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Abstract. The boundary value problem

−ψ′′ + q(x)ψ = λ
2
ψ, 0 < x <∞,

ψ
′(0)− (α0 + α1λ)ψ(0) = 0

is considered, where λ is a spectral parameter, q(x) is real-valued function such that

∞∫

0

(1 + x)|q(x)|dx <∞

with α0, α1 ≥ 0 ( α0, α1 ∈ R).

In this paper, for above-mentioned boundary value problem, the scattering data
is considered and the characteristics properties (such as continuity of the scattering
function S(λ) and giving the Levinson-type formula) of this data are studied.
Keywords: Scattering data; scattering function; Gelfand-Levitan-Marchenko equa-
tion; Levinson-type formula.

1. Introduction

Consider the boundary value problem

(1.1) −ψ′′ + q(x)ψ = λ2ψ, 0 < x <∞,

(1.2) ψ′(0)− (α0 + α1λ)ψ(0) = 0,
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where q(x) is real valued function such that

(1.3)

∞∫

0

(1 + x)|q(x)|dx <∞

and α0, α1 are real numbers, also α0, α1 ≥ 0.

Spectral analysis when the spectral parameter appearing linearly on the half line
for the boundary value problem (1.1) was studied in [3, 4],(1.2). In the case q(x) ≡
0, this boundary value problem is given by application to the heat transmission
problem in [2]. In the wave theory of mathematical physics and geophysics, the
applications of the problems can also be found [1, 5, 20, 21, 22, 23].

It is known [15, 16] that the function which can be unique represented in the
from

(1.4) e(x, λ) = eiλx +

∞∫

0

K(x, t)eiλtdt,

is a Jost solution of the equation (1.1) for any λ on closed upper half plane, where
the kernel K(x, t) satisfies the relation

|K(x, t)| ≤
1

2
σ

(
x+ t

2

)
exp

{
σ1(x) − σ1

(
x+ t

2

)}

with

σ(x) ≡

∞∫

x

|q(t)|dt, σ1(x) ≡

∞∫

x

σ(t)dt

and

K(x, x) =
1

2

∞∫

x

q(t)dt.

The function e(x,−λ) satisfies the equation (1.1) for each λ ∈ R \ {0} and the
functions e(x, λ) and e(x,−λ) form a fundamental set of solutions for the differential
equation (1.1). Their Wronskian is as follows:

W{e(x, λ), e(x,−λ)} = e′(x, λ)e(x,−λ) − e(x, λ)e′(x,−λ) = 2iλ.

Let ̟(x, λ) denote the a special solution of the equation (1.1) that satisfies the
initial conditions

̟(0, λ) = 1, ̟′(0, λ) = α0 + α1λ.

The following lemma 1.1 and lemma 1.2 which have been proved in [9] should
be given in order to achieve the aim of the manuscript:
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Lemma 1.1. The identity

2iλ̟(x, λ)

e′(0, λ)− (α0 + α1λ)e(0, λ)
= e(x,−λ)− S(λ)e(x, λ)

holds for all real λ 6= 0 where

(1.5) S(λ) =
e′(0,−λ)− (α0 + α1λ)e(0,−λ)

e′(0, λ)− (α0 + α1λ)e(0, λ)

and

|S(λ)| = 1.

Here, the function S(λ) is represented by the formula (1.5). This function is
called the scattering function of the boundary value problem (1.1)-(1.3).

The function S(λ) is meromorphic function on the upper half plane (Imλ > 0).
The zeros of the function ϕ(λ) ≡ e′(0, λ) − (α0 + α1λ)e(0, λ) are the poles of the
function S(λ).

Lemma 1.2. The function ϕ(λ) may have only a finite number of zeros λ1, λ2, ..., λn
on the half plane Imλ > 0 and all these zeros don’t lie on the imaginary axis. The

zeros ϕ(λ) and ϕ1(λ) ≡ e′(0,−λ)− (α0 + α1λ)e(0,−λ) are complex conjugate each

other and the number of these zeros is equal.

The number mk is referred to the multiplicity of the zeros λk, (k = 1, 2, ..., n)
of the equation ϕ(λ) = 0. These λk is called the singular values of the boundary
value problem (1.1)-(1.3).

We denote

fj(x) = iRes
λ=λj

ϕ2(λ)

ϕ(λ)
eiλx,

where ϕ2(λ) = ê ′(0, λ)− (α0 + α1λ)ê(0, λ) and ê(x, λ) is a solution of the equation
(1.1) (see [18, p.299]). We shall call the polynomial

Pk(x) = e−iλkxfk(x), k = 1, 2, ..., n,

with degree of mk − 1 the normalization poliynomial for boundary value problem
(1.1)-(1.3).

Let

Fs(x) =
1

2π

∞∫

−∞

[S0 − S(λ)]dλ,

(1.6) F (x) =
n∑

k=1

fk(x) + Fs(x),

where S0 = a+i
a−i

.
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The kernel function K(x, t) of the special solution (1.4) satisfies the integral
equation

(1.7) F (x+ y) +K(x, y) +

∞∫

x

K(x, t)F (t+ y)dt = 0, x < y <∞

for each x ≥ 0.

The equation (1.7) is called the main equation (also called Gelfand-Levitan-
Marchenko equation) of the inverse boundary value problem (1.1)-(1.3). This main
equation admits a uniquely solution K(x, t) in the space L1(x,∞) [9].

The set of values
{
S(λ), λk, Pk(x), (k = 1, n)

}
is referred to as the scattering

data of the boundary value problem (1.1)-(1.3) (see [8]). The inverse scattering
problem consists in uniquely recovering the coefficient q(x) from the scattering
data. Given the scattering data, we can use formula (1.6) to construct the function
F (x) and write out to main equation (1.7) for the unknown function K(x, y). The
main equation has a unique solution for every x ≥ 0. Solving this equation, we find

the kernel K(x, y) of the solution (1.7) and hence potential q(x) = −2 dK(x,x)
dx

.

Note that the inverse problem of scattering theory on the half line for the
boundary value problem (1.1)-(1.3) in the case α1 = 0 was completely solved in
[6, 7, 15, 16]. Inverse problems in the half line with spectral parameter contained
in the boundary conditions was investigated according to spectral function in [19],
according to Weyl function in [21]-[23], and acording to scattering data [10]-[13]. In
the case of non-selfadjoint, the similar problem was solved in [8]. The uniqueness
of solution of inverse scattering problem for boundary value problem (1.1)-(1.3) is
given in [9] by using the methods of [8] and [15]. Different from the classical case
the zeros of Jost function not lie imaginary axis, lie complex plane and these ze-
ros not simple. The boundary value problem (1.1)-(1.3) is not selfadjoint and for
this reason, scattering data is differently defined. Therefore, the properties of the
scattering data have to be investigated. The present work is devoted to give the
properties of the scattering data of boundary problem (1.1)(1.3). Similar problem
in the self-adjoint case was studied in [14, 17].

Let us give a brief description of the structure of our study. In Section 2, we
prove the continuity of the scattering function on the whole axis. In Section 3, we
derive the Levinson type formula.

2. The continuity of the scattering function

In this section, the continuity of the scattering function S(λ) defined by (1.5)
will be investigated.

Theorem 2.1. The scattering function S(λ) is continuous for all real points λ.

Proof. It follows from lemma 1.1 that ϕ(λ) 6= 0 for all λ 6= 0. The continuity of the
function S(λ) can be obtained from hence.
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When ϕ(0) 6= 0, the function S(λ) is continuous for λ = 0 and S(0) = 1.

Let ϕ(0) = 0. Namely,

(2.1)

ϕ(0) = e′(0, 0)− α0e(0, 0)

= −K(0, 0) +

∞∫

0

Kx(0, t)dt− α0


1 +

∞∫

0

K(0, t)dt


 = 0.

To complete proof, we shall investigate the continuity of the function S(λ) in this
case.

Now, putting x = 0 in the main equation (1.7), we obtain

(2.2) K(0, y) + F (y) +

∞∫

0

K(0, t)F (t+ y)dt = 0.

Substituting x = 0 after differentiating the main equation (1.7) with respect to
x, we get

(2.3) Kx(0, y) + F ′(y)−K(0, 0)F (y) +

∞∫

0

Kx(0, t)F (t+ y)dt = 0.

After multiplying the equation (2.2) throughout by−α0 and adding to the equal-
ity (2.3), we have
(2.4)

Kx(0, y)−α0K(0, y)−(α0+K(0, 0))F (y)+F ′(y)+

∞∫

0

[Kx(0, t)−α0K(0, t)]F (t+y)dt = 0.

Then, integrating the equality (2.4) with respect to y from z to ∞, we obtain

∞∫

z

[Kx(0, y)− α0K(0, y)]dy − (α0 +K(0, 0))

∞∫

z

F (y)dy − F (z)

+

∞∫

0

[Kx(0, t)− α0K(0, t)]

∞∫

z+t

F (ξ)dξdt = 0.

Put K1(z) =
∞∫
z

[Kx(0, y) − α0K(0, y)]dy. Then, from the last equality, the

following relation is obtained:

K1(z)− (α0 +K(0, 0))

∞∫

z

F (y)dy − F (z)−

∞∫

0




∞∫

z+t

F (ξ)dξ


 dK1(t) = 0.
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Using integration by parts and considering the following process

∞∫

0

K ′

x(x, t)|x=0

∞∫

t+z

F (ξ)dξdt =

∞∫

0

K ′

x(x, t)|x=0

∞∫

z

F (y)dydt

−

∞∫

0

F (t+ z)

∞∫

t

K ′

x(x, ξ)|x=0dξdt,

∞∫

z

F ′(y)dy −K(0, 0)

∞∫

z

F (y)dy +

∞∫

z

K ′

x(x, y)|x=0dy

+

∞∫

0

K ′

x(x, t)|x=0

∞∫

z

F (y)dydt−

∞∫

0

F (t+ z)

∞∫

t

K ′

x(x, ξ)|x=0dξdt = 0,

we get

K1(z)− (α0 +K(0, 0) +K1(0))

∞∫

z

F (y)dy − F (z)−

∞∫

0

K1(t)F (t+ z)dt = 0.

Hence, when ϕ(0) = 0 (from (2.1)), K1(z) is the bounded solution of the equation

K1(z)−

∞∫

0

K1(t)F (t+ z)dt = F (z), (0 ≤ z <∞).

It is evident that the bounded solution of this equation is integrable on the half
axis. It means that K1(z) ∈ L1(0,∞) (see [15], p. 211).

Returning to the representation ϕ(λ), we have

ϕ(λ) = iλ−K(0, 0) +

∞∫

0

Kx(0, t)e
iλtdt− (α0 + α1λ)


1 +

∞∫

0

K(0, t)eiλtdt




= iλK(0, 0) +

∞∫

0

Kx(0, t)e
iλtdt− α0


1 +

∞∫

0

K(0, t)eiλtdt




− α1λ


1 +

∞∫

0

K(0, t)eiλtdt


 ,

where
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−K(0, 0) +

∞∫

0

Kx(0, t)e
iλtdt− α0 − α0

∞∫

0

K(0, t)eiλtdt =

= −K(0, 0)−

∞∫

0

eiλtd




∞∫

t

K(0, y)dy


− α0 + α0

∞∫

0

eiλtd




∞∫

t

K(0, y)dy




= −K(0, 0) +

∞∫

x

Kx(0, y)dy − α0

∞∫

0

K(0, y)dy + iλ

∞∫

0

eiλt

∞∫

t

Kx(0, y)dydt

− iα0λ

∞∫

0

eiλt
∞∫

0

K(0, y)dydt

= iλ

∞∫

0

∞∫

t

(Kx(0, y)− α0K(0, y))dyeiλtdt

= iλ

∞∫

0

K1(t)e
iλtdt.

Hence, we obtain

(2.5)
ϕ(λ) = iλ


1 +

∞∫

0

K1(t)e
iλtdt− iα1


1 +

∞∫

0

K(0, t)eiλtdt






= iλK̃(λ).

where

K̃(λ) = 1− iα1 +

∞∫

0

K1(t)e
iλtdt− iα1

∞∫

0

K(0, t)eiλtdt.

Similarly, we get

(2.6) ϕ1(λ) = −iλK̃1(λ),

where

K̃1(λ) = 1 + iα1 +

∞∫

0

K1(t)e
−iλtdt− iα1

∞∫

0

K(0, t)e−iλtdt.

Consequently, from the equality (1.5)

S(λ) = −
K̃1(λ)

K̃(λ)
.
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Taking into account lemma 1.1 (see [9]) and by using the formulas (2.5) and
(2.6), we can write

2̟(x, λ) = K̃(λ)[e(x,−λ) − S(λ)e(x, λ)].

It can be seen that K̃(λ) 6= 0, otherwise it would be ϕ(x, 0) = 0. But, this can
not be true since ϕ(0, 0) = 1. So, S(λ) is continuous at λ = 0 and by condition (2.1)

it holds S(λ) = − K̃1(0)

K̃(0)
.

This completes the proof the theorem.

3. The Levinson-Type formula

We give the formula that expresses the relation between the increment of the
argument of the scattering function S(λ) and the singular number λk of boundary
value problem (1.1)-(1.3).

Theorem 3.1. The following formlua is valid:

(3.1) −
1− S(0)

2
−

1

2π
argS(λ)|

∞

−∞
+ 1 = 2[m1 +m2 + ...+mn],

wheremk (k = 1, 2, ..., n) is the multiplicity of the singular number λj (j = 1, 2, ..., n).

Proof. For sufficiently little ε > 0 and sufficiently large R > 0, let

ΓR,ε = C+
R ∪ C−

ε ∪ [−R,−ε] ∪ [ε,R],

where C+
R and C−

ε are circles with centers in origin and corresponding radius of
R and ε, respectively (Fig. 1). Orientation on the C+

R is positive and on the C−

ε

negative.

ε R−R −ε x

y

O

C−

ε

C+
R

Figure 1: The Graph of ΓR,ε.
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Let us apply argument principle to ϕ(λ) function. This function is regular on the
upper half plane and continuous on the closed half plane Imλ ≥ 0. When moving
from −∞ to ∞ on the whole real axis and passing origin from top along with half
circle with radius ε, the change in the argument of ϕ(λ) is equal to number of its
pole points times 2π:

(3.2) argϕ(λ)|[−R,−ε]∪[ε,R] + argϕ(λ)|Γε
+ argϕ(λ)|ΓR

= 2π[m1 +m2 + ...+mn]

or

1

2πi



∫

C
+

R

+

∫

C
−

ε

+

R∫

ε

+

−ε∫

−R


 d lnϕ(λ) = m1 +m2 + ...+mn.

From (1.5), the scattering function S(λ) has the form

S(λ) =
ϕ1(λ)

ϕ(λ)

for real λ. It is clear from here that argS(λ) = −2 argϕ(λ).

Using the last equality, we have

(3.3) argϕ(λ)|[−R,−ε]∪[ε,R] = −
1

2
argS(λ).

Considering (3.3) in the equality (3.2), we obtain

(3.4) −
1

2
argS(λ)|[−R,−ε]∪[ε,R]+argϕ(λ)|C−

ε
+argϕ(λ)|C+

R
= 2π[m1+m2+...+mn].

According to theorem 2.1, the function S(λ) is continuous on the whole real
axis. Hence,

(3.5) lim
R→∞

ε→0

{
−
1

2
argS(λ)|[−R,−ε]∪[ε,R]

}
= −

1

2
argS(λ)

∣∣∣∣
∞

−∞

,

(3.6) lim
ε→0

argϕ(λ)|C−

ε
=





0, if ϕ(0) 6= 0,

−π, if ϕ(0) = 0,
= −

π(1− S(0))

2

and

(3.7) lim
R→∞

argϕ(λ) = π
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from lemma 1.1.

Taking into account the equalities (3.5), (3.6) and (3.7) in the equality (3.4), we
have

−
1

2
argS(λ)

∣∣∣∣
∞

−∞

+ π +





0, if ϕ(0) 6= 0,

−π, if ϕ(0) = 0,
= 2π[m1 +m2 + ...+mn]

From this last equality, the formula (3.1) is obtained, which proves the theo-
rem.

The note that, this formula is called the Levinson-type formula for the boundary
value problem (1.1)-(1.3).
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