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Abstract. Functions defined in the form “g : N→ [0,∞) such that limn→∞ g(n) =∞
and limn→∞

n
g(n)

= 0” are called weight functions. Using the weight function, the
concept of weighted density, which is a generalization of natural density, was defined
by Balcerzak, Das, Filipczak and Swaczyna in the paper “Generalized kinsd of density
and the associated ideals”, Acta Mathematica Hungarica 147(1) (2015), 97-115.

In this study, the definitions of g-statistical convergence and g-statistical Cauchy
sequence for any weight function g are given and it is proved that these two concepts are
equivalent. Also, some inclusions of the sets of all weight g1-statistical convergent and
weight g2-statistical convergent sequences for g1, g2 which have the initial conditions
are given.
Keywords: weight functions; natural density; statistical convergent sequences.

1. Introduction

In [5], Fast introduced the concept of statistical convergence. In [15], Schoenberg
gave some basic properties of statistically convergence and also studied the concept
as a summability method. After this works many Mathematician have used these
concept in their studies [8, 9, 10, 11]. In [2, 3], the authors proposed a modified
version of density by replacing n by nα where 0 < α ≤ 1. In [1], the authors
defined a more general kind of density by replacing nα by a function g : N→ [0,∞)
with limn→∞ g(n) = ∞. In this paper, we will study the weighted g-statistically
convergence concept.

Let K be a subset of natural numbers. Natural density of K is defined by

δ(K) = lim
n→∞

1

n
|K(n)|

where K(n) = {k ≤ n : k ∈ K} and the vertical bars denotes the number of
elements of K(n).
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Let g : N→ [0,∞) be a function with limn→∞ g(n) =∞. Let us remember that
the definition of density of weight g(n).

Definition 1.1. The density of weight g defined by the formula

dg(A) = lim
n→∞

|A(n)|
g(n)

for A ⊂ N [1, 4].

After the study [1], the concept of g-density was applied to various problems
related to sequences and interesting results were obtained in [4, 7, 12, 13, 14].

Basically in this study, it will be shown that the results given in [6] can be
re-examined by using g-density.

In this paper, we are concerned with the subsets of natural numbers having
weight g(n) density zero. To facilitate this, we have introduced the following nota-
tion: If x is a sequence such that xk satisfies property P for all k except a set of
weight g(n) density zero, then we say that xk satisfies P for (weight g almost all k)
and it is denoted by (g − a.a.k) for simplicity.

Definition 1.2. Let x = (xk) be a real valued sequence. x is weight g-statistical
convergent to the number L if for each ε > 0

lim
n→∞

|{k ≤ n : |xk − L| ≥ ε}|
g(n)

= 0,

i.e., |xk − L| < ε (g − a.a.k). In this case we write g − st− limxk = L.

Cstg denotes the set of all weight g-statistical convergent sequences.

If we take the function g(n) = n we obtain the usual statistical convergence.

It is clear that every convergent sequence is also weight g-statistical convergent.
But the converse is not true in general.

Example 1.1. Let us define the function g(n) = 2n and the sequence as

xk =

{
3, k = m2, m ∈ N,
0, k 6= 0.

Then |k ≤ n : xk 6= 0| ≤
√
n. So, g − st− limxk = 0.

Theorem 1.1. If the sequence (xn) is weight-g-statistical convergent to L then
there is a set K = {k1 < k2 < ...} such that dg(K) = dg(N) and limn→∞ xkn = L.
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Proof. Let us assume that g− st− limxk = L. Take Ki := {n ∈ N : |xn −L| < 1
i },

(i = 1, 2, ...). Then by definition we have dg(K
c
i ) = 0 and it is clear that dg(Ki) =

dg(N), (i = 1, 2, ...). Also it is easy to control that

... ⊂ Ki+1 ⊂ Ki ⊂ ... ⊂ K2 ⊂ K1(1.1)

Let {Tj}j∈N be a strictly increasing sequence of positive real numbers. Let
choose an arbitrary number a1 ∈ K1. By (1.1) we can choose an element a2 ∈ K2,

a2 > a1 such that for each n ≥ a2 we have K2(n)
g(n) > T2. Moreover choose a3 > a2,

a3 ∈ K3 such that for each n ≥ a3 we have K3(n)
g(n) > T3. If we proceed in this way

we obtain a sequence a1 < a2... < ai < ... of positive integers such that

ai ∈ Ki, (i = 1, 2, ...) and
Ki(n)

g(n)
> Ti(1.2)

for each n ≥ ai, i = 1, 2, ...

Let us establish the set K as follows: each natural number of the interval [1, a1]
belong to K, moreover, any natural number of the interval [ai, ai+1] belongs to K
if and only if it belongs to Ki (i = 1, 2, ...). From (1.1) and (1.2) we have

K(n)

g(n)
≥ Ki(n)

g(n)
> Ti

for each n, ai ≤ n < ai+1. By last inequality it is clear that dg(K) =∞.

Let ε > 0, and choose i such that 1
i < ε. Let n ≥ ai, n ∈ K. There exists a

number t ≥ i such that at ≤ n < at+1. But from the definition of K, n ∈ Kt. Thus
|xn − L| < 1

t ≤
1
i < ε. Hence, limn→∞ xkn = L.

Remark 1.1. The converse of Theorem 1.1 is not true.

Example 1.2. Let us consider the sequence

(xk) :=

{
1, k = n2,
0, k 6= n2,

and g(n) = n1/4. It is clear that the set K = {k : k = n2, n ∈ N} ⊂ N has the property
dg(K) =∞. But g − st− limxk 6= 1.

Let us note that every statistical convergent sequence is also weight-g-statistical
convergent to the same number. But the converse of this situation is not true.

Example 1.3. Let ak = 22k , and

g(n) :=

{
a2k, n ∈ [ak, ak+1), k = 1, 2, ...
1, n < 4.
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Let Ak := {n ∈ N : ak ≤ n < 2ak} and A := ∪k≥1Ak. Let us take account the sequence

xn :=

{
1, n ∈ A,
0, n /∈ A.

It is clear that 1
2
ak ≤ |Ak| ≤ ak. Let us check that xn 9 0(st). If we put mk = maxAk,

we obtain

|{k ≤ n : |xk − 0| ≥ ε}|
n

=
|{k ≤ n : xk ∈ A}|

n
=
|A|
mk
≥ |Ak|

mk
≥

1
2
ak

2ak
=

1

4

for all k ≥ 1.

Moreover, g − st− limxk = 0. For sufficiently large n, we have

|{k ≤ n : |xk − 0| ≥ ε}|
g(n)

=
|{k ≤ n : xk ∈ A}|

g(n)
=
|A|
g(n)

=
|{k ≤ mk : xk ∈ A}|

g(mk)

≤ |Ak|
a2k

≤ ak
a2k
→ 0.

Definition 1.3. Let x = (xk) be a real valued sequence. x is weight g-statistical
Cauchy sequence if for each ε > 0 there exists a natural number N = N(ε) such
that

lim
n→∞

|{k ≤ n : |xk − xN | ≥ ε}|
g(n)

= 0,

i.e., |xk−xN | < ε (g−a.a.k). In this case we write x is weight g-Cauchy sequence.

Lemma 1.1. The following statements are equivalent:

(i) x is a weight g-statistically convergent sequence,

(ii) x is a weight g-statistically Cauchy sequence,

(iii) x is a sequence for which there is a convergent sequence y such that xk = yk
(g − a.a.k).

Proof. (i)⇒ (ii) Let us assume that x is a weight g-statistical convergent sequence.
Suppose ε > 0 and g − st− limx = L. Then |xk − L| < ε

2 (g − a.a.k) holds.

If we choose a natural number N such that |xN − L| < ε
2 , then we have

|xk − xN | < |xk − L|+ |xN − L| <
ε

2
+
ε

2
(g − a.a.k).

Hence, x is a weight g-statistical Cauchy sequence.

(ii) ⇒ (iii) Let us assume that x is a weight g-statistical Cauchy sequence.
Choose N(1) such that the interval I = [xN(1)−1, xN(1)+1] contains xk (g−a.a.k).

Also apply (ii) to choose M such that I ′ = [xM − 1
2 , xM + 1

2 ] contains xk (g−a.a.k).
We claim that

I1 = I ∩ I ′ contains xk (g − a.a.k),
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for

{k ≤ n : xk /∈ I ∩ I ′} = {k ≤ n : xk /∈ I} ∪ {k ≤ n : xk /∈ I ′}.

Thus,

lim
n→∞

1

g(n)
|{k ≤ n : xk /∈ I ∩ I ′}| ≤

≤ lim
n→∞

1

g(n)
|{k ≤ n : xk /∈ I}|+ lim

n→∞

1

g(n)
|{k ≤ n : xk /∈ I ′}| = 0.

So, I1 is closed interval of length less than or equal to 1 and contains xk (g−a.a.k).
Now we continue by choosing N(2) such that I ′′ = [xN(2) − 1

4 , xN(2) + 1
4 ] contains

xk (g − a.a.k), by the previously argument I2 = I1 ∩ I ′′ contains xk (g − a.a.k),
and I2 has length less than or equal to 1

2 . Proceeding inductively we construct
a sequence{Im}∞m=1 of closed intervals such that for each m, Im+1 ⊆ Im, and
the length of Im is not greater than 21−m, and xk ∈ Im (g − a.a.k). From the
Nested Interval Theorem there is a number α such that α = ∩∞m=1Im. If we use
xk ∈ Im (g − a.a.k), we can choose an increasing positive sequence {Tm}∞m=1 such
that

1

g(n)
|{k ≤ n : xk /∈ Im}| <

1

g(m)
if n > Tm.(1.3)

Next define a subsequence z of x consisting of all terms xk such that k > T1 and if
Tm < k ≤ Tm+1 then xk /∈ Im.

Now define the sequence y by

yk =

{
α, if xk is a term of z,
xk, otherwise.

Then lim yk = α; for , if ε > 1
g(m) > 0 and k > Tm then either xk is a term of z,

which means yk = α or yk = xk ∈ Im and |yk −α| ≤ length of Im < 21−m. We also
assert that xk = yk (g − a.a.k). To confirm this we observe that if Tm < n < Tm+1

then

{k ≤ n : yk 6= xk} ⊆ {k ≤ n : xk /∈ Im}

so from (1.3)

1

g(n)
|{k ≤ n : yk 6= xk}| ≤

1

g(n)
|{k ≤ n : xk /∈ Im}| <

1

g(m)

is obtained. Thus, the limit as n→∞ is 0 and xk = yk (g − a.a.k).

(iii) ⇒ (i) Let us assume that xk = yk (g − a.a.k) and lim yk = L. Suppose
ε > 0. Then for each n,

{k ≤ n : |xk − L| > ε} ⊆ {k ≤ n : xk 6= yk} ∪ {k ≤ n : |yk − L| > ε}
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from the assumption lim yk = L, the second set contains a fixed number of integers,
say l = l(ε). So,

lim
n→∞

1

g(n)
|{k ≤ n : |xk − L| > ε}| ≤ lim

n→∞

1

g(n)
|{k ≤ n : xk 6= yk}|+

+ lim
n→∞

l

g(n)
= 0

because xk = yk (g − a.a.k). Hence, |xk − L| ≤ ε (g − a.a.k). So, the proof is
complete.

Corollary 1.1. Let x be a real valued sequence. If g− st− limxk = L, then x has
a subsequence y such that lim yk = L.

2. Inclusion Between Two g − st−Convergence

Let G denotes the set of all functions g : N → [0,∞) satisfying the condition
g(n)→∞ and n

g(n) 9 0. In this section, we will introduce some inclusions between

various g ∈ G.

Lemma 2.1. Let g1, g2 ∈ G such that there exist M, m > 0 and k0 ∈ N such that

m ≤ g1(n)
g2(n)

≤M for all n ≥ k0. Then Cstg1(x) = Cstg2(x).

Proof. Suppose the sequence x is weight g1-statistical convergence to L. This im-
plies that for each ε > 0

lim
n→∞

|{k ≤ n : |xk − L| ≥ ε}|
g1(n)

= 0.

Together with the fact that g1(n)
g2(n)

≤M , this implies that

|{k ≤ n : |xk − L| ≥ ε}|
Mg2(n)

≤ |{k ≤ n : |xk − L| ≥ ε}|
g1(n)

.

for all n ≥ k0. This implies

lim
n→∞

|{k ≤ n : |xk − L| ≥ ε}|
Mg2(n)

≤ lim
n→∞

|{k ≤ n : |xk − L| ≥ ε}|
g1(n)

= 0.

From the hypothesis we obtain

lim
n→∞

|{k ≤ n : |xk − L| ≥ ε}|
g2(n)

= 0.

Thus, the sequence x is weight g2-statistical convergent to L. So, Cstg1(x) ⊂ Cstg2(x).
We can prove the iclusion Cstg2(x) ⊂ Cstg1(x) by similar way.
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Lemma 2.2. For each function f ∈ G there exists a nondecreasing function g ∈ G
such that Cstf (x) = Cstg (x). Moreover,

g(n) ≤ f(n)(2.1)

for all n ∈ N.

Proof. If f is nondecreasing, it is nclear. Otherwise, define the related function
g : N→ [0,∞) as follows. Let a1 = min{f(n) : n ∈ N}, i1 = max{i ∈ N : f(i) = a1}
and g(i) = a1 for 0 ≤ i ≤ i1. Next, let a2 = min{f(n) : n > i1}, i2 = max{i ∈ N :
f(i) = a2} and g(i) = a2 for i1 < i ≤ i2. Rest of the function g is established by
induction.

Obviously, the function g is nondecreasing and g(n)→∞. By the construction,
g(n) ≤ f(n), for all n ∈ N. Hence n

f(n) ≤
n
g(n) for all n which implies that n

g(n) 9 0.

Thus g ∈ G.

Let (xn) be a weight g-statistical convergent sequence to L. So, for each ε > 0

lim
n→∞

|{k ≤ n : |xk − L| ≥ ε}|
g(n)

= 0

holds. From (2.1) we have following inequality

|{k ≤ n : |xk − L| ≥ ε}|
f(n)

≤ |{k ≤ n : |xk − L| ≥ ε}|
g(n)

.

If we take limit when n → ∞ we obtain f − st − limxk = L. Thus, the inclusion
Cstg ⊂ Cstf .

By construction, for each n ∈ N there exist m ≥ n such that g(n) = g(m) =
f(m). Suppose that xn 9 L (g − st). Then there exists a, where a ∈ R+ ∪ {+∞}
and an inreasing sequence (ni) of indices such that

lim
i→∞

|{k ≤ ni : |xk − L| ≥ ε}|
g(ni)

= a > 0.

For each i ∈ N we can find mi ≥ ni such that g(ni) = g(mi) = f(mi). Hence

|{k ≤ ni : |xk − L| ≥ ε}|
g(ni)

≤ |{k ≤ mi : |xk − L| ≥ ε}|
f(mi)

holds. So, xn 9 L (f − st).

Lemma 2.3. Let f ∈ G be such that n
f(n) → ∞, L, ε real numbers with ε > 0.

Then there exists a sequence (xn) such that
(
|{k≤n:|xk−L|≥ε}|

f(n)

)
is bounded but not

convergent to zero.
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Proof. Firstly, let us assume that f is nondecreasing. Take to the smallest non
negative integer, k0, such that for n ≥ k0, f(n) > 2. Let us define a set A ⊂
N\{0, 1, 2, ...k0−1} inductively, deciding whether n ≥ k0 should belong to A or not.
Let n /∈ A for all n < k0. Suppose that n ≥ k0 and then we have defined A(n). If
|A(n)|
f(n+1) < 1 then let n ∈ A. Otherwise, let n /∈ A. So, we construct the set A. From

this construction and the condition f(n)→∞, A is infinite.

We assert that N\A is also infinite. Let us assume that it is finite and choose
n0 ∈ N such that n ∈ A for all n ≥ n0. Then, we have

n− n0
f(n+ 1)

≤ |A(n)|
f(n+ 1)

< 1

for all n ≥ n0. But this is impossible because of the assumption, n−n0

f(n+1) → ∞.

Now, we will show that |A(n)|
f(n) < 2 for each n ≥ k0. It is clear that if n = k0 it is

true. Suppose that |A(n)|
f(n) < 2 for a fixed n ≥ k0.

If |A(n)|
f(n+1) < 1, we have

|A(n+ 1)|
f(n+ 1)

=
|A(n)|
f(n+ 1)

+
1

f(n+ 1)

≤ |A(n)|
f(n+ 1)

+
1

f(n)

≤ 1 +
1

2
< 2.

If |A(n)|
f(n+1) > 1 , then n /∈ A and so,

|A(n+ 1)|
f(n+ 1)

=
|A(n)|
f(n+ 1)

≤ |A(n)|
f(n)

< 2.

Now, let us define a sequence (xn) as follows:

xn :=

{
n n ∈ A
L n /∈ A

where L ∈ R is a fixed number. It is clear that the sequence
(
|{k≤n:|xk−L|≥ε}|

f(n)

)
is

bounded from the first part of this proof.

Now, we will show that the sequence
(
|{k≤n:|xk−L|≥ε}|

f(n)

)
is not convergent to 0.

For this aim consider any n ≥ k0. We will find m ≥ n such that |A(m)|
f(m) ≥ 1. If

|A(n)|
f(n) ≥ 1, put m := n. Otherwise, choose the smallest m ≥ n such that m ∈ N\A.

Then |A(m)|
f(m+1) ≥ 1 and so, |A(m)|

f(m) ≥ 1. Thus, the sequence
(
|{k≤n:|xk−L|≥ε}|

f(n)

)
is not

convergent to 0.
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Now, let us back to the general case where f ∈ G need not be nondecreasing.
Then we assume the associated function g ∈ G from Lemma 2.2. Note that n

g(n) →
∞ since n

g(n) ≥
n

f(n) for all n and n
f(n) → ∞. By the above reasons we obtain the

respective set A for g. Thus, |A(n)|
g(n) 9 0 and the sequence ( |A(n)|

g(n) ) is bounded. Then

|A(n)|
f(n) 9 0, and the sequence

(
|{k≤n:|xk−L|≥ε}|

f(n)

)
is bounded since g(n) ≤ f(n) for

all n ∈ N.

Theorem 2.1. If g1, g2 belong to G such that g2(n)
g1(n)

→∞ then Cstg1(x) ( Cstg2(x).

If g ∈ G and n
g(n) →∞ then Cstg (x) ( Cst(x).

Proof. To prove the first claim note that the inclusion Cstg1(x) ⊂ Cstg2(x) follows from
Lemma 2.1. Set f :=

√
g1.g2. Then

lim
n→∞

f(n)

g1(n)
= lim
n→∞

g2(n)

f(n)
=∞.(2.2)

Also we have
n

g1(n)
=

n

g2(n)
.
g2(n)

g1(n)
→∞.

So n
f(n) =

√
n2

g1(n)g2(n)
→∞. Hence f have the assumption of Lemma 2.3. Take the

sequence (xn) obtained in this lemma. Then xn ∈ Cstg2(x) but xn /∈ Cstg1(x). Indeed,
using (2.2) we have

|{k ≤ n : |xk − L| ≥ ε}|
g2(n)

=
|{k ≤ n : |xk − L| ≥ ε}|

f(n)
.
f(n)

g2(n)
→ 0

because
(
|{k≤n:|xk−L|≥ε}|

f(n)

)
n∈N

is bounded from Lemma 2.3. Thus, xn ∈ Cstg2(x).

To prove that xn /∈ Cstg1(x) observe that

|{k ≤ n : |xk − L| ≥ ε}|
g1(n)

=
|{k ≤ n : |xk − L| ≥ ε}|

f(n)

f(n)

g1(n)
.

So, xn /∈ Cstg1(x) because |{k≤n:|xk−L|≥ε}|f(n) 9 0, and f(n)
g1(n)

→∞ from (2.2).

If we take g2(n) = n, for all n ∈ N, second assertion proved easily from the same
way.

Corollary 2.1. Let 0 < α < β ≤ 1 and g1(n) = nα, g2 = nβ for n ∈ N. Then
Cstg1(x) ( Cstg2(x).

Example 2.1. Let

g1(n) =

{
n, for even n ∈ N√
n, for odd n ∈ N
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and g2(n) =
√
n for n ∈ N. It is clear that, lim supn→∞

g1(n)
g2(n)

= ∞. However, Cstg1(x) =

Cstg2(x). Indeed, construct a nondecreasing function g ∈ G such that Cstg (x) = Cstg1(x),
according to the method used in the proof of Lemma 2.1. Then it follows from simple
calculations that g is given by

g(n) =

{ √
n+ 1 for even n ∈ N√

n for odd n ∈ N.

Obviously, 1
2
≤ g(n)

g2(n)
≤ 2 for all n ≥ 1. Therefore, by Lemma 2.1 we have Cstg (x) = Cstg1(x).

Theorem 2.2. There exists a function g ∈ G such that Cstg is different from Cstnα
with 0 < α < 1.

Proof. Let ak and g(n) defined as in Example 1.3. Let Ak := {n ∈ N : ak+1 −
(ak+1)1/4 ≤ n < ak+1} and A = ∪k≥2Ak. Let us take account the sequence

xn =

{
n, n ∈ A
0, n /∈ A.

It is clear that 1
2 (ak+1)1/4 ≤ |Bk| ≤ (ak+1)1/4. Let us check that g−st−limxk 6=

0. For k > 0 we have

|{k ≤ ak+1 − 1 : |xk − 0| ≥ ε}|
g(ak+1 − 1)

≥
1
2 |Bk|
g(ak)

≥
1
4 (ak+1)1/4

(ak+1)1/4
=

1

4
,

so, g − st− limxk 6= 0. Furthermore,

|{k ≤ ak+1 : |xk − 0| ≥ ε}| ≤ (ak)1/4 + (ak+1)1/4 ≤ 2(ak+1)1/4

and so,

|{k ≤ ak+1 : |xk − 0| ≥ ε}|
(ak+1)1/3

≤ 2(ak+1)1/4

(ak+1)1/3
= 2(ak+1)−1/12 → 0, (k →∞)

holds.

Now, fix any n ≥ 4 and choose a unique k ∈ N such that n ∈ [ak, ak+1). If
n < ak+1 − (ak+1)1/4 then

|{k ≤ n : |xk − 0| ≥ ε}|
n1/3

=
|{k ≤ ak : |xk − 0| ≥ ε}|

n1/3

≤ |{k ≤ n : |xk − 0| ≥ ε}|
(ak)1/3

≤ 2(ak)−1/12.

If ak+1 − (ak+1)1/4 ≤ n < ak+1 then for b > a > 0, the function

f(x) :=
a+ x

(b+ x)1/3
, x ≥ 0
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is increasing, thus

|{k ≤ n : |xk − 0| ≥ ε}|
n1/3

≤ |{k ≤ ak+1 : |xk − 0| ≥ ε}|
(ak+1)1/3

.

So, xn ∈ Cstn1/3(x).

Now, let 0 < α < 1, α 6= 1
3 . If α < 1

3 then from Corollary 2.1 Cstnα ( Cst
n1/3 and

Cstg \Cstnα 6= Ø because Cstg \Cstn1/3 6= Ø. If α > 1
3 then Cstnα\Cstg 6= Ø. By the same

way we can show that xn ∈ Cst\Cstg . So Cstg ( Cst.
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11. E. Savaş: Strong almost convergence and almost λ-statistical convergence. Hokkaido
Math., 29(3) (2000), 531–536.
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13. E. Savaş: On I-lacunary statistical convergence of weight g of sequences of sets. Filo-
mat 31(16) (2017), 5315–5322.



898 A.A. Adem and M. Altınok
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