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Abstract. In this paper, we investigate the inverse p-median location problem with
variable edge lengths and variable vertex weights on networks in which the vertex
weights and modification costs are the independent uncertain variables. We propose
a model for the uncertain inverse p-median location problem with tail value at risk
objective. Then, we show that it is NP-hard. Therefore, a hybrid particle swarm opti-
mization algorithm has been presented to obtain the approximate optimal solution of
the proposed model. The algorithm contains expected value simulation and tail value
at risk simulation.
Keywords: p-median location problem; inverse optimization; Hybrid algorithm; non-
linear programming.

1. Introduction

One of the important aspects of location problems which has recently been
studied by many researchers is the p-median location problem which can be stated
as follows. Let N = (V,E) be an undirected connected network with vertex set
V , |V | = n, and edge set E, |E| = m. The distance between two points on N is
equal to the length of the shortest path connecting these two points. Each vertex
is associated with a nonnegative weight that is the demand of the client at this
vertex. In a p-median problem on a network, the aim is to find p locations for
establishing facilities on edges or vertices of the network such that the sum of the
weighted distances from the clients to the closest facility becomes minimum. In
the context of the p-median location problems, the interested reader is referred to
papers [1, 7, 8, 11, 12, 13, 17, 20, 21, 28, 37, 39].

In recent years, inverse location problems have found an increasing interest. In
an inverse location problem the goal is to modify parameters of the problem at
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minimum cost such that a prespecified solution becomes optimal. Burkard et al.
investigated the inverse 1-median problem with variable vertex weights on a tree
network and also on a plane and presented algorithms inO(n logn) time for them [9].
Also they proposed an algorithm in O(n2) time for the problem under investigation
on cycles [10]. Baroughi et al. [3] proved that the inverse p-median location problem
(IpMLP) on general networks is NP-hard. For a survey on the inverse p-median
location problems, we refer the interested reader to [16, 18, 19, 23, 30, 36].

In the real life, we are usually faced with various types of uncertainty. For exam-
ple, in location problems, we are usually not sure of the vertex weights, the travel
times between vertices, the establishing costs of facilities and the vertex weights or
edge lengths modification costs of a network. The uncertainty theory that proposed
by Liu [25] is a suitable tool to deal with these parameters. Some researchers ap-
plied the uncertainty theory to deal with the location problems,for example Gao
[14] modeled the single facility location problems with uncertain demands. Wen et
al. [43] investigated the capacitated facility location-allocation problem with un-
certain demands and also Nguyen and Chi [31] studied inverse 1-median problem
on a tree with uncertain costs and showed that the inverse distribution function of
the minimum cost can be obtained at O(n2 logn) time. For a survey on uncertain
location problems, we refer the interested reader to [15, 22, 27, 34, 40, 46].

The uncertainty leads to the risk. Liu in [26] introduced the risk concept in
the uncertain environment. Measuring the risk is one of the important steps in
the decision making process. The risk metrics contain techniques and data sets
used to calculate the risk value of the problem under investigation. Tail value at
risk (TVaR) metric [32] is one of the measures of the risk that is widely acceptable
among industry segments and market participants.

In the risk management related to location problems, Berman et al. [6] studied
the effect of a decision maker’s risk attitude on the median and center location prob-
lems, with uncertain demand in the mean-variance framework. Wang et al. [41]
investigated a two-stage fuzzy facility location problem with value at risk. Wagner
et al. [42] developed and examined a new algorithm for solving the p-median prob-
lem when the demands are probabilistic and correlated. For a survey on the risk
management in the location problems with fuzzy variables, see, e.g. [5, 44].

In this paper, we concentrate on IpMLP with variable edge lengths and variable
vertex weights on networks. We assume that the vertex weights and modifica-
tion costs are the independent uncertain variables. We propose a model for the
uncertain inverse p-median location problem with tail value at risk objective and
expected value constraints and show that the problem is NP-hard. Considering the
uncertain and NP-hard nature in uncertain IpMLP (UIpMLP), evolutionary and
meta-heuristics algorithms can be used to UIpMLP for successful generation of op-
timal solutions. Hence, we present a hybrid particle swarm optimization algorithm
which contains expected value simulation and tail value at risk simulation to obtain
the approximate optimal solution of the proposed model.

Based on our knowledge, there are two papers on the implementation of meta-
heuristic algorithms to the inverse location problems until now. Alizadeh and
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Bakhteh [2] studied the general IpMLPs on networks and presented a modified
firefly algorithm for the problem under investigation. Mirzapolis Adeh et al. [29]
investigated the general inverse ordered p-median location problem on crisp net-
works and designed a modified particle swarm optimization (PSO) algorithm for
it. There is no scientific paper on implementation of hybrid metaheuristic algo-
rithms on IpMLPs in uncertain networks. However, many papers can be found in
the literature for other classical location problems on uncertain networks. Bashiri
et al. [4] modeled fuzzy capacitated p-hub center problem and presented a genetic
algorithm for the problem. Huang and Hao [22] modeled uncapacitated facility
location problem with uncertain customers positions and provided a hybrid intelli-
gent algorithm for solving it. In 2018 Rahmaniani et al. [35] proposed an efficient
hybrid solution algorithm for the capacitated facility location-allocation problem
under uncertainty. Yang et al. [45] presented an improved hybrid particle swarm
optimization algorithm for fuzzy p-hub center problem.

The article is organized as follows: In the next section, we first introduce un-
certainty theory and TVaR metric in an uncertain environment. Then, we discuss
uncertain optimization model and present a new model with TVaR objective and
expected value constraints. In Section 3., we first introduce IpMLP with variable
edge lengths and variable vertex weights on networks and then investigate the prob-
lem with uncertain vertex weights and uncertain modification costs. A model for
the uncertain inverse p-median location problem (UIpMLP) with TVaR objective is
presented and it is shown that the problem under investigation is NP-hard. Then,
we present a hybrid PSO algorithm to obtain the approximate optimal solution of
the proposed model, which it contains expected value simulation and TVaR simu-
lation. Finally, to show the effectiveness of the proposed hybrid PSO algorithm, we
give a numerical example. Section 4. gives a brief conclusion to this paper.

2. Preliminaries

In this section, we first present some definitions and theorems of the uncertainty
theory and TVaR metric in an uncertain environment. Then, we introduce the
uncertain optimization model and present a new model with TVaR objective and
expected value constraints.

2.1. Uncertainty theory

Let Γ be a nonempty set and Θ be a σ-algebra over Γ. An uncertain measure is
a set function M : Θ → [0, 1] that satisfies in normality, duality and subadditivity
axioms. The triple (Γ,Θ,M) is called an uncertainty space.

Definition 2.1. (Liu[25]). Let (Γ,Θ,M) be an uncertainty space. A measurable
function θ from (Γ,Θ,M) to the set of real numbers is called an uncertain variable.
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Definition 2.2. (Liu[25]). Let θ be an uncertain variable. For any real number
x, the function Υ(x) = M{θ ≤ x} is called an uncertainty distribution of θ.

Definition 2.3. (Liu[25]). Let θi, i = 1, . . . , n, be the uncertain variables. We call
θi, i = 1, . . . , n, independent if for any Borel sets B1, B2, . . . , Bn of real numbers,

M

{

n
⋂

i=1

{θi ∈ Bi}

}

=

n
∧

i=1

M{θi ∈ Bi}.

Definition 2.4. (Liu[25]). The expected value of the uncertain variable θ is de-
fined as

E[θ] =

∫ +∞

0

M{θ ≥ r}dr −

∫ 0

−∞

M{θ ≤ r}dr,

provided that at least one of the two integral is finite.

A real valued function f(x1, x2, ..., xn) is said to be strictly increasing if
f(x1, x2, . . . , xn) > f(y1, y2, . . . , yn) when xi > yi for i = 1, 2, . . . , n.

Theorem 2.1. (Liu[25]). Let θi, i = 1, 2, . . . , n, be the independent uncertain

variables and Υ−1

i , i = 1, 2, . . . , n, be the inverse uncertainty distributions of θi.

Also, let f(x1, x2, . . . , xn) be a strictly increasing function with respect to xi, i =
1, 2, . . . , n. Then the uncertain variable ϑ = f(θ1, θ2, . . . , θn) has the following in-

verse uncertainty distribution

Υ−1(α) = f(Υ−1
1 (α), . . . ,Υ−1

n (α)),

and also it has the following expected value

E[ϑ] =

∫ 1

0

f(Υ−1

1 (α), . . . ,Υ−1
n (α))dα.

2.2. TVaR metric in an uncertain environment

The risk demonstrates a situation, in which there is a chance of loss or danger.
The quantification of the risk is a key step towards the management and mitigation
of the risk. In this section, we introduce the definition of the TVaR metric to account
the probability of loss and the severity of the loss in an uncertain environment [32].

In order to define the TVaR metric, we first introduce the definition of the loss
function.

Definition 2.5. (Liu[26]). Consider θi, i = 1, 2, . . . , n, as the uncertain factors of
a system. A function f is said to be a loss function if some specified loss occurs if
and only if

f(θ1, θ2, . . . , θn) > 0.
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In the uncertain environment, TVaR of the loss function is defined as follows.

Definition 2.6. (Peng[32]). Let θi, i = 1, 2, . . . , n, be the uncertain factors and
f be the loss function of a system. Then TVaR of f is defined as

TV aRβ =
1

β

∫ β

0

sup {λ | M{f(θ1, θ2, . . . , θn) ≥ λ} ≥ γ} dγ,

for each given risk confidence level β ∈ (0, 1].

Theorem 2.2. (Peng[32]). Let θi, i = 1, 2, . . . , n, be the uncertain factors of a

system and Υ−1

i , i = 1, 2, . . . , n, be the inverse uncertainty distributions of θi. Also

assume that the loss function f(x1, x2, . . . , xn) is a strictly increasing function with

respect to xi, i = 1, 2, . . . , n. Then, for each risk confidence level β ∈ (0, 1], we have

TV aRβ =
1

β

∫ β

0

f(Υ−1

1 (1− γ),Υ−1

2 (1 − γ), . . . ,Υ−1
n (1− γ))dγ.

2.3. Uncertainty optimization

Let x = (x1, x2, . . . , xn) be a decision vector, and θ = (θ1, θ2, . . . , θn) be an
uncertain vector. Consider the following optimization model.

min f(x, θ)
s.t. gj(x, θ) ≤ 0 j = 1, . . . , p,

zl(x) ≤ 0 l = 1, . . . ,m,

x ≥ 0,

(2.1)

where f and gj , j = 1, . . . , p are uncertain functions and zl, l = 1, . . . ,m are crisp
functions.

Since the objective function of the model (2.1) involves uncertainty, it cannot
be directly optimized. Therefore, by considering f(x, θ) as a loss function, we
minimize its TVaR. In addition, since the uncertain constraints do not define a
crisp feasible set, we use the expected value of constraints. Thus, the model (2.1)
can be reformulated as

min TV aRα(f(x, θ))
s.t. E(gj(x, θ)) ≤ 0 j = 1, . . . , p,

zl(x) ≤ 0 l = 1, . . . ,m,

x ≥ 0.

(2.2)

According to Theorems 2.1 and 2.2, we can rewrite the problem (2.2) as follows:

min 1

β

∫ β

0
f(x,Υ−1

1 (1− γ),Υ−1

2 (1− γ), . . . ,Υ−1
n (1− γ))dγ

s.t.
∫ 1

0
gj(x,Υ

−1

1 (α),Υ−1

2 (α), . . . ,Υ−1
n (α))dα ≤ 0 j = 1, . . . , p,

zl(x) ≤ 0 l = 1, . . . ,m,

x ≥ 0,

(2.3)

where gj(x, θ1, θ2, . . . , θn) is strictly increasing with respect to θ1, θ2, . . . , θn.
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3. Problem definition

In this section, we first introduce IpMLP with variable edge lengths and vari-
able vertex weights on networks and then investigate the problem with uncertain
vertex weights and uncertain modification costs. A model for UIpMLP with TVaR
objective and expected value constraints is presented. To solve the proposed model,
we present a hybrid PSO algorithm which contains expected value simulation and
TVaR simulation.

3.1. UIpMLP on networks

We can express IpMLP with variable edge lengths and variable vertex weights
as follows: Let N = (V,E) with |V | = n and |E| = m be a connected network. Also
let vertex v ∈ V have a positive weight w(v) and edge e ∈ E have a positive length
ℓe. In an IpMLP on networks, a set of vertices {m1, . . . ,mp} is given. The goal is
to modify w(v), v ∈ V , and ℓe, e ∈ E, at minimum total cost such that the given
set becomes a p-median of modified location problem. Let us consider nonnegative
costs c+e and c+v , if ℓe and w(v) are increased by one unit, respectively. Also we
consider nonnegative costs c−e and c−v , if ℓe and w(v) are decreased by one unit,
respectively. Let pe, qe, pv and qv be the amounts by which the edge length ℓe and
the vertex weight w(v) are increased and decreased, respectively. We let pe, qe, pv
and qv obey the upper bounds u+

e , u
−

e , u
+
v , u

−

v . In addition, assume that S is the
set of all subsets S ⊆ V with |S| = p. Thus, IpMLP on N can be stated as follows.

Change ℓe, e ∈ E, to ℓ̃e = ℓe+pe− qe and w(v), v ∈ V , to w̃(v) = w(v)+pv − qv
such that

(i) The set {m1, . . . ,mp} becomes a p-median of N with respect to ℓ̃ and w̃(v),
i.e.,

∑

v∈V

w̃(v) min
i=1,...,p

dℓ̃(v,mi) ≤
∑

v∈V

w̃(v)min
k∈S

dℓ̃(v, vk) ∀ S ∈ S,(3.1)

(ii) The bound constraints are satisfied:

0 ≤ pe ≤ u+
e , 0 ≤ qe ≤ u−

e ∀ e ∈ E,(3.2)

0 ≤ pv ≤ u+
v , 0 ≤ qv ≤ u−

v ∀ v ∈ V,(3.3)

(iii) The objective function

∑

e∈E

(c+e pe + c−e qe) +
∑

v∈V

(c+v pv + c−v qv)

becomes minimum.
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This formulation of IpMLP is a nonlinear programming model. In the following,
we consider IpMLP with uncertain vertex weights and uncertain modification costs.

LetN = (V,E) be a network with independent uncertain vertex weights θv, v ∈ V .
Also let w(v) be a parameter on each vertex v ∈ V , which will be changed to w̃(v).
In addition, suppose that θv relates to this parameter, i.e., for each vertex v ∈ V ,
we have an original weight θ(w(v)) and also a new weight θ(w̃(v)). Let ϑ+

v and ϑ−

v

be the independent uncertain variables with respect to the costs c+v and c−v , for all
v ∈ V , and ϑ+

e and ϑ−

e be the independent uncertain variables with respect to the
costs c+e and c−e , for all e ∈ E, respectively.

Let us assume that we are given a set of vertices {m1, . . . ,mp}. In an UIpMLP,

the goal is to find ℓ̃e = ℓe+pe−qe and w̃(v) = w(v)+pv−qv such that {m1, . . . ,mp}

becomes a p-median of the problem with respect to θv(w̃(v)) and ℓ̃e, v ∈ V , e ∈ E,
and the total cost

∑

v∈V

(ϑ+
v pv + ϑ−

v qv) +
∑

e∈E

(ϑ+
e pe + ϑ−

e qe)

is minimized.

Therefore, we can model UIpMLP as follows.

min
[
∑

v∈V (ϑ
+
v pv + ϑ−

v qv) +
∑

e∈E(ϑ
+
e pe + ϑ−

e qe)
]

s.t.
[
∑

v∈V θ(w̃(v))
(

mini=1,...,p dℓ̃(v,mi)−mink∈S dℓ̃(v, vk)
)]

≤ 0 ∀S ∈ S,
0 ≤ pe ≤ u+

e , 0 ≤ qe ≤ u−

e ∀e ∈ E,

0 ≤ pv ≤ u+
v , 0 ≤ qv ≤ u−

v ∀v ∈ V.

(3.4)

Definition 3.1. Let p = (pe)e∈E and q = (qv)v∈V be the vectors that satisfies in
(3.2) and (3.3). Then (p, q) is called expected solution of (3.4) if and only if ∀S ∈ S

∑

v∈V

E [θ(w̃(v))]

(

min
i=1,...,p

dℓ̃(v,mi)−min
k∈S

dℓ̃(v, vk)

)

≤ 0.

Now, let (p, q) be a expected solution of (3.4). Define

f(p, q) =
∑

v∈V

(ϑ+
v pv + ϑ−

v qv) +
∑

e∈E

(ϑ+
e pe + ϑ−

e qe).

Definition 3.2. For a risk confidence level β ∈ (0, 1], a expected solution (p∗, q∗)
is called optimal solution with minimum TV aR if

TV aRβ(f(p
∗, q∗)) ≤ TV aRβ(f(p, q)),

holds for any expected solution (p, q).

Therefore, we can find an optimal expected solution with minimum TVaR as
follows:
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Let (Ψ+
v )

−1, v ∈ V , and (Ψ+
e )

−1, e ∈ E be the inverse uncertainty distributions
of ϑ+

v and ϑ+
e , respectively. Also let (Ψ−

v )
−1, v ∈ V , and (Ψ−

e )
−1, e ∈ E be the

inverse uncertainty distributions of ϑ−

v and ϑ−

e , respectively. Assume that Υ−1
v ,

v ∈ V , is the inverse uncertainty distribution of θv. Then, for a risk confidence
level β ∈ (0, 1], the optimal expected solution with minimum TVaR is the optimal
solution of the following model:

min
∑

v∈V

[(

1

β

∫ β

0

(Ψ+
v )

−1(1− γ)dγ

)

pv +

(

1

β

∫ β

0

(Ψ−

v )
−1(1− γ)dγ

)

qv

]

+
∑

e∈E

[(

1

β

∫ β

0

(Ψ+
e )

−1(1− γ)dγ

)

pe +

(

1

β

∫ β

0

(Ψ−

e )
−1(1− γ)dγ

)

qe

]

s.t.
∑

v∈V

(
∫ 1

0

Υ−1
v (w̃(v), α)dα

)(

min
i=1,...,p

dℓ̃(v,mi)−min
k∈S

dℓ̃(v, vk)

)

≤ 0

∀S ∈ S ,

0 ≤ pe ≤ u+
e , 0 ≤ qe ≤ u−

e ∀e ∈ E,

0 ≤ pv ≤ u+
v , 0 ≤ qv ≤ u−

v ∀v ∈ V.

(3.5)

The above model is a deterministic inverse p-median problem formulation with
vertex weights

∫ 1

0

Υ−1
v (w̃(v), α)dα, ∀v ∈ V,

vertex weight modification costs

1

β

∫ β

0

(Ψ+
v )

−1(1 − γ)dγ,
1

β

∫ β

0

(Ψ−

v )
−1(1− γ)dγ,

and edge length modification costs

1

β

∫ β

0

(Ψ+
v )

−1(1 − γ)dγ,
1

β

∫ β

0

(Ψ−

v )
−1(1− γ)dγ.

Baroughi et al. in [3] showed that IpMLP on general networks is NP-hard. Thus
we immediately conclude the following proposition.

Proposition 3.1. UIpMLP with TVaR criterion on general networks is NP-hard.

The above proposition implies that it is not possible to present exact polynomial
time methods to solve UIpMLP on general networks. Therefore, we propose an
efficient hybrid PSO algorithm for approximating the optimal solution of UIpMP
on networks.
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3.2. Hybrid PSO algorithm

Kennedy and Eberhart in 1995 [24] developed the PSO algorithm as a nature-
inspired evolutionary computation algorithm. Consider the following model

min f(x)
s.t. x ∈ X,

whereX is the restricted region. In PSO algorithm, a potential solution is presented
as a particle xj ∈ X and a direction vj ∈ R in which the particle will move. A swarm
of particles is defined as a set {x1, x2, . . . , xN}, in which N is number of particles.
Each particle xj retains a record of the position of its previous best performance in
a vector called Pbest,j . The particle with best performance r in the population has
been maintained in a vector Gbest. An iteration involves evaluating of each particle
xj , then randomly setting of vj in the direction of particle x

′

js best previous position
Pbest,j and the best previous position Gbest of any particle in the population.

Since in UIpMLP the aim is to modify the vertex weights and edge lengths with
respect to modification bounds. Thus, we consider a particle of the problem as
xj = (x1,j , x2,j , . . . , x2m+2n,j) where

(x1,j , x2,j , . . . , xm,j) = (pe)e∈E ,

(xm+1,j , xm+2,j , . . . , x2m,j) = (qe)e∈E ,

(x2m+1,j , x2m+2,j , . . . , x2m+n,j) = (pv)v∈V ,

(x2m+n+1,j , x2m+n+2,j , . . . , x2m+2n,j) = (qv)v∈V .

(3.6)

Therefore, xj represents the decision vector of UIpMLP that used in PSO. In
addition, according to the orthogonality condition

• if qe > pe, then qe = qe − pe, pe = 0,

• if qe < pe, then pe = pe − qe, qe = 0,

• if qv > pv, then qv = qv − pv, pv = 0,

• if qv < pv, then pv = pv − qv, qv = 0.

For checking the feasibility of particle xj , we calculate the expected value of
constraints by using the following uncertain simulation algorithm [33]. Let S ∈ S.

Algorithm 1 (Expected value simulation)

1. Set E = 0.

2. For k = 1, . . . , 99 do

compute

Ek = 0.01
∑

v∈V

(

Υ−1
v (w̃(v), 0.0k)

)

(

min
i=1,...,p

dℓ̃(v,mi)−min
k∈S

dℓ̃(v, vk)

)

,
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and E := E + Ek.

3. Report E.

Therefore, if the particle xj = (x1,j , x2,j , . . . , x2m+2n,j) is defined as (3.6) and
for each S ∈ S, E ≤ 0, then xj is feasibile.

Based on Theorem 2.2, we present the following uncertain simulation procedure
for computing TVaR of objective function for each feasible particle xj and given
β ∈ (0, 1].

Algorithm 2 (TVaR simulation)

1. Set Tβ = 0.

2. For j = 1, . . . ,M do

compute

T
j
β =

∑

v∈V

[(

(Ψ+
v )

−1(1−
j

M
β)

)

pv +

(

(Ψ−

v )
−1(1 −

j

M
β)

)

qv

]

+
∑

e∈E

[

((Ψ+
e )

−1(1−
j

M
β))pe +

(

(Ψ−

e )
−1(1−

j

M
β)

)

qe

]

,

and Tβ = Tβ + j
M
βT

j
β .

3. Compute TV aRβ = 1

β
Tβ.

4. Report TV aRβ .

To solve the model (3.5) with hybrid PSO algorithm, we first randomly generate
the particle xj by checking the feasibility of it using expected value simulation.
Repeat this process N times. We get N initial feasible particles x1, x2, . . . , xN .
Then, we assume that the fitness of each xj is the minus of TVaR, i.e.,

Fit(xj) = −TV aRβ(xj).

Thus, the particle with higher fitness has smaller objective value. The fitness of
each particle is obtained by using TVaR simulation.

In the process of updating (i+ 1)th iteration, we first denote Pbest,j(i) for each
particle xj and Gbest(i), then we obtain the new directs and the positions of the
particles by using the following two equations:

vj(i + 1) = vj(i) + C1r1[Pbest,j(i)− xj(i)] + C2r2[Gbest(i)− xj(i)],(3.7)
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xj(i+ 1) = xj(i) + vj(i+ 1),(3.8)

where, Pbest,j(i) = xj(i) if

Fit(xj(i)) ≥ Fit(xj(i− 1))

and Pbest,j(i) = Pbest,j(i − 1) otherwise, and Gbest(i) = Pbest,k(i), with

k = argmin{Pbest,j(i) : j = 1, . . . , N}.

In addition r1 and r2 are uniformly distributed random numbers in the inter-
val [0, 1] and C1 and C2 are learning rates, to well adjust the convergence of the
particles. The values of C1 and C2 are usually assumed to be 2.

If the updated xj is feasible, then we consider it as a new particle of the next
generation. Otherwise, as long as a feasible new particle is found, we re-update
(3.7) and (3.8).

We obtain a new generation of particles by repeating the above process N times.

If MaxIt indicate the number of generations of the PSO algorithm, then based
on all the explanations above, we summarize the hybrid PSO algorithm for solving
the model (3.5) as follows.

Algorithm 3 (Hybrid PSO algorithm)

1. Initialize the feasibile particles x1, . . . , xN (use expected value simulation).

2. Compute the fitness for all particles by using TVaR simulation, and evaluate
each particle according to it.

3. Update all the particles by using equations (3.7) and (3.8).

4. As long as a new feasible population is found, re-update (3.7) and (3.8).

5. Repeat Steps 2 to 4 for MaxIt times.

6. Return Gbest as the optimal solution of the model (3.5), and

TV aRβ(Gbest) = −Fit(Gbest)

as the corresponding optimal value.

3.3. An illustrative example

In this subsection, we give a numerical example to illustrate the hybrid PSO al-
gorithm. The result of the numerical experiment is obtained on a PC with processor
Intel(R) Core(TM) i3 CPU 2.27GHZ and 4GB of RAM under windows 7.

We apply the hybrid PSO algorithm for solving UIpMLP with TVaR criteria at
a risk confidence level of β = 0.8 on the given network N in Figure 3.1. Let the
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cost coefficients be linear uncertain variables (see Table 3.3). Also let the vertex
weights θ be the linear uncertain variables with respect to, w̃(v), i.e.,

θ = θ(w̃(v)) = L(w̃(v) − 10, w̃(v) + 10).

The input data of the network are given in Tables 3.1 and 3.3.

Note that if θ = L(a, b) is the linear uncertain variable, then for a risk confidence
level β ∈ (0, 1]

TV aRβ(θ) =
β

2
(a− b) + b,

and

E[θ] =
(a+ b)

2
.

In the following, we show the computational results of the hybrid PSO algo-
rithm’s performance on an example of UI2MLP on the given network.

Note that the goal is to change w(v) and ℓe with respect to modification bounds
so that {v2, v3} becomes a 2-median at minimum total cost under the new vertex
weights and edge lengths.
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Table 3.1: The input data for UI2MLP

ℓe (14, 34, 25, 7, 22, 10, 8, 20, 12, 7, 10, 26, 12, 6, 10, 23, 31, 21, 22)
u+
e (5, 4, 5, 4, 7, 2, 5, 6, 3, 9, 2, 13, 1, 3, 5, 1, 7, 4, 1)

u−

e (10, 30, 15, 3, 17, 8, 4, 10, 8, 4, 5, 20, 6, 1, 8, 13, 2, 3, 13)
w(v) (34, 18, 14, 13, 21, 11, 13, 20, 40, 22, 9, 17, 13, 6, 24, 14, 15, 12)
u+
v (20, 11, 4, 1, 2, 4, 7, 8, 15, 32, 13, 5, 15, 1, 2, 4, 1, 1)

u−

v (3, 2, 11, 9, 10, 8, 1, 1, 6, 7, 2, 2, 2, 4, 15, 10, 13, 11)

The hybrid PSO algorithm is run for the problem with 100, 200, 300 and 400
generations, respectively. Table 3.2 shows the best solutions of the problem.

Table 3.4, shows the best solutions of UI2MLP using hybrid PSO algorithm. Fur-
thermore, the convergence of the objective values with population sizes 10,15,20,25
and MaxIt = 100 is shown in Figure 3.2. The convergence of the objective values
with N = 10 and MaxIt = 100, 200, 300, 400 is given in Figure 3.3.

Table 3.2: The results of the performance of hybrid PSO algorithm

N, MaxIt Objective value N, MaxIt Objective value

10, 100 -6880 10, 200 -6635
15, 100 - 8240 10, 300 -7609
20, 100 -8520 10, 400 -9150
25, 100 -10496

Table 3.3: Uncertain cost coefficients

ϑ+
e (L(8, 10),L(18, 21),L(19, 21),L(4, 6),L(3, 4),L(14, 16),L(28, 30),L(10, 12),

L(17, 18),L(6, 8),L(22, 24),L(7, 9),L(15, 17),L(18, 21),L(26, 28),
L(28, 30),L(16, 18),L(4, 6),L(4, 6))

ϑ−

e (L(18, 20),L(14, 15),L(10, 12),L(24, 26),L(17, 18),L(15, 17),L(27, 29),L(8, 10),
L(22, 24),L(22, 24),L(11, 13),L(2, 4),L(1, 3),L(15, 17),L(24, 25),

L(28, 30),L(3, 5),L(17, 19),L(17, 19))

ϑ+
v (L(24, 26),L(27, 28),L(3, 5),L(27, 28),L(19, 20),L(1, 4),L(8, 10),L(16, 18),

L(29, 30),L(29, 30),L(4, 6),L(30, 31),L(29, 30),L(14, 16),L(24, 26),
L(4, 6),L(12, 13),L(27, 28))

ϑ−

v (L(19, 21),L(22, 24),L(12, 13),L(19, 21),L(5, 6),L(20, 22),L(1, 2),L(7, 10),
L(2, 3),L(3, 4),L(24, 26),L(20, 21),L(19, 20),L(29, 30),L(2, 3),

L(13, 15),L(12, 13),L(22, 24))



1412 A. Soltanpour, F. Baroughi and B. Alizadeh

Table 3.4: The obtained Gbest for UI2MLP by using hybrid PSO algorithm

N, MaxIt Gbest

10, 100 (3.92, 0.90, 4.88, 0, 4.84, 0, 0, 5.82, 1.25, 0, 0, 0.33, 0, 0, 0.99, 0.94,
0, 0.82, 0.69, 0, 0, 0, 2.75, 0, 2.50, 3.22, 0, 0, 2.80, 1.08, 0, 4.60, 0.23, 0,
0, 1.46, 0, 0, 0, 9.51, 3.40, 0.32, 1.38, 0, 0, 0, 0, 0, 0, 4.94, 0, 0, 1.54,

3.26, 0.61, 0, 0.22, 0, 0, 0, 0, 6.31, 0.34, 0.72, 4.28, 5.64, 0.01, 0, 0.34, 2.56,
0, 0, 0, 10.73)

15, 100 (0.24, 2.85, 4.07, 0, 4.07, 1.29, 1.95, 4.12, 0, 8.92, 0, 8.38, 0.97, 0.30,
3.2, 0, 3.42, 3.49, 0.08, 0, 0, 0, 2.12, 0, 0, 0, 0, 6.16, 0, 2.68, 0, 0, 0, 0,
7.84, 0, 0, 0, 0.50, 0, 1.95, 0.30, 0.94, 3.70, 6.81, 0, 0, 7.51, 5.21, 1.95,
0, 0, 0, 0, 0, 0, 0, 0.94, 0, 0, 0, 0, 0, 0.31, 0.48, 0, 0, 0, 0.8, 1.08, 4.82,

8.40, 5.80, 10.03)

20, 100 (3.43, 3.91, 1.20, 0, 4.02, 0, 0, 4, 2.57, 0, 1.48, 11.32, 0, 0, 3.03, 0, 0, 0,
0, 0, 0, 0, 1.67, 0, 3.10, 1.55, 0, 0, 3.70, 0, 0, 0.86, 0.96, 0, 7.83, 1.09,

1.22, 2.76, 0.52, 0, 0.78, 0, 0.44, 1.79, 6.47, 0, 11.03, 0, 0, 0, 4.89, 0.02, 0,
0, 0.29, 0, 0, 0.11, 0, 4.76, 0, 0, 0, 0.10, 0, 5.28, 1.77, 0.68, 0, 0, 4.57, 5.31,

0, 10)

25, 100 (2.32, 2.36, 2.88, 0, 4.76, 0, 0.28, 0, 0.80, 0, 1.78, 0, 0.16, 0, 2.61,
0, 1.70, 0, 0.91, 0, 0, 0, 2.04, 0, 1.45, 0, 9.33, 0, 0.50, 0, 8.00, 0, 0.39, 0,
7.15, 0, 1.06, 0, 0, 8.81, 0.69, 0, 0, 0.93, 1.37, 4.04, 3.59, 26.46, 0, 0.82, 0,

0, 0, 0, 0.45, 0, 0.62, 0,0, 4.63, 4.86, 0, 0, 0, 0, 0, 1.35, 0, 0.12, 0.72,
12.62, 3.096, 0, 10.65)

10, 200 (3.25, 2.75, 3.77, 0, 5.40, 1.71, 2.35, 0, 2.47, 4.18, 0, 8.17, 0, 0, 4.96, 0,
0, 0, 0.56, 0, 0, 0, 1.39, 0, 0, 0, 9.88, 0, 0, 4.93, 0, 4.93, 0.29, 0, 3.01,

1.57, 1.16, 0, 0, 1.42, 0, 0.85, 0, 3.90, 2.67, 5.46, 0, 0, 0, 0.95, 0.58, 0.72,
0, 0, 0.53, 0, 2.24, 0, 4.77, 0, 4.97, 0, 0, 0, 5.12, 6.30, 1.55, 0, 0, 0, 9.99,

1.85, 0, 10.17)

10, 300 4.42, 0.91, 2.20, 0, 2.82, 0, 0, 0, 2.54, 0, 0, 1.42, 0, 0, 0, 0, 4.70, 0, 0.77,
0, 0, 0, 1.51, 0, 1.05, 1.30, 5.94, 0, 0.89, 2.83, 0, 2.91, 0.20, 1.74, 2.71,
0, 2.60, 0, 0, 3.66, 0, 0, 0, 0, 6.34, 6.11, 9.43, 0, 0, 1.10, 0, 0.20, 1.64,
0.36, 0, 0, 2.31, 0, 1.27, 2.86, 6.34, 5.40, 0, 0, 0, 4.33, 0.79, 0, 0.50, 0,

0, 0, 0.81, 10.66)

10, 400 (1.80, 2.94, 1.64, 0, 3.60, 0, 2.13, 4.58, 0.53, 0, 0.36, 11.20, 0.42, 1.08,
0, 0, 0, 2.98, 0, 0, 0, 0, 1.94, 0, 2.28, 0, 0, 0, 3.89, 0, 0, 0, 0, 7.56, 5.33,

1.80, 0, 9.03, 1.69, 8.02, 1.17, 0, 0, 3.97, 1.14, 7.81, 0, 1.61, 4.24,
1.71, 0, 0.71, 0.71, 0, 0.66, 0, 0, 0, 0, 8.40, 3.35, 0, 0, 0, 4.31, 0, 0, 0,

1.43, 0, 0, 4.72, 0, 10.97)
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Fig. 3.2: The convergence of TVaR, MaxIt=100

 

Fig. 3.3: The convergence of TVaR, N=10

4. Conclusion

In this paper, we investigated IpMLP with variable edge lengths and variable
vertex weights on a network in which the vertex weights and modification costs are
the independent uncertain variables. We proposed a model for UIpMLP with TVaR
objective and expected value constraints and showed that it is NP-hard. Thus, we
presented a hybrid PSO algorithm for approximating the optimal solutions, which
it contains expected value simulation and TVaR simulation. Finally, by computa-
tional experiments, the efficiency of the algorithm is illustrated.



1414 A. Soltanpour, F. Baroughi and B. Alizadeh

REFERENCES

1. O. Alp, E. Erkut and Z. Drezner: An efficient genetic algorithm for the p-median
problem. Ann. Oper. Res. 10 (2003), 1387-1395.

2. B. Alizadeh and S. Bakhteh: A modified firefly algorithm for general inverse
p-median location problems under different distance norms. Opsearch. 54 (2017), 618-
636.

3. F. Baroughi, R. E. Burkard and E. Gassner: Inverse p-median problems with
variable edge lengths. Math. Meth. Oper. Res. 73 (2011), 263-280.

4. M. Bashiri, M. Mirzaei and M. Randall: Modeling fuzzy capacitated p-hub
center problem and a genetic algorithm solution. Appl. Math. Model. 37(5) (2013),
3513-3525.

5. X. Bai and Y. Liu: Minimum risk facility location-allocation problem with type-2 fuzzy
variables. sci. world j. 2014 (2014), 1-9.

6. O. Berman, N. Sanajian and J. Wang: Location choice and risk attitude of a
decision maker. Omega 66 (2017), 170-181.

7. R. Benkoczi and B. Bhattacharya: A new template for solving p-median problems
for trees in sub-quadratic time (extended abstract). LNCS. 3669 (2005), 271-282.

8. R. E. Burkard and J. Krarup: A linear algorithm for the pos/neg-weighted 1-
median problem on a cactus. Computing. 60 (1998), 193-215.

9. R. E. Burkard, C. Pleschiutschnig and J. Zhan: Inverse median problems.
Discrete Optim. 1 (2004), 23-39.

10. R. E. Burkard, C. Pleschiutschnig and J. Zhan: The inverse 1-median problem
on a cycle. Discrete Optim. 5 (2008), 242-253.

11. Z. Drezner: The planar two-center and two-median problems. Transportation Sci.
18 (1984), 351-361.

12. S. Eilon, C. D. T. Watson-Gandy and N. Christofides: Distribution man-
agement: mathematical modeling and practical analysis. New York: Hafner (1971).

13. H. A. Eiselt and V. Marianov: Foundations of location analysis. OR/MS,
NewYork: Springer (2011).

14. Y. Gao : Uncertain models for single facility location problems on networks. Appl.
Math. Model. 36 (2012), 2592-2599.

15. Y. Gao and Z. Qin: A chance constrained programming approach for uncertain p-hub
center location problem. Comput. Ind. Eng. 102 (2016), 10-20.

16. M. Galavii: The inverse 1-median problem on a tree and on a path. Electron. Notes
Discret. Math. 36 (2010), 1241-1248.

17. A. J. Goldman: Optimal center location in simple networks. Transportation Sci. 5
(1971), 212-221.

18. X. Guan and B. Zhang: Inverse 1-median problem on trees under weighted Ham-
ming distance. J Global Optim. 54 (2012), 75-82.

19. X. Guan and B. Zhang: Inverse 1-median problem on trees under weighted l∞
norm. LNCS. 6124 (2010), 150-160.

20. S. L. Hakimi: Optimum locations of switching centers and the absolute centers and
medians of a graph. Oper. Res. 12 (1964), 450-459.



A Hybrid Algorithm for the Uncertain Inverse p-Median Location Problem 1415

21. S. L. Hakimi: Optimum distribution of switching centers in a communication network
and some related graph theoretic problems. Oper. Res. 13 (1965), 462-475.

22. X. Huang and D. Hao: Modelling uncapacitated facility location problem with
uncertain customers’ positions. J. Intell. Fuzzy Syst. 28 (2015), 2569-2577.

23. J. Hatzl: 2-balanced flows and the inverse 1-median problem in the Chebyshev space.
Discrete Optim. 9 (2012), 137-148.

24. J. Kennedy and R. C. Eberhart: Particle swarm optimization. ICNN’97. 4 (1995),
1942-1948.

25. B. Liu: Uncertainty theory. 2nd ed., Springer-Verlag, Berlin (2007).

26. B. Liu: Uncertain risk analysis and uncertain reliability analysis. J. Uncertain Syst.
4 (3) (2010), 163-170.

27. X. Liu: Uncertain programming model for location problem of multi-product logistics
distribution centers. Appl. Math. Sci. 9 (2015), 6543-6558.

28. R. F. Love: Facilities location: models and methods. Oper. Res. Ser. (1988).

29. I. Mirzapolis Adeh, F. Baroughi and B. Alizadeh: A modified particle swarm
optimization algorithm for general inverse ordered p-median location problem on net-
work. Facta Universitatis, Ser. Math. Inform. 32 (2017), 447-468.

30. K. T. Nguyen: Inverse 1-median problem on block graphs with variable vertex
weights. j. optimiz. theory appl. 168 (2016), 944-957.

31. K. T. Nguyen and N. T. L. Chi: A model for the inverse 1-median problem on
trees under uncertain costs. Opusc. Math. 36 (2016), 513-523.

32. J. Peng: Risk metrics of loss function for uncertain system. Fuzzy Optim. Decis.
Ma. 12 (2013), 53-64.

33. J. Peng, B. Zhang and S. Li: Towards uncertain network optimization. J. Uncertain.
Anal. Appl. 3 (2015), Article 4.

34. Z. Qin and Y. Gao: Uncapacitated p-hub location problem with fixed costs and
uncertain flows. J. Intell. Manuf. 28 (2017), 705-716.

35. R. Rahmaniani, M. Saidi-Mehrabad and A. Ghaderi: An efficient hybrid solu-
tion algorithm for the capacitated facility location-allocation problem under uncertainty.
JOIE. DOI: 10.22094/joie.2018.538339 (2018).

36. A. R. Sepasian and F. Rahbarnia: An O(n log n) algorithm for the inverse 1-
median problem on trees with variable vertex weights and edge reductions. Optimization.
64 (2015), 595-602.

37. A. Schobel and D. Scholz: The big cube small cube solution method for multi-
dimensional facility location problems. Comput. Oper. Res. 37 (2010), 115-122.

38. H. D. Sherali and C. H. Tuncbilek: A squared Euclidean distance location-
allocation problem. NRL. 39 (1992), 447-469.

39. A. Tamir: An O(pn2) algorithm for the p-median and related problems on tree graphs.
Oper. Res. Lett. 19 (1996), 59-64.

40. K. E. Wang and Q. Yang: Hierarchical facility location for the reverse logistics
network design under uncertainty. J. Uncertain Syst. 8 (2014), 255-270.

41. Sh. Wang, J. Watada and W. Pedrycz: Value at risk based two-stage fuzzy
facility location problems. TII. 5 (2009), 465-482.



1416 A. Soltanpour, F. Baroughi and B. Alizadeh

42. M. R. Wagner, J. Bhadury and S. Peng: Risk management in uncapacitated
facility location models with random demands. Comput. Oper. Res. 36 (2009), 1002-
1011.

43. M. Wen, Z. Qin, R. Kang and Y. Yang: The capacitated facility location-
allocation problem under uncertain environment. J. Intell. Fuzzy Syst. 29 (2015), 2217-
2226.

44. K. Yang, Y. Liu and G. Yang: Optimizing fuzzy p-hub center problem with
generalizedvalue at risk criterion. Appl. Math. Model. 38 (2014), 3987-4005.

45. K. Yang, Y. Liu and G. Yang: An improved hybrid particle swarm optimization
algorithm for fuzzy p-hub center problem. Comput. Ind. Eng. 64 (2013a), 133-142.

46. B. Zhang, J. Peng and S. Li: Covering location problem of emergency service
facilities in an uncertain environment. Appl. Math. Model. 51 (2017), 429-447.

Akram Soltanpour

Faculty of Basic Sciences

Department of Applied Mathematics

Sahand University of Technology, Tabriz, Iran

Fahimeh Baroughi

Faculty of Basic Sciences

Department of Applied Mathematics

Sahand University of Technology, Tabriz, Iran

baroughi@sut.ac.ir

(Corresponding author)

Behrooz Alizadeh

Faculty of Basic Sciences

Department of Applied Mathematics

Sahand University of Technology, Tabriz, Iran


