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HERIMITIAN SOLUTIONS TO THE EQUATION AXA∗ + BY B∗ = C,
FOR HILBERT SPACE OPERATORS

Amina Boussaid and Farida Lombarkia
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University of Batna 2, 05078, Batna, Algeria

Abstract. In this paper, by using generalized inverses we have given some necessary
and sufficient conditions for the existence of solutions and Hermitian solutions to some
operator equations, and derived a new representation of the general solutions to these
operator equations. As a consequence, we have obtained a well-known result of Dajić
and Koliha.
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1. Introduction and basic definitions

Let H and K be infinite complex Hilbert spaces, and B(H,K) the set of all
bounded linear operators from H to K. Throughout this paper, the range and
the null space of A ∈ B(H,K) are denoted by R(A) and N (A) respectively. An
operator B ∈ B(K,H) is said to be the inner inverse of A ∈ B(H,K) if it satisfies
the equation ABA = A, we denote the inner inverse by A−. An operator A is called
regular if A− exists. It is well known that A ∈ B(H,K) is regular if and only if A
has closed range. There are many papers in which the basic aim is to find necessary
and sufficient conditions for the existence of a solution or Hermitian solution to
some matrix or operator equations using generalized inverses. In [15, 16, 18], Mitra
and Navarra et al. established necessary and sufficient conditions for the existence
of a common solution and gave a representation of the general common solution to
the pair of matrix equations

(1.1) A1XB1 = C1 and A2XB2 = C2.
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In [23], Wang considered the same problem for matrices over regular rings with
identity. Furthermore, in [13, 16] Khatri and Mitra determined the conditions
for the existence of a Hermitian solution and gave the expression of the general
Hermitian solution to the matrix equation

(1.2) AXB = C,

In [8] J. Groß gave the general Hermitian solution to matrix equation (1.2), where
B = A∗.

Quaternion matrix equations and its general Hermitian solutions have attracted
more attention in recent years. The reason for this is a large number of applications
in control theory and many other fields, see [9, 10, 11, 12, 14, 24] and the references
therein. Among them, the matrix equation

(1.3) AXA∗ + BY B∗ = C,

has been studied by Chang and Wang in [1]. They used the generalized singular
value decomposition to find necessary and sufficient conditions for the existence of
real symmetric solutions. Also in [27, Corollary 3.1], Xu et al found necessary and
sufficient conditions for the equation (1.3) to have a Hermitian solution.

Recently several operator equations have been extended from matrices to infinite
dimensional Hilbert space, Banach space and Hilbert C∗-modules, see [3, 4, 21],
[6, 17, 22, 25, 26] and the references therein.

In this paper, our main objective is to give necessary and sufficient conditions for
the existence of a Hermitian solution to the operator equation AXA∗+BY B∗ = C.
After section one where several basic definitions are assembled, in section 2, we give
necessary and sufficient conditions for the existence of a common solution to the
operator equations

A1XB1 = C1 and A2XB2 = C2.

In section 3, we apply the result of section 2 to determine new necessary and suffi-
cient conditions for the existence of a Hermitian solution and give a representation
of the general Hermitian solution to the operator equation AXB = C. Finally,
we give some necessary and sufficient condition for the existence of a Hermitian
solution to the operator equation AXA∗ + BY B∗ = C.

2. Common solutions to the operator equations A1XB1 = C and
A2XB2 = C2

In this section, we give necessary and sufficient conditions for the existence of a
common solution to the pair of equations

A1XB1 = C1, A2XB2 = C2,

with A1, A2, B1, B2, C1 and C2 are linear bounded operators defined on Hilbert
spaces H, K, E, L, N and G. Before enouncing our main results, we recall the
following lemmas
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Lemma 2.1. [2] Let A,B ∈ B(H,K) are regular operators and C ∈ B(H,K).
Then the operator equation

AXB = C

has a solution if and only if AA−CB−B = C, or equivalently

R(C) ⊂ R(A) and R(C∗) ⊂ R(B∗).

A representation of the general solution is

X = A−CB− + U −A−AUBB−,

where U ∈ B(K,H) is an arbitrary operator.

Lemma 2.2. [2] Let A,B ∈ B(H,K) are regular operators and C,D ∈ B(H,K).
Then the pair of operators equations

AX = C and XB = D

has a common solution if and only if

AA−C = C, DB−B = D and AD = CB,

or equivalently

R(C) ⊂ R(A), R(D∗) ⊂ R(B∗) and AD = CB.

A representation of the general solution is

X = A−C + DB− −A−ADB + (IH −A−A)V (IH −BB−),

where V ∈ B(H) is an arbitrary operator.

The following two lemmas can be deduced from a result of Patŕicio and Puystjens
[20] originally formulated for matrix with entries in an associative ring. A simple
modification shows that it applies equally well to Hilbert space operators.

Lemma 2.3. [20] Let A ∈ B(H,K) and B ∈ B(E,K) be regular operators. Then(
A B

)
∈ B(H ×E,K) is regular if and only if S = (IK −AA−)B is regular. In

this case, the inner inverse of
(
A B

)
is given by

(
A B

)−
=

(
A− −A−BS−(IK −AA−)

S−(IK −AA−)

)
.

Lemma 2.4. [3] Let A ∈ B(H,K) and B ∈ B(H,E) be regular operators. Then
the regularity of any one of the following operators implies the regularity of the re-
maining three operators
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D = B(IH −A−A), M = A(IH −B−B),

(
A
B

)
and

(
B
A

)
.

In this case, the inner inverse of

(
A
B

)
is given by

(
A
B

)−
=
(

(IH −B−B)M− B− − (IH −B−B)M−AB−
)
.

Lemma 2.5. [2] Suppose that A1 ∈ B(H,K), A2 ∈ B(H,E), B1 ∈ B(L,G), B2 ∈
B(N,G), S1 = A2(IH − A−1 A1) and M1 = (IG − B1B

−
1 )B2 are regular operators.

Then
T1 = (IE − S1S

−
1 )A2A

−
1 and D1 = B−1 B2(IN −M−1 M1),

are regular with inner inverses T−1 = A1A
−
2 and D−1 = B−2 B1.

In the following theorem, we give necessary and sufficient conditions for the existence
of a common solution of the operator equations

A1XB1 = C1, A2XB2 = C2

Theorem 2.1. Suppose that A1 ∈ B(H,K), A2 ∈ B(H,E), B1 ∈ B(L,G), B2 ∈
B(N,G), M1 = (IG − B1B

−
1 )B2 and S1 = A2(IH − A−1 A1) are regular operators

and C1 ∈ B(L,K), C2 ∈ B(N,E). Then the following statements are equivalent

1. The pair of equations (1.1) have a common solution X ∈ B(G,H).

2. There exists two operators U ∈ B(N,K) and V ∈ B(L,E), such that the
operator equation AXB = C is solvable, where

A =

(
A1

A2

)
, B =

(
B1 B2

)
, C =

(
C1 U
V C2

)
.

3. For i = 1, 2, R(Ci) ⊂ R(Ai), R(C∗i ) ⊂ R(B∗i ) and

T1C1D1 = T2C2D2,

where T1 = (IE−S1S
−
1 )A2A

−
1 , T2 = (IE−S1S

−
1 ), D1 = B−1 B2(IN−M−1 M1)

and D2 = (IN −M−1 M1).

Proof.

(1)⇔ (2) The equivalence is easily established.

(2) ⇒ (3) According to Lemma 2.1, the operator equation AXB = C has a
solution if and only if

R(C) ⊂ R(A) and R(C∗) ⊂ R(B∗),
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then, we deduce that

(2.1) for i = 1, 2, R(Ci) ⊂ R(Ai) and R(C∗i ) ⊂ R(B∗i ).

On the other hand, we have

T1C1D1 = (IE − S1S
−
1 )A2A

−
1 C1B

−
1 B2(IN −M−1 M1)

(2.2) = (IE − S1S
−
1 )A2A

−
1 A1X0B1B

−
1 B2(IN −M−1 M1),

where X0 is the common solution to the pair of equations (1.1).
Let

S1 = A2(IH −A−1 A1) and M1 = (IG −B1B
−
1 )B2.

This implies that

(2.3) A2A
−
1 A1 = A2 − S1 and B1B

−
1 B2 = B2 −M1.

We insert (2.3) in (2.2) to obtain

(2.4) T1C1D1 = T2C2D2.

From (2.1) and (2.4), we deduce that (2)⇒ (3).

Conversely, since
T1C1D1 = T2C2D2.

Then
R(T2C2) ⊂ R(T1) and R(D∗1C

∗
1 ) ⊂ R(D∗2).

By applying Lemma 2.2, there exist U ∈ B(N,K) which is the common solution to
the pair of equations

(2.5)

{
T1U = T2C2

UD2 = C1D1,

given by

(2.6) U = C1D1 + T−1 (IE − S1S
−
1 )C2M

−
1 M1 + (A1A

−
1 − T−1 T1)ZM−1 M1,

where Z ∈ B(N,K) is an arbitrary operator.
On other hand, since

T1C1D1 = T2C2D2.

Then
R(T1C1) ⊂ R(T2) and R(D∗2C

∗
2 ) ⊂ R(D∗1).

It follows from Lemma 2.2 that there exist V ∈ B(L,E) which is the common
solution to the pair of equations

(2.7)

{
T2V = T1C1

V D1 = C2D2,
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given by

(2.8) V = T1C1 + S1S
−
1 C2(IN −M−1 M1)D−1 + S1S

−
1 Z ′(B−1 B1 −D1D

−
1 ),

where Z ′ ∈ B(L,E) is an arbitrary operator.
Thus, there exists U ∈ B(N,K) and V ∈ B(L,E) solutions to the pair of equations
(2.5), (2.7) and as for i = 1, 2, we have AiA

−
i Ci = Ci and CiB

−
i Bi = Ci, we obtain

AA−CB−B =

=

(
A1A

−
1 C1B

−
1 B1 A1A

−
1 (C1D1 + UM−1 M1)

(T1C1 + S1S
−
1 V )B−1 B1 T1(C1D1 + UM−1 M1) + S1S

−
1 (V D1 + C2M1M

−
1

)
= C.

So that, the operator equation AXB = C is solvable and (3)⇒ (2).

Theorem 2.2. Suppose that A1 ∈ B(H,K), A2 ∈ B(H,E), B1 ∈ B(L,G), B2 ∈
B(N,G), M1 = (IG−B1B

−
1 )B2 and S1 = A2(IH−A−1 A1) are regular operators and

C1 ∈ B(L,K), C2 ∈ B(N,E), when any one of the conditions (2), (3) of Theorem
2.1 holds, a general common solution to the pair of equations (1.1) is given by

X = (A−1 C1 + (IH −A−1 A1)S−1 (V −A2A
−
1 C1))B−1 (IG −B2M

−
1 (IG −B1B

−
1 ))

+ (A−1 U + (IH −A−1 A1)S−1 (C2 −A2A
−
1 U))M−1 (IG −B1B

−
1 ) + F

− (A−1 A1 + (IH −A−1 A1)S−1 S1)F (B1B
−
1 + M1M

−
1 (IG −B1B

−
1 )),(2.9)

where F ∈ B(G,H) is an arbitrary operator and U , V are given by
U = C1B

−
1 B2(IN −M−1 M1) + A1A

−
2 (IE − S1S

−
1 )C2M

−
1 M1 + A1A

−
1 ZM−1 M1

−A1A
−
2 (IE − S1S

−
1 )A2A

−
1 ZM−1 M1,

and

V = (IE − S1S
−
1 )A2A

−
1 C1 + S1S

−
1 C2(IN −M−1 M1)B−2 B1 + S1S

−
1 Z

′
B−1 B1

−S1S
−
1 Z

′
B−1 B2(IN −M−1 M1)B−2 B1,

where Z ∈ B(N,K) and Z ′ ∈ B(L,E) are arbitrary operators.

Proof. From Theorem 2.1, we get that the pair of equations (1.1) has a common
solution equivalently the two conditions (2) and (3) holds.
On the other hand, since the pair of equations (1.1) is equivalent to

(2.10)

(
A1

A2

)
X
(
B1 B2

)
=

(
C1 U
V C2

)
.

According to Lemma 2.3 and Lemma 2.4, we have(
A1

A2

)
∈ B(H,K × E) and

(
B1 B2

)
∈ B(L×N,G)
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are regular with inner inverses

(2.11)

(
A1

A2

)−
=
(

(IE −A−2 A2)S−1 A−2 − (IE −A−2 A2)S−1 A1A
−
2

)
,

and

(2.12)
(
B1 B2

)−
=

(
B−1 −B−1 B2M

−
1 (IG −B1B

−
1 )

M−1 (IG −B1B
−
1 )

)
,

respectively.
Using Lemma 2.1, we deduce that the general solution of (2.10) is given by

X =

(
A1

A2

)−(
C1 U
V C2

)(
B1 B2

)−
+(2.13)

+F −
(

A1

A2

)−(
A1

A2

)
F
(
B1 B2

) (
B1 B2

)−
.

By substituting (2.11) and (2.12) in (2.13), we get the solution X as defined in
(2.9) such that U , V are given in (2.6) and (2.8) respectively and F ∈ B(G,H) is
an arbitrary operator.

3. Hermitian solutions to the operator equations AXB = C and
AXA∗ + BY B∗ = C

Based on Theorem 2.1 and Theorem 2.2, in this section we give necessary and
sufficient conditions for the existence of Hermitian solutions to the operator equa-
tions

AXB = C and AXA∗ + BY B∗ = C

and obtain the general Hermitian solution to those operator equations respectively.
Before enouncing our main results we have the following lemma

Lemma 3.1. Let A ∈ B(H,K) and B ∈ B(K,H), such that A, B, S1 = B∗(IH −
A−A) and M1 = (IH −BB−)A∗ are regular. Then the operator equation

AXB = C,

has a Hermitian solution if and only if the pair of operator equations

(3.1) AXB = C and B∗XA∗ = C∗

has a common solution, a representation of the general Hermitian solution to AXB =
C is of the form

XH =
X + X∗

2
,

where X is the representation of the general common solution to the equations (3.1).
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Proof. From Theorem 2.1 the pair of operator equations (3.1) has a common solu-
tion if and only if

R(C) ⊂ R(A) and R(C∗) ⊂ R(B∗),

and

(IK − S1S
−
1 )B∗A−CB−A∗(IK −M−1 M1) = (IK − S1S

−
1 )C∗(IK −M−1 M1).

A representation of the general common solution to equations (3.1) is given by (2.9)
in Theorem 2.2, where A1 = A, B1 = B, C1 = C, A2 = B∗, B2 = A∗ and C2 = C∗.
Clearly XH is a Hermitian solution to (1.2).

From the above proof and Theorem 2.2, we obtain the following corollary.

Corollary 3.1. Let A ∈ B(H,K), B ∈ B(K,H), M1 = (IH −BB−)A∗ and
S1 = B∗(IH − A−A) are regular operators and C ∈ B(K). Then the operator
equation

AXB = C,

has a Hermitian solution if and only if

1. R(C) ⊂ R(A) and R(C∗) ⊂ R(B∗)

2. (IK − S1S
−
1 )B∗A−CB−A∗(IK −M−1 M1) = (IK − S1S

−
1 )C∗(IK −M−1 M1).

In this case, a representation of the general Hermitian solution is of the form

XH =
X + X∗

2
,

where

X = (A−C + (IH −A−A)S−1 (V −B∗A−C))B−(IH −A∗M−1 (IH −BB−))

+(A−U + (IH −A−A)S−1 (C∗ −B∗A−U))M−1 (IH −BB−) + F

− (A−A + (IH −A−A)S−1 S1)F (BB− + M1M
−
1 (IH −BB−),(3.2)

where F ∈ B(H) is an arbitrary operator and U , V are given by
U = CB−A∗(IK −M−1 M1) + A(B∗)−(IK − S1S

−
1 )C∗M−1 M1 + AA−ZM−1 M1

−A(B∗)−(IK − S1S
−
1 )B∗A−ZM−1 M1

and

V = (IK − S1S
−
1 )B∗A−C + S1S

−
1 C∗(IK −M−1 M1)(A∗)−B + S1S

−
1 Z

′
B−B

−S1S
−
1 Z

′
B−A∗(IK −M−1 M1)(A∗)−B,

where Z,Z
′ ∈ B(K) are arbitrary operators.



Hermitian Solutions to the Equation AXA∗ +BY B∗ = C 9

Corollary 3.2. Let A ∈ B(H,K), C ∈ B(K) such that A is regular and C∗ = C.
Then the operator equation

AXA∗ = C

has a Hermitian solution X ∈ B(H) if and only if

R(C) ⊂ R(A)

In this case, a representation of the general Hermitian solution is

(3.3) XH = A−C(A−)∗ + F −A−AF (A−A)∗,

where F ∈ B(H) is an arbitrary Hermitian operator.

Proof. We put B = A∗ in Corollary 3.1 we get the result.

As a consequence of Corollary 3.1 we obtain the well-known Theorem of Alegra
Dajić and J.J. Koliha [3, Theorem 3.1].

Corollary 3.3. [3, Theorem 3.1] Let A,C ∈ B(H,K) such that A is a regular
operator. Then the operator equation

AX = C

has a Hermitian solution X ∈ B(H) if and only if

AA−C = C and AC∗ is Hermitian.

The general Hermitian solution is of the form

XH = A−C + (IH −A−A)(A−C)∗ + (IH −A−A)Z ′(IH −A−A)∗,

where Z ′ ∈ B(H) is an arbitrary Hermitian operator.

Proof. By applying Corollary 3.1, the operator equation AX = C has a Hermitian
solution if and only if

R(C) ⊂ R(A),

which is equivalent to
AA−C = C,

and
(IH − IH + A−A)A−CA∗ = (IH − IH + A−A)C∗,

this implies that
CA∗ = AC∗.

Hence, AC∗ is Hermitian. In this case,

X = [A−C + (IH −A−A)(A−C + (IH −A−A)C∗(A∗)− +

+ (IH −A−A)Z ′(IH −A−A)∗ −A−C)],

= A−C + (IH −A−A)(A−C)∗ + (IH −A−A)Z ′(IH −A−A)∗.
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It follows that,

XH =
X + X∗

2
,

= A−C + (IH −A−A)(A−C)∗ + (IH −A−A)Z ′(IH −A−A)∗.

Theorem 3.1. Let A,B ∈ B(H,K) and A1 = (IK −AA−)B, C1 = (IK −AA−)C
and S2 = B(IH − A−1 A1) be all regular and C ∈ B(K) is Hermitian. Then the
operator equation

AXA∗ + BY B∗ = C,

has a Hermitian solution if and only if

1. A1A
−
1 (IK −AA−)C(B∗)−B∗ = (IK −AA−)C

2. (IK − S2S
−
2 )[C −BA−1 (IK −AA−)C(B∗)−B∗](IK − (A−)∗A∗) = 0.

In this case, a representation of the general Hermitian solution is of the form

(XH , YH) =

(
X + X∗

2
,
Y + Y ∗

2

)
,

where X and Y are given by
X = A−(C −BY B∗)(A∗)− + F −A−AF (A−A)∗

and
Y = A−1 (IK −AA−)C(B∗)−+

+(IH −A−1 A1)S−2 [V −BA−1 (IK −AA−)C](B∗)− + U
−[A−1 A1 + (IH −A−1 A1)S−2 S2]UB∗(B∗)−,

and

V = (IK − S2S
−
2 )BA−1 (IK −AA−)C + S2S

−
2 C(IK − (A−)∗A∗)(A∗1)−B∗

+ S2S
−
2 Z(B∗)−(IH −A∗1(A−1 )∗)B∗,

with F ∈ B(H), U ∈ B(H) and Z ∈ B(K) are arbitrary Hermitian operators.

Proof. The operator equation (1.3) is equivalent to

(3.4) AXA∗ = C −BY B∗.

Applying Corollary 3.2, the operator equation (3.4) has a Hermitian solution if and
only if

R(C −BY B∗) ⊂ R(A) ⇔ AA−(C −BY B∗) = (C −BY B∗),

⇔ (I −AA−)(C −BY B∗) = 0.(3.5)
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Then, (3.5) is equivalent to the operator equation

(3.6) A1Y B∗ = C1,

with A1 = (IK −AA−)B, and C1 = (IK −AA−)C.
From Corollary 3.1, the operator equation (3.6) has a Hermitian solution if and
only if

R(C1) ⊂ R(A1) ⇔ A1A
−
1 C1 = C1,

⇔ A1A
−
1 (IK −AA−)C = (IK −AA−)C,(3.7)

and

R(C∗1 ) ⊂ R(B) ⇔ C1(B∗)−B∗ = C1,

⇔ (IK −AA−)C(B∗)−B∗ = (IK −AA−)C.(3.8)

From (3.7) and (3.8), we get

A1A
−
1 (IK −AA−)C(B∗)−B∗ = (IK −AA−)C.

On the other hand, we have

(IK − S2S
−
2 )BA−1 (IK −AA−)C(B∗)−A∗1 = (IK − S2S2−)C(IK − (A−)∗A∗).

This implies that

(IK − S2S
−
2 )[C −BA−1 (IK −AA−)C(B∗)−B∗](IK − (A−)∗A∗) = 0.

A representation of the general Hermitian solution to the operator equation (3.6)
is of the form

YH =
Y + Y ∗

2
,

where Y is given by (3.2) in Corollary 3.1 such that A = A1, B = B∗ and C = C1

Y = A−1 (IK −AA−)C(B∗)− + (IH −A−1 A1)S−2 [V −BA−1 (IK −AA−)C](B∗)− +

+ U − [A−1 A1 + (IH −A−1 A1)S−2 S2]UB∗(B∗)−,

and

V = (IK − S2S
−
2 )BA−1 (IK −AA−)C + S2S

−
2 C(IK − (A−)∗A∗)(A∗1)−B∗ +

+S2S
−
2 Z(B∗)−(IH −A∗1(A−1 )∗)B∗,

with U ∈ B(H) and Z ∈ B(K) are arbitrary Hermitian operators.
We return to the operator equation

AXA∗ = C −BY B∗,

in order to find the Hermitian solution X.



12 A. Boussaid and F. Lombarkia

By Corollary 3.2, the operator equation (3.4) has a Hermitian solution if and
only if

R(C −BY B∗) ⊂ R(A).

So the operator equation (3.4) has a Hermitian solution XH given by

XH = A−(C −BY B∗)(A∗)− + F −A−AF (A−A)∗,

with F ∈ B(H) is an arbitrary Hermitian operator.

4. Conclusions

This paper gives necessary and sufficient conditions for the existence of a common
solution to the pair of equations

A1XB1 = C1 and A2XB2 = C2;

We have applied this result to determine new necessary and sufficient conditions
for the existence of Hermitian solution and given a representation of the general
Hermitian solution to the operator equation

AXB = C.

Then, we have given necessary and sufficient conditions for the existence of Hermi-
tian solution and a representation of the general Hermitian solution to the operator
equation

AXA∗ + BY B∗ = C.
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