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Abstract. A Boolean function is a function f : Z2 — {0, 1} and we denote the set of all
n-variable Boolean functions by BF,,. For f € BF,, the vector [Wy(ao), ..., Ws(azn-1)]
is called the Walsh spectrum of f, where Wy (a) = ZIEV(—I)f(z)®“Z, where V,, is the
vector space of dimension n over the two-element field F>. In this paper, we shall
consider the Cayley graph I'; associated with a Boolean function f. We shall also find
a complete characterization of the bent Boolean functions of order 16 and determine
the spectrum of related Cayley graphs. In addition, we shall enumerate all orbits of the
action of automorphism group on the set BF,.
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1. Introduction

Suppose V,, is the vector space of dimension n over the two-element field F'5, namely
the set of all n-tuples of elements in the field F'5 and @ denotes the addition operator
over both F'5 and the vector space V,,, where V,, is the vector space of dimension n
over the two-element field F'5. A Sylvester-Hadamard matrix of order 2™ denoted
by H, is defined recursively as

1 1

(1.1) Ho=1, Hy = { |

:|,...,Hn—H1®Hn_1, n:1,2,...

where ® denotes to Kronecker product or Tensor product.

For two vectors a,b € Z%, where a = (ay, ..., a,) and b = (by, ..., by),
we define their scalar product as a-b = a1b1 ® ... ® apb,. A Boolean function
f on n-variables is a map from V,, to Vi. Suppose the vectors vy = (0,0,...,0),
v = (0,0,..,1),...,0en—1 = (1,1,...,1) are ordered by lexicographical order. The
(0,1) sequence (f(vo), f(v1),..., f(van_1)) is called the truth table of f and BF,
denotes the set of all n-variable Boolean functions.
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2. Walsh spectrum of Boolean functions

For the Boolean function f, the support of f denoted by Q is Qy = {z €
Zy, f(x) = 1}. The Walsh transform of an n-variable Boolean function f is an
integer valued function Wy : V,, — [—2",2"] defined by

Wiu) = > fl@)(=1)"".

TeF}

For the Boolean function f, the vector [W¢(0),..., W;(2" — 1)] is called the Walsh
spectrum of f, see [4,7,15,16]

Consider the Cayley graph I'y = Cay(Z5,€), the vertex set of the Cayley
graph I'y is V;, and two vertices u, v € V,, are adjacent if and only if f(u @ v) = 1.
This means that Ef = {(u,v)lu,v € V,, f(u® v) = 1}. Since for every a € V,,,
a ® a = 0, one can verify that for Q; C V,,, we have x = —z € Qy. We denote
this class of Cayley graphs constructed by a Boolean function as B-Cayley graphs.
In Appendix I, all Boolean functions of order 16 (where |Q2¢| = 2) and the spectra
of B- Cayley graphs are given. In Appendix II, the characterization of Boolean
functions in terms of spectrum of B-Cayley graph I'; associated with f is given. In
[5], it is proved that for given Boolean function f, the Walsh spectrum of B-Cayley
graph Cay(Z%5,y) is equal with H,,.f. For example, let f = [1,0,0,1] be a Boolean
function. Then the Walsh spectrum of B-Cayley graph Cay(Z3,y) is

1 1 1 1
1 -1 1 -1 o oo

1 1 -1 -1 = [0%.27).
1 -1 -1 1

_ o O =

For g = [1,1,1,1] we have H,.g = [03,4] and for A = [0,0,1,1] we have H,.h =
[-2,02,2].

Theorem 2.1. Let f be a Boolean function whose related B-Cayley graph I's is a
bipartite regular graph with exactly three distinct eigenvalues and -2 is the smallest

eigenvalue. Then f € Fy and f = (0,1,1,0).

Proof. Suppose f satisfies in above conditions. We can suppose the spectrum of I'y
is Spec(T'y) = {[—2]™, [A]™2, [A2)™2}. Since, I'y is bipartite, Ay = 0 and A; = 2,
see [6]. On the other hand, I'y is regular and so ms = m; = 1. If Ay, ..., A, are
eigenvalues of a graph, it is a well-known fact that .| A? = 2m. This implies that
2m = 8 and so m=4. Since I'y is 2-regular, it is isomorphic with the cycle graph
C4. In addition, suppose V,, = {00,01, 10,11} is the set of vertices of a square as
depicted in Figure 2.1. Then we have 00 + 01 = 01 € Qf and 11 4 01 = 10 € Q.
Hence, f(00) = f(11) =0 and f(01) = £(10) = 1 which yields that f=(0,1,1,0). O

Example 1. Suppose V5 = {000, 001,010,100,011,101,110,111}. If ¢ = 110 and f
= (0,0,0,0,1,1,1,10), then the related Walsh spectrum is reported in Table 1.
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0 () |

1 e 1 1

F1G. 2.1: The labeling of vertices of a square.

Table 2.1: The Walsh spectrum of f = (0,0,0,0,1,1,1,10).

t Jaz [J [J@adaz [ (D@5 W{)(a)
000 | O 0 0 1

001 | O 0 0 1

010 | 1 0 1 -1

100 1 0 1 -1 0
011 1 1 0 1

101 1 1 0 1

110 | O 1 1 -1

111 0 1 1 -1

3. Coloring the B-Cayley graphs

Let G be a group and X a nonempty set. An action of G on X is denoted by
(G)X) and X is called a G-set. It induces a group homomorphism ¢ from G into
the symmetric group Sx on X, where ¢(g)z = gz for all z € X. The orbit of z
will be indicated as 2% and defines as the set of all ¢(g)z, g € G. Suppose g is a
permutation of n symbols with exactly A; orbits of size 1, Ay orbits of size 2, ...,
and ), orbits of size n. Then the cycle type of g is defined as 1M 2*2... n 7,
Let G = Z% and f € BF, is a Boolean function. In [17] it is showed that the

automorphism group Aut(G) acts on the set BF, as follows:
Vo, € Zy, o € Aut(G) - f(x;) = fla(z)).

Hence, the conjugacy class of f under this action can be computed directly from
the definition and it is [f] = fA") = {f*: a € Aut(G)}.

Let z1, z2, ..., @, be distinct colors. Denote by C,, ,, the set of all functions f:
{1, 2, ..., m} ={z1, ®2, ..., z,}. The action of pe §,, induced on C,, ,, is defined
by p(f) = fop™', f € Cpmn. Treating the colors z1, z2, ..., =, that comprise

the range of f € C,,,, as independent variables the weight of f is W(f)=ILf(¢).
Evidently, W(f) is a monomial of (total) degree m. Suppose G is a permutation
group of degree m, é:{ﬁ:pe G}, p is as defined above. Let p1, pa,...,p: be the
distinct orbits of G.The weight of p; is the common value of W(f), f€p;. The sum
of the weights of the orbits is the pattern inventory
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t

Wa(z1,z2,...,2,) = Zw(pz)

i=1

Theorem 2 [14]. (Pdlya’s Theorem) If G is a subgroup of Sy, then the pattern
inventory for the orbits of C,, , modula G is

1
Wel(ay, 2o, .. n) = i DRVALS VAL VG
peEG

where My = z%+25+.. .+ 2%, the k" power sum of the 2’s, and (C1(p),. ..,Cm(p))
is the cycle type of the permutation p. We now introduce the notion of cycle index.
Let G be a permutation group. The cycle index of G acting on X is the polynomial
Z(G,X) over @ in terms of in determinates z1, za, ..., @, t = |X|, defined by

t
(3.1 IS SE D DR el) | El)

|G| CeConj(G) i=1

where Conj(G) is the set of all conjugacy classes of G with representatives go € C.

Let us consider the number of ways of assigning one of the colors green or blue
to each corner of a square. Since there are two colors and four corners there are
basically 2* = 16 possibilities. However, when we take account of the symmetry
of the square we see that some of the possibilities are essentially the same. For
example, the first coloring, as in Figure 2 is the same as the second one after
rotation through 180°.

FiG. 3.1: Two indistinguishable colorings.

From above, we regard two colorings as being indistinguishable if one is trans-
formed into the other by symmetry of the square. It is easy to find the distinguish-
able colorings (in this example) by trial and error: there are just six of them, as
shown in the Figure 3.

Now consider a n bead necklace. Let us each corner of it to be colored green or
blue. How many different colorings are there? One could argue for 2". For example,
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FiG. 3.2: The six distinguishable colorings.

if n = 4 and the corners are numbered 0,1,2,3 in clockwise order around the necklace,
then there are only 6 ways of coloring the necklace RRRR, BBBB, RRRB, RBBB,
RRBB and RBRB, see Figure 4. On the other hand, all colorings RBBB, BRBB,
BBRB, BBBR are in the same class. We say that they are equivalent. In other
words, the number of all non-equivalent colorings is six. This relation introduces
an equivalence relation. All equivalences are

{BBBB},
{BBBR},{BBRB},{BRBB} ,{RBBB},
(3.2) {BBRR} ,{BRRB},{RBBR},{RRBB},
{BRBR} ,{RBRB},

{BRRR},{RBRR},{RRBR},{RRRBY},
{RRRR}.

F1a. 3.3: Distinguish colorings of 4 bead necklace.

Hence, any Boolean function can be considered as a coloring of a hyper cube by two
colors 0 and 1. The different colorings yields that there are 22" Boolean functions
on n variables.

Definition 3.1. Consider the Boolean function f and B-Cayley I'y = Cay(Z3, Q).
Then f is permutational symmetric (PS) if and only if for any (z1, ..., z,) € V,
we have f(a(z1,...,2,)) = f(z1,...,2,), for any a € Aut(T'y).

Note that there are 2n different input values corresponding to a function. From
the above definition, it is clear that for PS functions, the function f possesses the
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same value corresponding to each of the subsets generated from the automorphism
group. As example, for n = 4, one gets the following partitions:

{(0,0,0,0)},

{(0,0,0,1)},{(0,0,1,0)},{(0,1,0,0)},{(1,0,0,0)},

{(0,0,1,1)},{(0,1,1,0)},{(1,0,0, 1)}, {(1, 1,0,0)},
(3.3) {(0,1,0,1)},{(1,0,1,0)},

{0, 1,1, D)}, {(1,0,1, 1)}, {(1,1,0, 1)}, {(1,1,1,0)},

{(LL, L1},

Therefore, there are six different subsets which partition the 16 input patterns
and any 4-variable PS Boolean function can have a specific value corresponding to
each subset. If we replace in Eq.(3.3) 0 by R and 1 by B, then all above partitions
are corresponded to the different colorings of the 2-cube or cycle C4 as given in
Eq.(3.2). Hence, there is a 1-1 correspondence between non-equivalent colorings of
a n-cube and 4-variable PS Boolean functions. Let us denote

Nz, oozn) ={fla(ze,...,z0)) = flz1,...,20) 1 a € Aut(Ty)}

that is, the orbit of (z1, ..., z,) under the action of Aut(I's) on V,,. It is clear that
Ay (z1,...,x,) generates a partition in the set V,,. Let A, = [Ap(x1,...,2,)]. Tt
is clear that there are 2*» number of n-variable PS Boolean functions. Let T ris
B-Cayley graph constructed by given Boolean function f. From Polya’s Theorem,

we get that
t
1
A\, = C| 9Ci(ge)
a2 111
onj(G) i=1

in which every variable in Eq. (3.1) is replaced by 2. Hence, we proved the following
theorem.

Theorem 3.1. For given Boolean function f, the number of PS Boolean functions

18
t
1
p W — 10| TT 26,
[Aut(I'y)| 2 I1

CeConj(G) i=1

4. Application in chemistry: Enumeration of hetero-fullerenes

Enumeration of chemical compounds has been accomplished by various methods.
The Polya-Redfield theorem [14] has been a standard method for combinatorial enu-
merations of graphs, polyhedra, chemical compounds, and so forth. Combinatorial
enumerations have found a wide-ranging application in chemistry, since chemical
structural formulas can be regarded as graphs or three-dimensional objects, see
[9]. Ghorbani et al. in a series of papers in [1-3,10-12] enumerated the number of
hetero-fullerenes with different orders.
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The fullerene era was started in 1985 with the discovery of a stable Cgq cluster
and its interpretation as a cage structure with the familiar shape of a soccer ball, by
Kroto and his co-authors, see [8,13]. The well-known fullerene, the Cgy molecule, is a
closed-cage carbon molecule with three-coordinate carbon atoms tiling the spherical
or nearly spherical surface with a truncated icosahedral structure formed by 20
hexagonal and 12 pentagonal rings. Such molecules made up entirely of n carbon
atoms and having 12 pentagonal and (n/2 — 10) hexagonal faces, where n # 22 is
a natural number equal or greater than 20, see [22-30]. As an application of Polya-
Theorem in fullerenes, in Appendix III, the number of hetero-fullerenes of molecule
Cego is given.
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Appendix I

Boolean functions of order 16 where €2y = 2 and spectra

f=[1,1,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0] Spec(G):=[ 2, 0, 2,0, 2,0, 2,0, 2,
f=[1,0,1,0,0,0,0,0,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2, 2,0,0,2,2,0,0, 2
f=[1,0,0,1,0,0,0,0,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2, 0,0, 2,2,0,0, 2, 2
f=[1,0,0,0,1,0,0,0,0,0,0,0,0, 0,0, 0] Spec(G):=[ 2, 2, 2,2,0,0,0,0, 2
f=[1,0,0,0,0,1,0,0,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2,0, 2,0,0, 2,0, 2, 2
f=[1,0,0,0,0,0,1,0,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2, 2,0,0,0,0, 2,2, 2
f=[1,0,0,0,0,0,0,1,0,0,0,0,0, 0,0, 0] Spec(G):=[2,0,0,2,0,2,2,0, 2
f=[1,0,0,0,0,0,0,0,1,0,0,0,0,0, 0, 0] Spec(G):=[ 2,2, 2,2,2,2,2,2,0
f:=[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 0] Spec(G):=[ 2, 0, 2, 0, 2, 0, 2, 0, 0
f=[1,0,0,0,0,0,0,0,0,0,1,0,0,0, 0, 0] Spec(G):=[ 2, 2,0,0,2,2,0,0,0
f=[1,0,0,0,0,0,0,0,0,0,0,1, 0,0, 0, 0] Spec(G):=[ 2, 0,0, 2,2, 0,0, 2,0,
f:=[1,0,0,0,0,0,0,0,0,0,0,0,1, 0,0, 0] Spec(G):=[ 2, 2, 2, 2,0, 0, 0, 0, 0
f=[1,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0, 0 ] Spec(G):=[ 2,0, 2,0,0,2,0,2,0
f=[1,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0 ] Spec(G):=[ 2, 2, 0,0, 0,0, 2, 2,0
f:=[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1] Spec(G):=[2, 0,0, 2,0, 2,2, 0,0
f=[0,1,1,0,0,0,0,0,0,0,0,0,0, 0, 0, 0] Spec(G):=[ 2,0, 0, -2, 2, 0, 0, -2, 2
f=[0,1,0,1,0,0,0,0,0,0,0,0,0, 0, 0, 0] Spec(G):=[ 2, -2, 0,0, 2, -2, 0, 0, 2
f:=[0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0] Spec(G):=[ 2, 0, 2, 0, 0, -2, 0, -2, 2
f=[0,1,0,0,0,1,0,0,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2, -2, 2,-2,0,0,0, 0, 2
f=[0,1,0,0,0,0,1,0,0,0,0,0,0, 0, 0, 0] Spec(G):=[ 2, 0, 0, -2, 0, -2, 2, 0, 2
f=[0,1,0,0,0,0,0,1,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2, -2, 0,0, 0, 0, 2, -2, 2,
f=[0,1,0,0,0,0,0,0,1,0,0,0,0,0, 0, 0] Spec(G):=[ 2

f=[0,1,0,0,0,0,0,0,0,1,0,0,0, 0, 0, 0] Spec(G):=[ 2

f=[0,1,0,0,0,0,0,0,0,0,1,0,0,0, 0, 0] Spec(G):=[ 2,0, 0, -2, 2, 0, 0, -2, 0,
f=[0,1,0,0,0,0,0,0,0,0,0,1,0,0, 0, 0] Spec(G):=[ 2, -2, 0, 0, 2, -2, 0, 0, 0,
f=[0,1,0,0,0,0,0,0,0,0,0,0, 1,0, 0, 0] Spec(G):=[ 2, 0, 2, 0, 0, -2, 0, -2, 0,
f=[0,1,0,0,0,0,0,0,0,0,0,0,0, 1, 0, 0] Spec(G):=[ 2, -2, 2, -2, 0, 0, 0, 0, O,
f=[0,1,0,0,0,0,0,0,0,0,0,0,0, 0, 1, 0] Spec(G):=[ 2, 0, 0, -2, 0, -2, 2, 0, 0,
f=[0,1,0,0,0,0,0,0,0,0,0,0,0,0, 0, 1] Spec(G):=[ 2, -2, 0, 0, 0, 0, 2, -2, 0,
f=[0,0,1,1,0,0,0,0,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2, 0, -2, 0, 2, 0, -2, 0, 2,
f=[0,0,1,0,1,0,0,0,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2, 2,0, 0,0, 0, -2, -2, 2
f=[0,0,1,0,0,1,0,0,0,0,0,0,0, 0, 0, 0] Spec(G):=[ 2, 0, 0, -2, 0, 2, -2, 0, 2,
f=[0,0,1,0,0,0,1,0,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2, 2,-2,-2,0,0,0,0, 2
f=[0,0,1,0,0,0,0,1,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2,0, -2, 0,0, 2,0, -2, 2
f=[0,0,1,0,0,0,0,0,1,0,0,0,0, 0, 0, 0] Spec(G):=[ 2

f=[0,0,1,0,0,0,0,0,0,1,0,0,0,0, 0, 0] Spec(G):=[ 2, 0, 0, -2, 2, 0, 0, -2, 0,
f=[0,0,1,0,0,0,0,0,0,0,1,0,0,0, 0, 0] Spec(G):=[ 2

f=[0,0,1,0,0,0,0,0,0,0,0,1,0,0, 0, 0] Spec(G):=[ 2, 0, -2, 0, 2, 0, -2, 0, 0,
f=[0,0,1,0,0,0,0,0,0,0,0,0,1,0, 0, 0] Spec(G):=[ 2, 2,0, 0, 0, 0, -2, -2, 0,
f=[0,0,1,0,0,0,0,0,0,0,0,0,0, 1,0, 0] Spec(G):=[ 2, 0, 0, -2, 0, 2, -2, 0, 0,
f=[0,0,1,0,0,0,0,0,0,0,0,0,0,0, 1, 0] Spec(G):=[ 2, 2, -2, -2, 0, 0, 0, 0, 0,

2
0
)2,
0
2

881

of their B-Cayley graphs.

0,2,0,20,2, 0]
,0,0,2,2,0,0]
0,2,2,0,0,2]
2,2,0,0,0,0]
2,0,0,2,0,2]
,0,0,0,0,2, 2]
0,0,2,0,2, 2, 0]
0,0,0,0,0,0,0]
2,0,2,0,2,0,2]
0,2,2,0,0,2 2]
2,2,0,0,2,2,0]
0,0,0,2, 2, 2, 2]
2,0,2,2,0,2,0]
0,2,2,2,2,0,0]
2,2,0,2,0,0,2]
0,0,-2,2,0,0,-2]
-2,0,0,2,-2,0,0]

,0,2,0,0,-2,0,-2]
,-2,2,-2,0,0,0,0]
,0,0,-2,0,-2,2,0]

-2,0,0,0,0,2,-2]

,0,2,0,2,0,2,0,0,-2,0,-2,0,-2,0,-2]
1-2,2,-2,2,-2,2,-2,0,0,0,0,0,0,0,0]

-2,2,0,0,-2,2,0]
0,2,-2,0,0,2, -2]
-2,0,-2,2,0,2,0]
0,0,0,2, -2, 2, -2]
-2,2,0,2,0,0,-2]
0,2,-2,2,-2,0,0]
0,-2,0,2,0,-2,0]

,2,0,0,0,0,-2,-2]

0,0,-2,0,2,-2,0]

,2,-2,-2,0,0,0,0]
,0,-2,0,0,2,0,-2]
»2,0,0,2,2,0,0,0,0,-2,-2,0,0,-2,-2]

2,-2,0,0,2,-2,0]

»2,-2,-2,2,2,-2,-2,0,0,0,0,0,0,0,0]

2,0,-2,0,2,0,-2]
0,-2,-2,2,2,0,0]
2,-2,0,2,0,0,-2]
0,0,0,2,2,-2,-2]
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f=[0,0,1,0,0,0,0,0,0,0,0, 0,0, 0,0, 1] Spec(G):=[ 2, 0, -2, 0, 0, 2,0, -2, 0, 2, 0, -2, 2,0, -2, 0]
f-=[0,0,0,1,1,0,0,0,0,0,0,0,0, 0,0, 0] Spec(G):=[ 2,0, 0, 2,0, -2,-2,0,2,0,0, 2,0,-2,-2,0]
f=[0,0,0,1,0,1,0,0,0,0,0,0,0,0, 0, 0] Spec(G):=[2,-2,0,0,0,0,-2,2,2,-2,0,0,0,0, -2, 2]
f=[0,0,0,1,0,0,1,0,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2,0, -2, 0,0, -2,0,2,2,0,-2,0,0,-2,0,2]
f=[0,0,0,1,0,0,0,1,0,0,0,0,0, 0, 0, 0] Spec(G):=[ 2, -2,-2,2,0,0,0,0,2,-2,-2,2,0,0,0,0]
f=[0,0,0,1,0,0,0,0,1,0,0,0,0,0, 0, 0] Spec(G):=[2,0,0,2,2,0,0, 2,0, -2,-2,0,0,-2,-2,0]
f=[0,0,0,1,0,0,0,0,0,1,0,0,0,0, 0, 0] Spec(G):=[ 2, -2, 0,0, 2,-2,0,0,0,0,-2,2,0,0, -2, 2]
f=[0,0,0,1,0,0,0,0,0,0,1,0,0,0, 0, 0] Spec(G):=[ 2, 0, -2, 0, 2, 0, -2, 0, 0, -2, 0, 2, 0, -2, 0, 2 ]
f=[0,0,0,1,0,0,0,0,0,0,0, 1,0, 0, 0, 0] Spec(G):=[ 2, -2, -2, 2, 2, -2, -2, 2, 0, 0, 0, 0, 0, 0, 0, 0]
f=[0,0,0,1,0,0,0,0,0,0,0,0,1, 0,0, 0] Spec(G):=[ 2,0, 0, 2,0,-2,-2,0,0,-2,-2,0,2,0,0, 2]
f=[0,0,0,1,0,0,0,0,0,0,0,0,0, 1,0, 0] Spec(G):=[ 2, -2, 0, 0, 0, 0, -2, 2, 0, 0, -2, 2, 2, -2, 0, 0]
f=[0,0,0,1,0,0,0,0,0,0,0, 0,0, 0, 1, 0] Spec(G):=[ 2, 0, -2, 0, 0, -2, 0, 2, 0, -2, 0, 2, 2, 0, -2, 0 ]
f=[0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0, 1] Spec(G):=[ 2,-2,-2,2,0,0,0,0,0,0,0,0, 2,-2,-2, 2]
f=[0,0,0,0,1,1,0,0,0,0,0,0,0, 0, 0, 0] Spec(G):=[ 2, 0, 2, 0, -2, 0,-2,0, 2,0, 2,0, -2, 0, -2, 0]
f=[0,0,0,0,1,0,1,0,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2, 2,0,0,-2,-2,0,0,2,2,0,0,-2,-2,0,0]
f=[0,0,0,0,1,0,0,1,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2,0, 0, 2,-2,0,0,-2,2,0,0, 2,-2,0,0, -2 ]
f=[0,0,0,0,1,0,0,0,1,0,0,0,0, 0, 0, 0] Spec(G):=[ 2, 2, 2, 2,0,0,0,0, 0,0, 0, 0, -2, -2, -2, -2 ]
f=[0,0,0,0,1,0,0,0,0,1,0,0,0,0, 0, 0] Spec(G):=[ 2,0, 2,0,0,-2,0,-2,0,2,0,2,-2,0,-2,0]
f=[0,0,0,0,1,0,0,0,0,0,1,0,0,0, 0, 0] Spec(G):=[2, 2, 0,0, 0,0, -2,-2,0,0, 2, 2,-2,-2,0,0]
f=[0,0,0,0,1,0,0,0,0,0,0, 1,0, 0, 0, 0] Spec(G):=[ 2, 0, 0, 2, 0, -2, -2, 0, 0, 2, 2, 0, -2, 0, 0, -2 ]
f=[0,0,0,0,1,0,0,0,0,0,0,0,1,0,0, 0] Spec(G):=[ 2, 2, 2, 2,-2,-2,-2,-2,0,0,0,0,0,0,0,0]
f=[0,0,0,0,1,0,0,0,0,0,0,0,0, 1,0, 0] Spec(G):=[ 2, 0, 2, 0,-2,0,-2,0,0, 2,0, 2,0,-2,0,-2]
f=[0,0,0,0,1,0,0,0,0,0,0,0,0, 0, 1, 0] Spec(G):=[ 2, 2, 0, 0, -2, -2, 0, 0, 0, 0, 2, 2, 0, 0, -2, -2 ]
f=[0,0,0,0,1,0,0,0,0,0,0,0,0,0, 0, 1] Spec(G):=[2,0,0, 2,-2,0,0,-2,0,2,2,0,0,-2,-2,0]
f=[0,0,0,0,0,1,1,0,0,0,0,0,0, 0, 0, 0] Spec(G):=[ 2, 0, 0, -2, -2, 0, 0, 2, 2, 0, 0, -2, -2, 0, 0, 2 ]
f=[0,0,0,0,0,1,0,1,0,0,0,0,0, 0,0, 0] Spec(G):=[ 2, -2, 0, 0, -2, 2, 0, 0, 2, -2, 0, 0, -2, 2, 0, 0 ]
f=[0,0,0,0,0,1,0,0,1,0,0,0,0,0, 0, 0] Spec(G):=[ 2,0, 2,0,0,2,0, 2,0,-2,0,-2,-2,0,-2,0]
f=[0,0,0,0,0,1,0,0,0,1,0,0,0, 0, 0, 0] Spec(G):=[ 2, -2, 2,-2, 0,0, 0, 0,0, 0,0, 0, -2, 2, -2, 2 ]
f=[0,0,0,0,0,1,0,0,0,0,1,0,0,0, 0, 0] Spec(G):=[2,0,0,-2,0, 2,-2,0,0,-2,2,0,-2,0,0, 2]
f=[0,0,0,0,0,1,0,0,0,0,0,1,0,0, 0, 0] Spec(G):=[ 2, -2, 0, 0, 0, 0, -2, 2,0, 0, 2,-2,-2,2,0,0]
f=[0,0,0,0,0,1,0,0,0,0,0,0, 1, 0,0, 0] Spec(G):=[ 2, 0, 2, 0, -2, 0, -2, 0, 0, -2, 0, -2, 0, 2, 0, 2]
f=[0,0,0,0,0,1,0,0,0,0,0,0,0, 1,0, 0] Spec(G):=[ 2, -2, 2, -2,-2,2,-2,2,0,0,0,0,0,0,0,0]
f==[0,0,0,0,0,1,0,0,0,0,0,0,0,0, 1, 0] Spec(G):=[ 2, 0, 0, -2, -2, 0, 0, 2, 0, -2, 2, 0, 0, 2, -2, 0 ]
f=[0,0,0,0,0,1,0,0,0,0,0, 0,0, 0,0, 1] Spec(G):=[ 2, -2, 0, 0, -2, 2,0, 0,0, 0, 2,-2, 0,0, -2, 2]
f=[0,0,0,0,0,0,1,1,0,0,0,0,0,0, 0, 0] Spec(G):=[ 2,0, -2,0,-2,0,2,0,2,0,-2,0,-2,0,2,0]
f=[0,0,0,0,0,0,1,0,1,0,0,0,0, 0, 0, 0] Spec(G):=[ 2, 2,0,0,0,0, 2, 2,0,0, -2, -2, -2, -2, 0, 0 ]
f=[0,0,0,0,0,0,1,0,0,1,0,0,0, 0,0, 0] Spec(G):=[ 2, 0, 0, -2, 0, -2, 2, 0, 0, 2, -2, 0, -2, 0, 0, 2]
f=[0,0,0,0,0,0,1,0,0,0,1,0,0,0, 0, 0] Spec(G):=[ 2, 2,-2,-2,0,0,0,0,0,0,0,0,-2,-2,2,2]
f=[0,0,0,0,0,0,1,0,0,0,0,1,0,0, 0, 0] Spec(G):=[2,0,-2,0,0,-2,0,2,0,2,0,-2,-2,0,2,0]
f=[0,0,0,0,0,0,1,0,0,0,0,0,1,0, 0, 0] Spec(G):=[ 2, 2, 0,0, -2,-2,0,0,0,0,-2,-2,0,0,2, 2]
f=[0,0,0,0,0,0,1,0,0,0,0,0,0, 1,0, 0] Spec(G):=[ 2, 0, 0, -2, -2, 0, 0, 2, 0, 2, -2, 0, 0, -2, 2, 0 ]
f=[0,0,0,0,0,0,1,0,0,0,0,0,0, 0, 1, 0] Spec(G):=[ 2, 2, -2, -2, -2, -2, 2, 2,0, 0, 0, 0,0, 0,0, 0]
f=[0,0,0,0,0,0,1,0,0,0,0,0,0,0, 0, 1] Spec(G):=[ 2,0, -2,0,-2,0,2,0,0,2,0,-2,0,-2,0, 2]
f=[0,0,0,0,0,0,0,1,1,0,0,0,0, 0, 0, 0] Spec(G):=[ 2,0, 0, 2,0, 2, 2,0,0,-2,-2,0,-2, 0,0, -2 ]
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f=[0,0,0,0,0,0,0,
f:=[0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0, 0,
f:=[0,0,0,0,0,0,0,
f:=[0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0, 0,
f:=[0,0,0,0,0,0,0,
f:=[0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0, 0,
f:=[0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0,0,0,1, 1,

1,0,1,0,
1,0,0, 1,
1,0,0,0,
1,0,0,0,
1,0,0,0,
1,0,0,0,
1,0,0,0,
1,1,0,
1,0,1,
1,0,0,
1,0,0,
1,0,0,
1,0,0,
1,0,0,

f=[0,0,0,0,0,0,0,0,0, 1, 0,
f=[0,0,0,0,0,0,0,0,0, 1,0,
f=[0,0,0,0,0,0,0,0,0, 1,0,
f=[0,0,0,0,0,0,0,0,0, 1, 0,
f=[0,0,0,0,0,0,0,0,0, 1,0,
f=[0,0,0,0,0,0,0,0,0,0, 1,
f=[0,0,0,0,0,0,0,0,0,0, 1,
f=[0,0,0,0,0,0,0,0,0,0, 1,
f=[0,0,0,0,0,0,0,0,0,0, 1,
f=[0,0,0,0,0,0,0,0,0,0, 1,
f=[0,0,0,0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0,0, 0,0, 0,
f=[0,0,0,0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0,0,0,0, 0,
f=[0,0,0,0,0,0,0,0,0,0, 0,

0,0, 0,0, 0] Spec(G):

0,0,0,0, 0] Spec(G):
1, 0,0, 0, 0] Spec(G):
0,1, 0,0, 0] Spec(G):
0,0, 1,0, 0] Spec(G):
0,0, 0,1, 0] Spec(G):
0,0, 0,0, 1] Spec(G):
0,0,0,0, 0] Spec(G):
0,0, 0,0, 0] Spec(G):
1, 0,0, 0, 0] Spec(G):
0,1, 0,0, 0] Spec(G):
0,0, 1,0, 0] Spec(G):
0,0, 0,1, 0] Spec(G):
0,0, 0,0, 1] Spec(G):
0,0, 0,0, 0] Spec(G):
1,0, 0,0, 0] Spec(G):
0,1, 0,0, 0] Spec(G):
0,0, 1,0, 0] Spec(G):
0,0,0,1, 0] Spec(G):
0,0, 0,0, 1] Spec(G):
1,0,0,0, 0] Spec(G):
0,1,0,0, 0] Spec(G):
0,0, 1,0, 0] Spec(G):
0,0, 0, 1, 0] Spec(G):
0,0, 0,0, 1] Spec(G):
1,1,0,0, 0] Spec(G):
1,0, 1,0, 0 ] Spec(G):
1,0,0, 1, 0] Spec(G):
1,0,0,0, 1] Spec(G):
0,1,1,0,0] Spec(G):
0,1,0,1, 0] Spec(G):
0,1,0,0, 1] Spec(G):

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
I's
]
]
]
]
]
]
]
]
]
0,0,1,1,0] Spec(G):
0,0,1,0,1] Spec(Q):

=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2
=[2

=[2,-2,0,0,-2,2,0,0,-2,

,-2,0,0,0,0,2,-2,0,
,0,-2,0,0,2,0,-2,0
,-2,-2,2,0,0,0, 0,0,
,0,0,2,-2,0,0,-2,0,
,-2,0,0,-2,2,0,0,0,

,0,-2,0,-2,0,2,0,0,
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0,-2,2,-2,2,0,0]

,-2,0,2,-2,0,2,0]

0,0,0,-2,2, 2, -2]
-2,-2,0,0,2,2,0]
0,-2,2,0,0,2,-2]

-2,0,2,0,2,0,-2]

,-2,-2,2,-2,2,2,-2,0,0,0,0,0,0,0,0]

2,0,0,-2,
0, 0,
0,0,0,-2,
2,0,

0,22, -2,

,0,0,-2,2,0,0, -2, -2,
,-2,0,0,2,-2,0,0, -2,
,0,2,0,0,-2,0,-2, -2,
,-2,2,-2,0,0,0,0, -2,
,0,0,-2,0,-2,2,0, -2,
,-2,0,0,0,0,2 -2, -2,
,0,-2,0,2,0,-2,0, -2,
,2,0,0,0,0,-2,-2, -2,
,0,0,-2,0,2,-2,0, -2,
,2,-2,-2,0,0,0,0, -2,
,0,-2,0,0,2,0,-2, -2,
,0,0,2,0,-2, -2, 0, -2,
,-2,0,0,0,0,-2, 2, -2,
,0,-2,0,0,-2,0, 2, -2,
,-2,-2,2,0,0,0,0, -2,
,0,2,0,-2,0,-2,0, -2,
,2,0,0,-2,-2,0,0, -2,

0,0,2,-2,0,0,-2, -2,

,0,0,-2,-2,0,0, 2, -2,

,0,2,0,-2,0,-2,0,-2,0,-2,0]
-2,0,0,-2,-2,0,0]
2,-2,0,0,-2,-2,0,0,-2]
-2,-2,-2,0,0,0,0]
2,-2,0,-2,0,0,-2,0,-2]
-2,0,0,0,0,-2,-2]

2,2,0,-2,0,0,-2,0,-2,-2,0]

0,0,2, -2,0,0,2]
2,0,0,-2,2,0,0]
0,-2,0,0,2,0,2]
2,-2,2,0,0,0,0]
0,0,2,0,2,-2,0]
2,0,0,0,0,-2,2]
0,2,0,-2,0,2,0]
-2,0,0,0,0,2, 2]
0,0,2,0,-2,2,0]
-2,2,2,0,0,0,0]
0,2,0,0,-2,0,2]
0,0,-2,0,2,20]
2,0,0,0,0,2,-2]
0,2,0,0,2 0,-2]
2,2,-2,0,0,0,0]
0,-2,0,2,0,2,0]
-2,0,0,2,2,0,0]
0,0,-2,2,0,0,2]
0,0,2,2,0,0,-2]

2,0,0,2,-2,0,0]

f==[0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 1] Spec(G):=[2, 0, -2, 0, -2, 0, 2, 0, -2, 0, 2, 0, 2, 0, -2, 0]
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Appendix II: All Boolean functions of order 16.

0,1,1,1,1,1,1,0,1,1,0,0,0,0,1,1

-6,-2%,0%,272,10

0,1,1,1,1,1,1,0,1,0,1,0,1,0,0 ,1)

-42.-2% 05,23 10

0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0

-5,-11232 11

0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0

-31-151% 3,11

0,1,1,1,1,1,1,0,1,1,1,0,0,0,1,1

-5,-32-1515 11

Boolean function f Eigenvalues
(0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0) 27108 27
(0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0) -112 31
(0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0) -32-15,16 32
(0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0) -112 3%
(0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0) -26,06 22 42
(0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0) -42 012 42
(0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0) -4,-2%.08 2% 4
(0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0) -32-181% 52
(0,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0) -32,-18.1%, 52
(0,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0) -33.-151%232 5
(0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0) -5,-3,-15,153 5
(0,1,0,1,1,0,0,0,1,0,0,0,0,0,1,0) -3%°,1105
(0,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0) -4,-25.08 22,46
(0,1,1,1,1,0,0,0,1,0,0,0,1,0,0,0) -29266
(0,1,1,1,1,0,0,0,1,0,0,0,0,1,0,0) -42.-23 2% 0% 6
(0,1,0,0,1,0,1,0,1,0,1,0,0,1,0,0) -6,-23,0%,23 6
(0,1,0,0,0,0,1,1,0,0,1,1,1,0,0,0) -26.0%,62
(0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0) -11% 72
(0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0) -32-171% 5,7
(0,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0) -5,-11133 7
(0,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0) 234151432 7
(0,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1) -5,-32-1°,15 3,7
(0,0,0,0,0,0,0,0,1,0,1,1,1,1,1,1) 717177
(0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0) -27.07,6,8
(0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0) -4,-26.0522 4.8
(0,1,1,1,1,1,1,0,1,0,0,0,0,0,0, 1) -43,0TT 4.8
(0,1,1,1,1,1,0,0,1,1,0,0,0,0,1,0) -6,-2707,23 8
(0,1,0,1,1,0,1,0,1,0,1,0,0,1,0,1) -8,01%8
(0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0) -33,-18,135,9
(0,1,1,1,1,1,1,0,1,0,1,1,0,0,0,0) -3%,-15,133% 9
(0,1,1,1,1,1,1,0,1,1,0,0,0,0,1,0) -5,-32,-151539
(0,1,1,0,1,0,1,1,1,0,1,1,0,0,0,1) -3%5199
(0,1,1,0,0,1,1,1,1,0,0,1,1,0,0,1) -7-18159
(0,1,0,1,1,1,1,0,1,1,0,1,0,0,0,1) -35,199
(0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0) -4,-26.082,4,10
(0,1,1,1,1,1,1,0,1,1,0,1,0,1,0,0) -21025 10

( )

(

(

(

(

(

(

(

(

(

)

)

)
0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0) -4,-26.05 2,12
0,1,1,1,1,1,1,0,1,1,1,0,0,1,1,1) -43 01212
0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0) -33,-18,17113
0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1) -27.0%,14
0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) -11515




On the Cayley Graphs of Boolean Functions

Appendix III: The number of Cgg_j Bx molecules.

k,60 — k Number of hetero-fullerenes Cgg_1 By
0,60 1

1,59 1

2,58 37

3,57 577

4,56 8236

5,55 91030

6,54 835476

7,53 6436782

8,52 42650532

9,51 246386091

10,50 1256602779

11,49 5711668755

12,48 23322797475
13,47 86114390460
14,46 289098819780
15,45 886568158468
16,44 2493474394140
17,43 6453694644705
18,42 15417163018725
19,41 34080036632565
20,40 69864082608210
21,39 133074428781570
22,38 235904682814710
23,37 389755540347810
24,36 600873146368170
25,35 865257299572455
26,34 1164769471671687
27,33 1466746704458899
28,32 1728665795116244
29,31 1907493251046152
30,30 1971076398255692
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