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Abstract. In this paper, we have studied existence and uniqueness of solutions for a
coupled system of multi-point boundary value problems for Hadamard fractional differ-
ential equations. By applying principle contraction and Shaefer’s fixed point theorem
new existence results have been obtained.
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1. Introduction

Differential equations of fractional order have proved to be very useful in the study
of models of many phenomenons in various fields of science and engineering, such
as: electrochemistry, physics, chemistry, viscoelasticity, control, image and signal
processing. For more details, we refer the reader to [3, 5, 6, 7, 11, 12, 13, 14, 16,
18]. There has been a sign cant progress in the investigation of these equations
in recent years, see [3, 8, 17, 18, 19]. More recently, a basic theory for the initial
boundary value problems of fractional differential equations has been discussed in
[1, 3, 14, 16, 20, 22]. On the other hand, existence and uniqueness of solutions
to boundary value problems for fractional differential equations has attracted the
attention of many authors, see for example, [16, 17, 19] and the references therein.
Moreover, the study of coupled systems of fractional order is also important in
various problems of applied nature [2, 9, 10, 15, 24, 25]. Recently, many people have
established the existence and uniqueness for solutions of some fractional systems,
see [9, 10, 21, 23, 25] and the reference therein. In the last few decades, much
attention has been focused on the study of the existence and uniqueness of solutions
for boundary value problems of Riemann-Liouville type or Caputo type fractional
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differential equations, see [21, 23, 24, 25]. There are few papers devoted to the
research of the Hadamard fractional differential equations; see [2].

In this paper, we study the existence of solutions for a Hadamard coupled system
of nonlinear fractional integro-differential equations given by:

Doz (t) = f1 (t,y (t), Dy (t)),1 <a <2,t€[1,T],

DBy (t) = fa(t,x (t), Dz (t)),1 < B <2,t€[1,T],

(1.1)
z(1) =0, x(T) = 3L MilPz (m:) =0,

where 0 < a—1,6 < —1;p,q > 0; 1 <n;,& < T and D DP, D° and D? are the
Hadamard fractional derivatives, I? and I? are the Hadamard fractional integrals
and f1, f are continuous functions on [1,7] x R2.

The rest of this paper is organized as follows. In section 2, we present some
preliminaries and lemmas. Section 3 is devoted to existence of solution of problem
(1.1). In section 4 an examples are treated illustrating our results.

2. Preliminaries

This section is devoted to the basic concepts of Hadamard type fractional calculus
will be used throughout this paper [13].

Definition 2.1. The fractional derivative of f : [l,00[ — R in the sense of
Hadamard is defined as:

(21)  DYf(t) = ﬁ (ti)n/j <log Z)n_a_l fis)ds,n— l<a<n,

where n = [a] 4 1, [a] denotes the integer part of the real number « and log(t) =
10ge(t).

Definition 2.2. The Hadamard fractional integral operator of order a > 0, for a
continuous function f on [1,00[ is defined as:

(2.2) f () = ﬁ /j (log Z)a_l @ds,a >0,

where I' () := [~ e “u*"du.
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Lemma 2.1. Let o« > 0. Then
(2.3) I1“D%x (t) = Z c; (logt)” -

where ¢; € R;i=0,1,2,...,n,n = [a] + 1.
We give also an auxiliary lemma to define the solutions for the problem (1.1).

Lemma 2.2. Let g € C([1,T],R), the solution of the boundary value problem

(2.4) { Doz (t)=g(t),1 <a<2te[l,T],

z (1) =0,2(T) =332, MilPz (n:),
is given by:
I(t): F(a) fl ( s)a 19(S)d
o a—1 7 i + 1
(2.5) + g [ S [ (log 1) T 2l g
iy T (o T)* T el

where
1

(2.6) = - —
(log T)° ™" — 1y o7y Ai (log )"

Proof. As argued in [13], for ¢; € R,i = 1,2, and by lemma 3, the general solution
of equation of problem (2.4) is given by

1

I /1 (bgi) 19ty 0™ 4o (log )2,

Using the boundary conditions for (2.4), we find that ¢y = 0.

For ¢1, we have

(2.8) @ flT (log T)" " 20ds + ¢; (log 7)*~
. i a+p—1 cil(a +a—1
= a+p f1 ( s ) o )d + szia)) Zi:l i(IOgUi)p .

which gives

i i\t 1 5
o = F(a+p) f1 (log o ) " g( o) g
L=

(2.9) (log 7)™ — 7Ll S0, (1<>gm)”+c“_1
e Ji (log T)a tal) g

(log 7)™~ ! — w195 307, Ay (log )P ot

Substituting the value of ¢; and ¢3 in (2.7), we get (2.5). O
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3. Main Results
Let us introduce the spaces X = {z: 2z € C* ([1,T]),D’z € C ([1,T])} and
Y ={y:yeC(,T]),D’y € C([1,T))}
endowed with the norm ||z||y = ||z|| + ||D«||; with

[zl = sup |z @), [|D7[| = sup [D%x(t)],
t te(1,T)

)

and ||y||

lyll = sup ly(®)], | D%y = sup. ID y(t)].
te[l,T te[l,T

Obviously, (X, |.||y) and (Y,].|ly) are a Banach spaces. The product space
(X x Y, |[(z,y)]| x«y) is also Banach space with norm [|(z, )| x .y = 2| x + ¥y -
Let us now introduce the quantities:

Ny = QoeT)* (log T)>~" (leu\i(logm)”“ (logT)”)

- I'(a+1) JA| I'(p+a+1) T'(a+1)
Ny — (QogT)®77 L(e)(log T)* 71 (Z;ll i (log 1;)*+7 (10gT)“)
— T'(a—0o+1) T(a—o)|A| T'(a+p+1) T'(at+1) )

_ (logT)? |, (logT)?~' (™ pi(log€)PtT | (logT)?
Ns =T + 13 ( N (EEny +F(B+1)>

N, = QgD | D(B)(ogt)? 07! (E;';lm(loga)‘“q <logT)ﬁ>

= T(B=+1) T(3—3)A] T(B+q+1) T(3+1)
which
A~ 1
(log T)" " — 08y 57, Ay (log P
and
A 1
(log T)B Fq(fg) >iey i (log &)q+5 g

We list also the following hypotheses:

(H1) The functions fi, fo :[1,T] x R? — R are continuous.

(H2) There exists a nonnegative continuous functions a;,b; € C ([1,7]),i = 1,2
such that for all ¢t € [1,T] and (z1,41) , (22, y2) € R?, we have

If1(tz,y1) — fi (B 22,92)| < an () |21 — 2] + 01 () [y1 — y2l,
[fo (t,x1,y1) — fo (22, 92)| < ag (t) |v1 — 22| + b2 () [y1 — 2|,

with
w1 = sup;epy p) a1 (¢) ;w2 = sup;ep b1 (4)
@1 = Supyepr,7) 2 (1), @2 = sup;epy 7y b2 (1) -
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(H3) There exists a nonnegative functions /; (¢) and 5 (¢) such that
[f1(t, 2, )| <11 (8),|f2 (t,x,y)| <la(t) for each t € [1,T] and all z,y € R,
with
Ly= sup l(t),Ly= sup ly(t).
te(1,T) te[1,T]

Our first result is based on Banach contraction principle:

Theorem 3.1. Suppose that the hypothesis (H2) holds.
If
(31) (N1+N2) (wl +CU2)+(N3+N4) (’Wl +WQ) < 1,

then the boundary value problem (1.1) has a unique solution on [1,T)].

Proof. Consider the operator ¢ : X x Y — X X Y defined by:

(3:2) ¢ (z,y) (t) == (91y (t) , g2z (1)) , L € [1,T7,
where
o1y (t) = i Ji (lo S)“ 1%“
(3.3) +QosT | B  (1og O TO) P
aTp s s

IB 1 S,xr(s (s
1"(/3) fl (10 7) fa( ()D ())d}

and
ﬂ 1 S,r(S (s
b (1) 1= I‘(ﬁ) fl (1 og t ) fa(s,m( )ﬁf ( ))ds
a t)ﬁ N DRI &\ T fa(s,a(s).D7a(s))
(3.4) +8 T L (10g ) B ds
(log )7~ e Pl 1 (s,2(5),D7a(s))
+ EA [F(q-i{/al’t) fl (log ) . ds

We shall prove that ¢ is contraction mapping.
Let (z,y), (z1,11) € X x Y. Then, for each ¢ € [1,T], we have:
(3.5)
a— s,y(s D s, s ,D‘s s

(logT)O‘ ! |:Z7::'1 Ai X
[Al C(pta)

7 (log m)a+p—1 \fl(s,y(s),D“ms))—fl(s,yl(s),D%n(s))lds
1

1 a—1 |f1(s,y(s),D%y(s) w1(s),D°y1(s)
s [T (log L) [£1(s )=h(s )N s
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Thanks to (H2),we obtain

S By e Rt L] LA

I'(a) J1 s
(3.6) (logT)*~1| 7 s i o\ atp—1 willy—yi|+wa || D’ y—D%yi ||
+ A Tiotay Ji (log %) s ds
1 T 7\ o—1 wllly—y1\|+w2||D5y—D6y1H
+ I'(a) J1 (IOg ;) s ds.
Consequently,

1|<Z51y (t) — d11n (E)|
(log 7)™ (log T)*~ o Ai(logmy)PTe (log T)~
< [F(iJrl) + g\A| T'(a+p+1) F(i+1) ):| (wl + WQ)

< (ly = will + [| Dy — Doy ]) ,

which implies that

161 () = ¢1 (y) Il < Ny (w1 +w2) (ly — w1l + || Dy — D°ui])

[D?¢1y (t) — D7 rys (1) ) )
< iy 1 (log 1) L D) S0 Ol
I'(a)(logt)*~ 7~
(3.7) ;(f)gam X+ —1 | 1(5.9(5),D%y(5)) = f1 (5,1 (), D 1 (5)) |
el L R

— S S o S — S S s S
1 flT (log )° 1| f1(s.(s),D°y(s)) Sfl( 1(8), Dy ( ))|d8} .

)
By (H2), we have

| D71y (t) — D71y (1)]
< (og )7 (witws) (lly=v1[I+]| D°y—D w1 )

(3.8) - F(a)(logT)”_”fl(a_za:jnl))\'(10g77")0+p (log T)*
= Tla—o)A] atpiD) F(a+1>) (w1 +w2)

< (ly = w1l + [ D% = D)) -

Hence,
D7 g1y (t) — D7 drya (1) ) N
(log 7)* "% | I(a)(log T)*" "~ (37 Ni(logn:)**” | (logT)™

(3.9) S | Ta—odD T~ Tla—o)A] Tartp 1) T(a+1) )} .

(w1 +w2) (Ily — vl + || D%y — Do) -
Therefore,

(3.10)  |D7¢1y (t) — D1y (£)] < Na (w1 +ws) (ly — w1l + || D%y — D°ws]|) -

Consequently,

(3.11) D761 (y) — D7¢1 (1)l < N2 (w1 +ws) (ly — wll + | D%y — D°ua]]) -
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By (??7) and (3.11), we can write

(3.12) 1 (y) — 1 (un)ll x < (N1 4 Na) (w1 +w2) (lly — wall + || Dy — DOwr]) -

With the same arguments as before, we have
(3.13) 2 (z) = ¢2 (z1)[ly < (N3 + Ni) (@1 + @2) (|2 — 21| + | D7z — D7) .

And by,(3.12) and (3.13), we obtain

(3.14) ¢ (z,y) — & (z1,91) I x oy
< [(N1 4 Na) (w1 +wa) + (N3 + Ny) (w1 + @2)] |7 — 21,5 — 1)y -

Thanks to (3.1), we conclude that ¢ is contraction. As a consequence of Banach
fixed point theorem, we deduce that ¢ has a fixed point which is a solution of the
coupled system (1.1). O

The second main result is the following theorem:

Theorem 3.2. Assume that the hypotheses (H1) and (H3) are satisfied.
Then, the coupled system (1.1) has at least a solution on [1,T].

Proof. We shall use Scheafer’s fixed point theorem to prove that ¢ has at least a
fixed point on X x Y. It is to note that ¢ is continuous on X x Y in view of the
continuity of f; and fo (hypothesis (H1)).

Now, We shall prove that ¢ maps bounded sets into bounded sets in X x Y :
Taking r > 0, and (z,y) € B, B, := {(z,y) € X X Y;[[(2,9)] x»y < r}, then for
each t € [1,T], we have:

t a—1 [fi(s,y(s),D°y(s)
b1 (8) éﬁfl(l £yot [Alaw) D)) g

T m ; Jyatp—1 | f1(s,y(s),D°y(s)
+(Ogm\ F(a+p) -y (log %) | s Nas

(3.15)

a—1 |fi(s,y(s),D°y(s
oty ST (tog T) " LD g |

S

Thanks to (H3), we can write
(3.16)
sup [ (t)

a—1,
b1y (1)) < iy Ji (log £)° 7 SX—ds
up I (t)

o a—1 7 a+ 71f

+£ g\f\)| [r(a+p) S (log )™ = —ds
1T rya-1 seph®)

trw J (log ) =5—ds|.

log T)® logT)*~ 1 (2™ X\;(logm;)*+P log T
< suply (t) | ey + e (Eqelleend™ + (e
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Therefore,
(3.17) |p1y (1)] p. —
. (log 7)™ (log T)*~ o Xi(logmy)eT? (log T)“
<Ly {r(aﬂ) + ( NatpiD T T(atD) )} te(1,T].
Hence, we have
sy a0l o
. (log T)™ (log T)>~* 7 Ai(logmy)eTP (log 7)™ _
<Ly [F(a+1) + [A] ( 11—‘(a+p+1) T(a+1) )] = L1Ny.

On the other hand,

S S s S
D761y (0] < ey Sy (log )77 [ (su).D%y@)] 4

Plalog 07 [P0 (1o o1 [l D )|

T a—oAl T(atp) J1 (log %) 5

T a—1 |f1(sy(s),D%y(s)
e 7 o B 20l

S S

By (H3), we have,

(3.19) sk +
: (log 7)*~7 | T(a)(logT)*~ =1 (35, Ns(logn)*™ | (log T)*
<Ly |:F(a—0'+1) + T'(a—o)|A] ( I'(a+p+1) T'(a+1) ):| :

Consequently we obtain,

(3.20) |D? 1y ()] < LyNoyt € [1,T].
Therefore,
(3.21) |ID?¢1 (y)|| < Ly No.

Combining (3.18) and (3.21), yields

(3.22) o1 Wlx < Ly (N1 + Na).
Similarly, it can be shown that,

(3.23) [¢2 (@)[ly < L2 (N3 + Na).

It follows from (3.22) and (3.23) that

(3.24) 16 (2, 9)l x xy < L1 (N1 + N2) + La (N3 + Ny).
Consequently

(3.25) 16 (2, 9)ll x v < 00
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Next, we will prove that ¢ is equicontinuous on [1,T] : For (z,y) € B,, and t,t; €
[1,T], such that ¢; < t3. Thanks hypothesis (H3), we have:

o1y (t2) = oy (1) < gy [} ((1og 2)° ™" = (1o 2)"™") Las

- ) :2 (log t;)a_l 1d8‘
L, (logt)* '—(logtz)*~t oM, i \atp—11
+ (1 (log t1) A( glz) F(a+p) f1 (log") ds
[e3
—rty i (log T)* 7 L.
Thus,
(3.26)
a—1 a—1
o1y (t2) — b1y ()] < (a ftl ((log L) — (log 2) ) %ds‘
ety |17 g 22)" " Las|
logt1)® *—(logtz)** >, Ai(log )oTP log T)*
+ Ly og 1) A( alz) ( Il‘(oz—i-p-&-q) (r(i+)1))

and using (H3),we obtain:

|D? 1y (t2) — D71y (t1)] )

a—oc—1 a—o—
(3.27) _M@U@%> — (log2)" ") Las|
t2 (log %)a—a—l lds‘

+F(o¢ o)
Hence, by (3.26) and (3.27),we can write
a—1 a—1
o1y (12) = duy (1)l < gy [ ((tog )" — (1og )" ") La
Ji2 (tog )" s

F a)
(logt1)* ' —(log to)*~* S Ai(logn)*HP (log T)*
(3.28) +L; : A 2 11—‘(a+p+1) + F(a+1)>
. a—o—1 toya—o—1Y\ 1
+m@fﬂb) ~ (log2)™"™") Las|
a—oc—1
+F(a o) f (10 ) %ds
+L1F(a) (logt1)* 71— (logty)* ! S Ai(logn;) TP (log 7)™
I'(a—o) A T'(a+p+1) T'(a+1)
With the same arguments as before, we get
(3.29)
12 (t2) — (tl)lly
z% 7 ((10g2)"™" = (1og 2)"") Las|
+%saw¥“ﬂ

+ Ly

(logty)Pt (logtg)B !
A

( S pillog )P (log T)? )
F(B+q+1) r(g+1)

4 F(LQ 5 t1 <(1 gh)ﬁ 0— (1 g )/8 o— 1) %dS‘
(logb)ﬁ " s
LQF(ﬁ) (1ogt1)ﬁ o— 1A(1ogt2)5 o-1

(Z?’:l wi(log £)P+1 | (logT)? )
T'(B+q+1) r(8+1)

-5
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Thanks to (3.28) and (3.29), we can state that ||¢ (x,y) (t2) — ¢ (2,y) (t1)[| xxy —
0 as t — t; and by Arzela-Ascoli theorem, we conclude that ¢ is completely
continuous operator.

Finally, we shall show that the set Q2 defined by
(3.30) Q={(z,y) € X xY,(,9) = po (z,y),0 < p <1},

is bounded:

Let (x,y) € Q, then (z,y) = po(z,y), for some 0 < p < 1. Thus, for each
€ [1,7T], we have:

(3.31) z(t) = pory (t),y (t) = ppa (1) .
Then

t —1 |f1(s,y(s),D%y(s)
Fe®l <oty (log%)a [t Do)l 4

(log T)*~* P S atp—1 | f1(s,u(s),Dy(s)
(3.32) . A | r(a+p> " (log )" EAIORER)] . Mas

o S (10 T)" —'fl“’y‘”f Xl

Thanks to (H3), we can write

Lo ()] < 5 [ (log 1) Lds

(3.33) L1(10‘gA7|" {F(aﬂ)) 7 (1o n;)aerfl Lds
+F(a fl ( S)a ' 1ds]

Therefore,
B30l (0] < LRy + SR (RRREE + SR
Hence,
o 2 (1)] < pLi:.
On the other hand,

51Dz 0

< ks [} (log £)7 o HLs D)l
(3:36)  pEeem R T (log ) Ll 2Ol

T a—1 |fi1(s,y(s),D%y(s)
bty S (log T) ! IR Ler D) g
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By (H3), we have

51D (1)]

B s [ e (PR )]
Therefore,
(3.38) < ‘Dax((&'m“*” D(a)(logT)*~ 7" (3071, Ai(logn)**? | (log T)*

< ply {F(afrﬂrl) + Tla=o)A] ( T(atp+1l) Tlat1) )} :
Thus,
(3.39) D (z)|| < pL1N>.
From (3.35) and (3.39) we get
(3.40) [zl x < pLy (N1 + N2).
Analogously, we can obtain
(3.41) lylly < pLz (Ns + Na).
It follows from (3.40) and (3.41) that
(3.42) 1@, )l xxy < p[L1 (N1 + Na) + Lo (N3 + Ny
Hence,
(3.43) 6 (@, 9) ey < 0.

This shows that the set € is bounded.

As a consequence of Schaefer’s fixed point theorem, we deduce that ¢ has at
least a fixed point, which is a solution of coupled system (1.1). O

4. Examples

Example 4.1. Let us consider the Hadamard coupled system:

oty

H —_1 ly ()] 2
Dsz(t) = 8(t+2)2 (1+|y(t)| + 2#(1+'Déy(t))> teos(L+t+t%),t€[le,

(4.1) D%y(t) = QOWI_HQ (sin\aj @)+ %sin ‘D%z t)D +In(24t%),t€[1,€],
@ (1) = 0,2 (e) = 213 2(§) +172(3) + [17a(])
y(1) =0,y (e) = 3I32(g) + 2I3a(}) + G173 a(

w3

).

For this example, we have for ¢ € [1, €]

_ 1 |z tly| 2
filt,z,y) = SErD? (H—I-r\ + 27"(13'"!’/')) + cos (1+t+t ), z,y €R,
. 2 .
folt,z,y) = m (sm|x| + %sm|y|) +1n (2+t2) , T,y € R.
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Taking x,y,z1,y1 € R,t € [1,¢], then:

t+t2

‘fl (t7x,y) - fl (t7w1:y1)| < S(t_‘l_2)2 |LU _'T1| + 167r(f+2)2 |y _y1|7
If2 (t,z,y) = f2 (t21,91)] < gore |2 — 2| + (20w 112) ly =l

So, we can take

1 t
a(t) = ———— by () = ————
1t 8(t+2)> (1) 167 (t + 2)°
and
t2

as(t) = gomrzs b2(t) = soary-

It follows then that

W1 = SUP¢e(1 ] O1 (t) = %7602 = SUP¢e(1,¢e] bi (1) = 141477»2
@1 = SWPep ) B2 (1) = 277> @2 = SWrepiel b2 (H) = wonrey

Ny = 1,3234, N, = 1,5028, N3 = 1,3153, Ny = 1,4974.

and A = 1.0246, A = 1.020,

(Nl + NQ) (wl +WQ) + (N3 —+ N4) (wl + WQ) = 0,3054 < 1.

Hence by Theorem 5, then the system (4.1) has a unique solution on [1, €].

Example 4.2. Consider the following coupled system:

sin(Jy@)+| D y(0)])

Dix(t) = TR te(le,
(42) Dty (p) = (=OHDI0])  y g
5 5 5
z(1)=0.2(e) = ¢I% (§) + 513 (3) + 13 (5).
y(1)=0,y(e) =315 (§) + 515 (§) +§1° (3) -
Then, we have
sin(ly(&)|+| DT y(1)
filtzy) = (yt2+5|t+21y ) ,x,y € R,
cos( |z(t)|+|D5 x(t)
f2(t,@,y) = ( t2+t+|207, ) x,y €R.

Let z,y € R and t € [1,e]. Then

|f1 (t2,9)| < pss |2 (62,9)] < ordtes
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So we take

h(t) = gt b2 () = Zison

Then
L, =0,1250, Ly = 0,0154.

Thanks to Theorem 6, the system (4.2) has at least one solution on [1,e].

1.

10.

11.

12.

13.
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