; pgeNo=NU{0};z€A.

Now we recall the linear operator due to Srivastava [21](see[15]) and Wright
[22] in terms of the Hadamard product (or convolution) involving the general-
ized hypergeometric function. Let /,m € IN and suppose that the parameters
ai,Ar...,a;, A and B1,B1 ..., Bm, By are also positive real numbers, then corre-
sponding to a function

1Pul(aj, A (B Bj)ims z]
defined by

(24) 1Dul(aj, A (B, Bms 2] = QzWl(e, Ap1i(Bj, Bj)im; 2],

l m
where Q) = (H I'(a j)) (H e j)). We consider a linear operator
j=0 j=0

Wl(aj, Ap1i; Bjy Bl : A— A
defined by the following Hadamard product (or convolution)
Wlaj, A B Brml(H)2) == z1@ul(aj, A (B, Bj)ims 2] * f(2).

We observe that, for f(z) of the form(1.1), we have

25) WI(j, Ay (B, Bl f@) = 2+ ) 0ulen) a2,
n=2

where

Q Ty + Ar(n - 1))...T(ay + A(n — 1))
(n— D)IT(B1 + B1(n — 1)) .. .T(Bm + Bu(n — 1))’

(2.6) an(ar) =

for convenience, we write

(2.7) W f@) = Wl(ar, A1), ..., (1, A); (B, B1), - - ., (Bu, Bu)lf(2).
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Remark 2.1. Other interesting and useful special cases of the Fox-Wright generalized hy-
pergeometric function W, defined by (2.2) include (for example) the generalized Bessel
function

W= (v+1,p);-2) = J,.
For u = 1, corresponds essentially to the classical Bessel function J¥(z), and the generalized
Mittag-Leffler function ;\W,,((1, 1); (1, A); z) =

Remark 2.2. By setting A; = 1(j = 1,...,]) and B; = 1(j = 1,...,m) in (2.4), we are led
immediately to the generalized hypergeometric function |F,(z) is defined by

_ , N (@) () z
(28) UFn(@) = QF (@, iy fni?) 1= Z TR =
(I<m+1;, ImeNy, := INU{O},zeLI)

where IN denotes the set of all positive integers, (@), is the Pochhammer symbol.

By setting A; = 1(j = 1,..,]) and B; = 1(j = 1,...,m) the linear operator W/,
contains the Dziok-Srivastava operator given by

e (@u-y 2"

1 _ (n—
Huf(@) = ”Zmn - By (=11

and as its various special cases contain linear operators like Hovlov operator,
Carlson-Shaffer operator, Ruscheweyh derivative operator, generalized Bernardi-
Libera-Livingston operator and fractional derivative operator as remarked below:
Itis of interest to note that the following are the special cases of the Dziok-Srivastava
linear operator.

Remark 2.3. For f € A, Hf(a, 1;8)f(z) = L(a, B)f(z) was considered by Carlson and Shaffer
[6].

Remark 2.4. For f € A H2(6+1,1;1)f(2) = T f2) = DPf(z) the symbol D° f(z) was
introduced by Ruscheweyh [20]

Remark 2.5. For f € A,H3(c + 1,1;c + 2)f(z) = < fo L f(tydt = . f(z) where ¢ > —1.
The operator J. was introduced by Bernardi[5]. In partlcular the operator J; was studied
earlier by Libera [18] and Livingston [19].

Remark 2.6. For f € A,H}(2,1;2-N)f(z) =T(2-1)z'D} f(z) = Q' f(z), A ¢ N\ {1}.

Let S}, denote the class of functions analytically defined as
w! ’
:{feS: m(w)w, zeA}.
W f(2)

We now recall some facts about the class Co(a) of concave univalent functions. A
function f : A — C is said to belong to the family Co(«) if f satisfies the following
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conditions:

(i) f is analytic in A with the standard normalization f(0) = f/(0)—1 = 0. In addition
it satisfies f(1) = oo

(ii) f maps A conformally onto a set whose complement is convex with respect to
C.

(iii) the opening angle of f(A) at oo is less than or equal to mar, «a € (1,2].

This class has been extensively studied in the recent years. A detailed discussion
about concave univalent functions can be found in [1] and [2] and the references
therein. The analytic characterization for functions in Co(a), @ € (1,2] is that f €
Co(a) if and only if R(P¢(z)) > 0in A, where

2
a—1

Pg(z) = -1-z

2 (1-2 f@

Let S* denote the class of starlike functions. In [3], the authors used this character-
ization and proved the following theorem:

(@+1) (A +2) f”(Z)]

Theorem 2.1. Let o € (1,2]. A function f € Co(a) if and only if there exists a ¢ € S*

(a=1)/2
such that f(z) = Ay, where Ay = foz W ((ﬁ) : dt.

The lemma stated below is also noteworthy.
Lemma2.1. Let p(z) = z+ byz? + b3z® +--- € S*. Then |by — Ab3| < max{1,|3 — 4A|},

which is sharp for the Koebe function k if |A —3/4| > 1/4 and for (k(z)?): = = if
[A—3/4 < 1/4.

Recall from Theorem 2.1 that f € Co(«) if and only if there exists a function ¢ €
Sw, §(2) =z + X, puz" such that

a=1

’ — 1 Z i
2.9) F@=a=gm (W[allcz)(Z))

where f has the form (1.1). Comparing the coefficients of z and z? on both sides of
(2.9), we get

a+1 a-1
@ = == o2(a1)P2
1 2 2 - 2
(o + )6(oz+ )_a6 102(a1)¢2_a6163(a1)¢3+a241

as

(02(a1))* 3.

Computation of a3 — Aa3 yields

2 (a+1) [2a+2) 21 2
az — Aay = a4 [3(z+1) - /\] + [a4 ](A - 5)02(011)({)2

(2.10) - Zlos(m) [¢3 - (%) (az(al))2¢§] :
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We investigate the maximum value of the function |a3 — Aa3| by considering several
cases depending on the range of A.

2 _
Case1: Let A € (—00, 2(a+13)(($§¢i?)1))2)(a_8f)3 (al))). Note that this assumption is equivalent
to

2(av + 1)(02(1))?* = 3A(a — 1)(02(11))? 51
8o3(a1) B

and the first term in the last expression is non-negative. Using Lemma for the last
term in (12) and since || < 2/02(c1) we have

a2 +5 . (@ — 1)oz(ar)(o2(11) + 203(11))

las — Aajl < 5 603(a1)
1 [(04 + 1)%03(11) + 203(a1)oa(a)(@? — 1) + (02(a1))* (o — 1)
4o3(1) .
2a+2)

Case 2: Let A > 57755 This implies that the first term in (12) is non-positive. Also,

we have A > 2/3. Therefore

(2(a +1) - 3Ma — 1)) (02(n))? < (02(1))?
8 o3(ar1) ~ 203(a1)

By lemma (2.1),

€m+n—mm—n)g@mﬁ
$3 = =

8 2 o3

2

 a3(a)

Using this inequality and the fact that |o| < 2/02(a1), in (12), and simplifying the
above inequality, we get

2 -1 (a+1)(a+2) 2 -1
las — Adj| < 25t — (R 4 (02 - 1)os() - 5575)

A ((a+1)2 + (@*-Dos(@) (a+1)(a+2)).

1 2 6
Case 3: To get the complete solution to Fekete-Szegd problem, consider the case
1e (2(a + D)((02(a1))* — 8oa(a1)) 2(a + 2))
3(o2())*(a — 1) "Ba+1))

We now deal with this case by using (11) and (12) together with the representation
formula for ¢ € S}, namely

z(Wla1lp(2)) 1+ zw(z)

@1 Wmlo® — 1-zu()

where w : A — A is a function analytic in A with Taylor’s series w(z) = Y.~ cnz".
Substituting the respective Taylor’s series on both sides of (2.11), and comparing
the coefficients of z and z?, we get

2¢o c1 + 3¢

- o) 7T oa(an)

(212) ¢
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Substituting these in (2.13) we get

@+ 1) (2 +2) @-1)(, 2

% =My = (3(a+1)_A)+ 2 (A‘g)co
—(a-1) (@*-1) A@@*-1) a-1
+( 2 "6 | a )Cé_( 6 )Cl

=A + Beg +Cc§+Dc1,

where

A= (a+1)6(a+2) ~ /\(ail)z; B:(az—l)(%—%)
c_l@-DE-20+3@-1) . -@-1)
12 6
Using the fact that |c1]| < 1 — |cof*, we have
(2.13) las — Aa3| < |A + Bcg + Ccjl + IDI(1 = |col).

Let ¢y = re’®. We now find the maximum value of (2.13). For this, we first find
the maximum of |A + Bc + Ccj|?, where we fix r and vary 6. Substituting for co, we
get |A + Bco + Ccl|* = f(r, 0) where

(2.14) f(r,0) = (A = Cr*)* + B>/ + (2ABr + 2BCr)cos0 + 4ACr*cos*0.

To get the upper bounds of |a3 — Aa%l, we have to find the largest value of f(r, 0)
where r € (0.1]. Letting cosO = x, in (2.14), it becomes

(2.15) h(x) = (A—Cr*)* + B** + 2ABr + 2BCr)x + 4ACrx*, x € [-1,1].
To do this we consider several subclasses of

(2(€V +1)(02(1))* = 803(a1) 2(a + 2))
3(o2(a1))*(a — 1) "Ba+1))

Case 3A: Let

1e (2(01 + 1)((02(a1))? — 803(1)) 2(a - 2))
3(02(av1))* (@ = 1) "3a-1))

In thisrange, C>0,B<0 and A+ Cr? >0, for r € (0,1]. Therefore h(x) attains
its maximum value for any r € (0, 1], at x = —1. Let

g(r)=A-Br+Cr+ “T_l(l - 7).

We now find the maximum value of g(r).

a—1

g'(r)=-B+2Cr— .
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since g’(0) = =B > 0 and

g()=-B+2c- 21 a-l

3 T eCertaa-1) "

the maximum value is attained at the boundary that is at 7 = 1. Therefore

2
(2.16) las — Add| < g(r) < g(1) = 207+ 1 - Aa?.
Case 3B: Let
_ 2@-2)
C3a-1)

Clearly, C = 0 and hence h(x) = A? + B?r? + 2Brx is a linear function of x which has
maximum value at x = —1. Proceeding as in the previous case, we get the same
maximum value for |a3 — AaZ|.

Case 3C: Suppose
A€

2 —2) 2(a—-1)
3(a-1) 3a |

In this interval h is monotonic decreasing for x € [-1,1]. h(x) has its maximum at
x(r) = _TB(é + 7). It is sufficient to show that x(r) is monotonic increasing and
x(r) < —1.The assertion that x(r) is monotonic increasing is clear. To prove that
x(1) < —11is equivalent to showing that j(1) = a?(34 —2)> =4 + 3\ > 0. This is easily
verified. Hence we also get here the same upper bound for |a3 — Aaj| as in the case
of 3A and 3B. From the cases 3A, 3B, 3C we conclude that

2.17)

2a% +1
2
laz — Aaj| <

I (2(a + 1)(02(a1))? — 8o3(a1) 2(a — 2)).

3(o2(a1))* (@ = 1) " 3w

Case 3D: Let

2a—-1) 2
AE[ 3a '5)‘

The roots of j(A) = 0 are

40 -1- V8a?2+1 _4a® -1+ V8a2+1

A1 66[2 , and /\2 60(2
Note that A, > A;. For A € [2‘)‘;—;1), A1), h has maximum value at x = —1 and g has
maximum value at B
P ——— < (0,1].

—2C + &1
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Hence the maximum of Fekete-Szegd functional is

G(rw) = A —Bry, + CP + “T_l(l —12)
_a(10-90) - (31 -2)

2.1 _ _
@18) 92— 1) +3aBA-2)
For 9 B
A€ [/\1/ _)/ o = € (O/ 1]
3 B2
2C(1 + - m)

is the unique solution of x(r) = —1 in the interval (0,1]. Clearly r,, < ro for A < 2/3.
Further,the function

k(r) = () + "‘T_l(l ) = (A-CA)4[1- % + "‘T_l(l — )

is monotonic decreasing for v > ry. Hence the maximum value of |a3 — /\ﬂ%l is g(rm).
Case 3E: Let A = 2. Then, B=0,C = =2 Thus a3 — Aa?| = £.
From 3D and 3E, we conclude that

a(10-91) — (BA - 2)
(2.19) s = A < G % 3aGA =)

Case 3F: Let A € (%, /\2] . Here B > 0. The function x(r) is monotonic decreasing

B
r = € (0/ 1]

~2c(1+ 4/1- &=

is the unique solution of x(r) = 1 lying in (0,1].For r < ry, h(x) < h(1), consider the
function

(a—1)
6
The maximum value of this function is obtained at

I(r)=A+Br+Cr* + 1-r).

n Ty >711.

:7_1’
—2C + &1

Since k(r) is monotonic increasing, the maximum value of the Fekete-Szego func-
tional is

N 12(1- 1)
K =(A-Oy1- e =ad A)\/(4—3/\)2—a2(3)\—2)2

_B(A+C .
%. In this case, we have

which is attained for ¢y = €%, where cos6 =

12(1- 1)
(4-312-a2(31 -2

% A€ (g,/lz].

(2.20) las — Add| < a(1 - A) \/ 3
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Case 3G: Let

2(a +2)
A € (Az, m] .

Since x(1) < —1 for these A, the number

B

]/‘2 =
2
~2C(1 - 41— £%)

satisfies x(r;) = —1 and r, € (0, 1). For r < r,, we can make similar considerations as
in the preceding case.The maximum is attained at x = 1 or x = —1. For the values
of A under consideration, A + C < 0 and A + Cr* < 0 and therefore the maximum
of (12) is attained at x = —1, i.e. for ¢p = —r. Hence for r € (r;,1], the maximum
function is

(221) n)=~A+Br-CP+ 11 -R)

Since —C > “T‘l, B >0, we get n(r) < n(1) in this interval. Hence

202 +1
(2.22) a5 — Ad2| < n(1) = ~A+B - C = Aa® — “3+
whenever et 2)
a+
A€ (Ay, m]-

Equations (2.17),(2.18),(2.19),(2.20) and Case 3G give the following theorem:

Theorem 2.2. For a € (1,2], let f € Co(c) have the expansion (1.1). Then:

a?45 (@?-1)oy(ap)[oa(a1)+203(a)]

6 603(a1)
_ /\[(f’t+1)263(a1)+203(a’1)02(0’1)(ﬂ2—1)+6%(a’1)(0’—1)2] Ae[-oo 2<a+1)a§<a1)—8aa<a1)]
4o3(aq) 4 4 3(a—1)o3(ay)
20241 _ 2 Z(a+1)a%(a1)—803(al) 2(a-1)
3 Aaz, A€l 3a-l)o3(@) / Ba 1
®(10-90)—(31-2) 20a-1) 2
9(2-A)+3a(31-2)" A E[ 3a ’51

las = Ad| < 20-1) )
a(l =)\ aEmeerr A €[5, 1]

b (2a%41) 2(a+2)
Ao -3 AE[A2,3(H+1)]

-1 (a+1)(a+2) 2 -1
aT - ( 6 + (0( - 1)03(0'/1) - 2;;(“1))

(a+1)2 | (@2-Doz(ey)  (a+1)(a+2) 2(a+2)
+A (T + > - , Ael )

3(a+1)”

2 1, VP . .
where Ay = =8 The inequalities are sharp.
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When A is complex, we have the following;:

Theorem 2.3. Let f € Co(a),a € [1,2] have the expansion (1.1). If A is a complex
number, then

las — /\agl < max{{l, é(a +1) v(a, A)}},

where
v(a, ) =12-3A)(a+1)+2|+2(a—1DBA -2 + Z—Ilél —[2(a+1)=3A(a = D)]|.

Proof. Substituting (11) in (9) we have
12(a5 - Aa) = (a+DQ-3A)a+1)+2] +2( - 1)(31 - 2)co
—(@=1)[6-[2(+1) - 3A(a - ]I +2(1 - a)er.
For A complex,
123 - A2l <(@+ 1)@ —-30)(a+1)+2|+2(2 - 1I3A - 2llcol
—(a =16 =[2(a + 1) =3A(a = D]llcol* + 2(1 = a)|cal.
Using the fact that |co| < 1 and |c1| < 1 —|col?,
120a3 — Ad2| < (@+ )2 =3M)a+1)+2] +2(a® - HYBA - 2)col
—(a =16~ [2(a + 1) = 3A(a = D]llcol* +2(1 = a)(1 = o).
Thus, 12Jas — Aa3| < (@ + 1)v(a, A) for Re v(a, A) > 0

where
a —

v(a, A) =12 -3A)(a+1)+2|+2(a—-1)BA-2|+ o

1|4 —[2(a+1) = 3A(a - 1)]I.
O

Remark 2.7. Ifl=2and m =1witha; = py+ 1y > -1), @y = 1, f1 = p +2,where ], is a
Bernardi operator [5] defined by

1 Z
Juf(z) = % fo o f(hdt = HA(u+ 1,1 u + 2)f(2).

Note that the operator |; was studied earlier by Libera and Livingston. Various other
interesting corollaries and consequences of our main results (which are asserted in above
Theorems ) can be derived similarly. Further, by setting A; = 1(j = 1,..,]) and B; =
1(j = 1,...,,m), and specific choices of parameters [,m,a;, 1 the various results presented
in this paper would provide interesting extensions and generalizations of Sj,. The details
involved in the derivations of such specializations of the results presented here are fairly
straightforward.

Acknowledgement: We express our sincere gratitude to the referees for their
valuable suggestions to improve the results.
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