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Abstract. We have studied curvature symmetries in (€)-Kenmotsu manifolds. Next,
we have proved the non-existence of a non-zero parallel 2-form in an (¢)-Kenmotsu man-
ifold. Moreover, we have characterised ¢-Ricci symmetric (¢)-Kenmotsu manifolds and
finally, we have proved that under certain restriction on the scalar curvature div R=0
and divC=0 are equivalent, where ‘div’ denotes divergence.
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1. Introduction

The basic difference between Riemannian and semi-Riemannian geometry is the
existence of a null vector. In a Riemannian manifold (M, g), the signature of the
metric tensor is positive definite, whereas the signature of a semi-Riemannian man-
ifold is indefinite. With the help of indefinite metric Bejancu and Duggal [1] in-
troduced (e€)-Sasakian manifolds. Then Xufeng and Xiaoli [16] proved that every
(e)-Sasakian manifold must be a real hyperface of some indefinite K&hler manifolds.
Since Sasakian manifolds with indefinite metric have applications in Physics [4], we
are interested to study various contact manifolds with indefinite metric. Geometry
of Kenmotsu manifolds originated from Kenmotsu [10]. In [3] De and Sarkar intro-
duced the notion of (€)-Kenmotsu manifolds with indefinite metric. On the other
hand, in [6] Eisenhart proved that if a Riemannian manifold admits a second order
parallel syemmetric covariant tensor other than a constant multiple of the metric
tensor, then it is reducible. Later on, several authors investigated the Fisenhart
problem on various spaces and obtained some fruitful results. Recently, Haseeb
and De [7] have studied n-Ricci solitons in (€)-Kenmotsu manifolds. (e)-Kenmotsu
manifolds have also been studied by several authors such as ([2],[8],[9],[13],[15]) and
many others. So far, our knowledge about curvature symmetries have not been
studied in semi-Riemannian manifolds. In this paper, we are going tol study cur-
vature symmetries in (€)-Kenmotsu manifolds. For curvature symmetries we refer
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the book of Duggal and Sharma [5].

In [7] Haseeb and De proved the following:

Theorem 1. Let M be an n-dimensional (e¢)-Kenmotsu manifold. If the mani-
fold has a symmetric parallel second order covariant tensor o, then « is a constant
multiple of the metric tensor g.

Using the above theorem, we obtained the following statements.
Proposition 1.1. If a vector field X is an affine Killing in an (¢)-Kenmotsu mani-
fold, then the vector field X is homothetic.
Proposition 1.2. An affine conformal vector field in an (e)-Kenmotsu manifold is
reduced to a conformal vector field.

Sharmal[12] characterised a class of contact manifold admitting a vector field keep-
ing the curvature tensor invariant.

In this paper, wel have considered the same problem in (¢)-Kenmotsu manifolds
and proved the following:

Theorem 2.In an (¢)-Kenmotsu manifold a curvature collineation is Killing.

The nature of a parallel 2-form has been considered by several authors in con-
tact manifolds. In the present paper we consider a parallel 2-form in the context of
(e)-Kenmotsu manifolds and prove the following:

Theorem 3. There is no non-zero parallel 2-form in an (¢)-Kenmotsu manifold.
As for example dn is a 2-form in an (e)-Kenmotsu manifold which is zero.
Next we prove:

Theorem 4. An (¢)-Kenmotsu manifold is ¢-Ricci symmetric if and only if it
is an Einstein manifold.

In a Riemannian or semi-Riemannian manifold of dimension n, divR is obtained
from the Bianchi identity and given by

(divR)(U, V)W = (Vo S)(V, W) — (Vv S)(U, W),

where R denotes the curvature tensor, S is the Ricci tensor, V is the Riemannian
connection and ’div’ denotes the divergence.

Also it is known that

(diC)(U, V)W = 2=2[{(Vu S)(V.W) — (Vy-S) (U, W)} + 5egs {dr(U)g(V, W) -

dr(V)g(U, W)},

where C' is the Weyl curvature tensor of type (1,3), r is the scalar curvature.
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From the above definitions, it follows that divR = 0 implies divC' = 0. How-
ever the converse, is not necessarily true. We address

Theorem 5. In an (¢)-Kenmotsu manifold divR = 0 and divC = 0 are equiv-
alent provided the scalar curvature r is invariant under the characteristic vector
field &.

2. (e)-KENMOTSU MANIFOLDS

Duggal [4] introduced a larger class of contact metric manifolds.

Let M?"*1 be a (2n+1)-dimensional differentiable manifold of class C°°. Then
a quadruple (¢,&,7,g) defined on M?"*1 satisfying

(2.1) ¢*(U)=-U+nU)E ) =1,
(2.2) 9(§,¢) =€, n(U) = e g(U,§),
(2.3) 9(eU, V) = g(U,V) — en(U)n(V),

where ¢ is a tensor field of type (1,1) , n a tensor field of type (0,1), the Reeb vector
field £ and € is 1 or -1 according as £ is space like or time like vector field, is called
an (e)-almost contact metric manifold. If dn(U,V) = g(U, ¢V), for every U,V €
X(M), then we say that M is an (e)-contact metric manifold. It can be easily seen
that ¢& =0, neo = 0.

Moreover, if the manifold satisfies

(2.4) (Vug)V = —g(U,¢V) — en(V)¢U,

where V denotes the Riemannian connection of g , then we shall call the manifold
an (e)-Kenmotsu manifold.

In an (¢)-Kenmotsu manifold the following relations hold([3],[7]) :

(2.5) Vg = e(U —n(U)§),

(2.6) (VumV = g(U, V) = en(U)n(V),
(2.7) R(U,V)§ =n(U)V —n(V)U,
(2.8) (U, &) = —2nn(U).

Example. Let us consider M® = {(u1,uz,us, us,w) : U1, uz, uz, us,w belongs
to R and w # 0 } and take the basis vector field {eq, eq, €3, €4, €5}, where
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€1 :Waiul,eg:W%,€3:W%,64:W%,65:76W8% =¢.
Let us define g as follows :
glei,ej) =0,i# 5,4, =1,2,3,4,5
and
gler,e1) = glea, e2) = g(es, e3) = glea, ea) =1, g(es,€5) = €.
Then we obtain
[e1,e2] = [e1,e3] = [e1,e4] = [ea,e3] = [e2,e4] = [e3,e4] = O,
le1,e5] = €eq, [ea,e5] = €ea, [es,e5] = ees,eq,e5] = eeq.
By Koszul’s formula we have
Ve, €1 = —e5, Ve,ea =0, Ve, e3 =0, Ve, eq =0, Ve, e5 = €ey,
Ve,e1 =0, Ve,ea = —e5, Ve,e3 =0, Ve,eq =0, Ve, e5 = €eeg,
Vese1 =0, Ve,ea =0, Ve,ez = —es, Vegeq =0, Ve, e5 = ees,
Ve,e1 =0, Ve,ea =0,V e3 =0, V,,eqs = —es5, Ve, e5 = €€y,
Vese1 =0, Ve,ea =0, Vees =0, Ve,eq =0, Vees =0.

We can easily verify that (M°, ¢,&,n,g) satisfies all the properties of (e)-
Kenmotsu manifolds.

Definition 2.1. A vector field X is said to be an affine Killing vector field if
it satisfies

LxV =0,

where L£x denotes the Lie differentiation along the vector field X.

Definition 2.2. A vector field X that leaves the Riemann curvature tensor in-
variant, that is,

(LxR)(U, V)W =0
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is called curvature collineation.

Definition 2.3. A conformal vector field X in a Riemannian or semi-Riemannian
manifold (M, g) is defined by

(2.9) Lxg=2pg,

for a smooth function p on M. If p = constant, then the vector field X is called
homothetic. If p vanishes identically, then X is Killing vector field.

Equation (2.9) yields
(2.10) (LxV)U,V) = UV + (V)U — g(U,V)Dp,

where V(U, V) = ViV for any vector field U, V on M and Dp is the gradient vector
field of p.

Thus (2.9) implies (2.10), but not conversly.

The vector field X satisfying (2.10) is called conformal collineation and X is
then called an affine conformal vector field.

Definition 2.4 An (e)-Kenmotsu manifold is said to be ¢-Ricci symmetric if

P*(VuQ)W) =0,

where @ is the Ricci operator defined by g(QU, V) = S(U, V).
¢-Ricci symmetric manifold is weaker than Ricci symmetric (V.S = 0) manifold.

If U, W are orthogonal to the characteristic vector field £, then ¢-Ricci symmetric
manifold is called locally ¢-Ricci symmetric. The notion of locally ¢-symmetric for
Sasakian manifolds was introduced by Takahashi[14].

3. PROOFS OF THE RESULTS
Proof of Proposition 1.1. If X is a affine Killing vector field, then

LxV =0,
which implies that
Lx(Vg) = 0.
That is,

VL’Xg = 0.
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Thus Lxg is symmetric second order parallel tensor. Thus, from Theorem 1 we
infer that

Lxg = Ay,
where A is constant. This implies X is homothetic.

Proof of Proposition 1.2. In [11] Sharma and Duggal prove that a vector field
X on a manifold (M, g) is an affine conformal vector field if and only if

Lxg=2pg + K,

where K is a second order covariant constant (VK = 0) symmetric tensor field.
Hence from Theorem 1, we obtain K = Ag, A is constant.
Therefore,

Lxg = 2pg + Ag.

This implies
Lxg =209,

where 20 = 2p + A, a smooth function. This completes the proof.
Proof of Theorem 2.By definition of curvature collineation, we get
(3.1) LxR)(U, V)W =0,
which implies
(3-2) (Lxg)(R(Z,U)V, W) + (Lxg)(R(Z,U)W,V) = 0.

Putting Z =V =W = £ in (3.2), we get

(Lxg)(R(EU)E,€) + (Lxg)(R(E V), €) =0,
which implies
(Lxg)(R(,V)E,€) = 0.
Now, using (2.7) in the foregoing equation, we get
(3.3) (Lxg)(U,€) =n(U)(Lxg)(& )
Again putting Z = V = ¢ in (3.2) it follows

(Lxg)(R(EU)EW) + (Lxg)(R(E U)W, E) = 0.
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Using (2.7) in the above equation we infer that

(Lxg)(U,W) =nU)(Lxg)(&W) +n(W)(Lxg)(U,¢E)
(3.4) —e(Lxg)(&,&)g(U, W) = 0.

From (3.3) and (3.4) we get
(Lxg)(U,W) = e(Lxg)(& E)g(U,W).

This implies

(3.5) (Lx9)(U,W) = €e[Lxg(& €) — 29(& LxE]g(U, W).
Since (Lx R)(U, V)W = 0 implies (£xS)(V, W) = 0. Therefore,
(LxS)(&€) =0,
which implies
S(§,LxE) = 0.
That is,
9(Q¢, Lx&) = 0.

Now using (2.8) in the above equation, we obtain

(3.6) 9(§,Lx€) = 0.
Using (3.6) in (3.5) we conclude that

that is, X is Killing vector field. Therefore, the Theorem is proved.
Proof of Theorem 3. Let a be a parallel 2-form in an (e)-Kenmotsu mani-

fold. This means « is skew-symmetric and Va = 0.
Therefore

(3.7 a(U,V) = —a(V,U).
Putting U =V = ¢ in (3.7) we get

(3.8) alg, &) =0.
Differentiating (3.8) along U, we get
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a(Vyé, &) = 0.

Using (2.5) in the above gives

ca(U,§) —en(U)a(§, €) = 0.

Finally, using (3.8), we obtain

(3.9) a(U,€) = 0.

Again, differentiating along V' in the foregoing equation we get

(3.10) a(VyU, &) +a(U,Vy€) = 0.

Replacing U by ViU in (3.9) we get

(3.11) a(VyU,§) =0.

Using (3.11), (2.5) in (3.10) and after some calculation we obtain
a(U, V) =0,

that is, & = 0. This completes the proof.

Proof of Theorem 4. Let M be an (2n+1)-dimensional ¢-Ricci symmetric (e)-
Kenmotsu manifold. Then

¢*((VuQ)V) =0,

for arbitary vector fields U, V', which implies

(3.12) Vo)V +n((Ve@)V)§ = 0.

Putting V' = ¢ in (3.12) and using (2.8), we get

(3.13) 2nVu€ + Q(Vué) + n(—2nVyé — Q(Vy )€ = 0.
Now using (2.5) in (3.13) and after some calculations, we obtain

S(U, V)= —=2ng(U, V),
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which implies that the manifold is an Einstein manifold.
Conversely, if the manifold is an Einstein manifold, then obviously it becomes ¢-
Ricci symmetric manifold. This completes the proof.

Proof of Theorem 5. Let us assume that divC' = 0. Hence
(VuS)(V,W) — (Vv S)(U,W)

(3.14) = ﬁ[dr(U)g(V, W) —dr(V)g(U,W)].

We know
S(U,§) = —2nn(U).
Then
(VuS)(V,§) = VuS(V,§) = S(VuV,€) = S(V, Vu§).
Using (2.5) and (2.8) in the above equation, we get
(VuS)(V,€) = (Vv S)(U,§) = —4ndn(U, V).

But in an (¢)-Kenmotsu manifold dn = 0,therefore, the above equation implies that

(3.15) (VuS)(V, &) = (Vv S)(U,€) = 0.
Substituting W = ¢ in (3.14) and using (3.15), we have

dr(U)n(V) —dr(V)n(U) = 0.
Replacing V' by £ in the above equation, it follows
(3.16) dr(U) = dr(&)n(U).

Suppose the scalar curvature is invariant under the characteristic vector field & ,
that is,

Eg?‘ = O,
which implies
dr(&) = 0.

Hence (3.16) gives r = constant.
Therefore from (3.14) we get

(VuS)(V,W) = (Vv S)(U, W) =0,
which implies
(divR)(U, VYW = 0.
This completes the proof.
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