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Abstract. In this paper we deal with Jain-Schurer operators. We give an estimate,
related to the degree of approximation, via moduli of smoothness of the first and the
second order. Also, we present a Voronovskaja-type result. Moreover, we show that the
Jain-Schurer operators preserve the properties of a modulus of continuity. Finally, we
study monotonicity of the sequence of the Jain-Schurer operators when the attached
function is convex and non-decreasing.
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1. Introduction

In [19], Schurer constructed the following linear positive operators

k

oo k
(1) Sup(fia) = e Sy (£) EHLE
k=0

where x € [0,b], b < oo, n € N, p >0, and f is real valued and bounded function
on [0, 00). The case p = 0 gives the the well known Szasz-Mirakjan operators. There
are a number of generalizations of Szasz-Mirakjan operators, here we cite only a
few ([4], [6], [10], [11]) with references therein. Some works concerning Schurer’s
setting can be found in [3], [14], [20], [16] and [17]. Motivated by these statements,
we extend the well known Jain operators in the Schurer’s design. Recall that in
[12], Jain constructed the following linear positive operators

(1.2) PP (f:z) Zf<> (k;nz), x € (0,00),
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and P} (f;0) = f(0), where n € N, g € [0,1), f € C[0,00), and for 0 < a <
oo, wg (k; @) is given by

k3)F
(1.3) wg (k; o) := %6_(0“’%6), k e NU {0}
and it satisfies Y wg(k;a) = 1. In the paper, the author studied convergence
k=0

properties and the order of approximation by the sequence of these operators on
any finite closed interval of [0, 00) by taking 8 as a sequence 3, such that 5, — 0
as n — oo. For some interesting papers concerning Jain operators, we refer to [1],
[2], [7], [9], [18], [23] and references therein. Obviously, the case 8 = 0 gives the
well known Szdsz-Mirakjan operators [22].

In this work, for a fixed p € NU {0}, we consider the linear positive operators
denoted by S? | n € N, and defined as

(14 52, (0 =31 () ws (n-4p)) . € (0,00)
k=0

and SP (f;0) = f(0), for f € Cp0,00) := {f € C[0,00) : f is bounded},
B € 0,1), and wg (k; (n + p) x) given by (1.3). We call Sﬁﬁp as Jain-Schurer op-
erators. Note that, each Sf:)p maps Cp[0,00) into itself, and the case p = 0
covers the Jain operators: 5’570 = P,Em, n € N. On the other hand, in the case

8=0, Sﬁyp reduces to the Schurer extension of the Szdsz-Mirakjan operators given
by (1.1). We obtain an estimate, which will be used next for the rate of conver-
gence, with the help of the modulus of smoothness of a bounded and continuous
function, and prove a Voronovskaja-type result. Moreover, we show that each Jain-
Schurer operator preserves the properties of a general modulus of continuity. Fi-
nally, we investigate the monotonicity of the sequence of the Jain-Schurer operators
Sﬁyp (f), with respect to n, when the function f is convex and non-decreasing.

Now, denoting e; (t) = t7, j € NU{0} and @J () := (t — z)’ , j € N, for the Jain
operators P}’ we have (see, e.g., [11, Lemma 1])

Lemma 1.1. For the operators pY given by (1.2), one has

P’r[Lﬂ] (60;:17) = 17
PPl (er;z) = lf ;
2
PP (eg;z) = 1 f 7 f i
3 2
POl (pig) — % 3z (1+28)x
n (63755) (1—ﬁ)3+n(1—6)4 n2(1—ﬁ)5’
PPl (eg52) = v 6 (88+7)a>  (68°+88+1) T

Q-8 n(@-BF m1-p) n3(1—B)"
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Making use of Lemma 1.1, straightforward computation shows that moments
and central moments of the Jain-Schurer operators are obtained as in the following
lemmas, respectively:

Lemma 1.2. For the operators S’fip given by (1.4), one has

Sy, (ej;x) = P (ej; (n+p> :zr> i=0,1,....

n

Lemma 1.3. For the operators Sfip given by (1.4), one has

S8, (ki) = (6+§)1fﬁ,
Sty (ehio) = (B+§)2ﬁ+(1+g)ﬁ7
o) = () o (04 2) (0 0) 5
+(1+2) (4n5 + 3nn—;—(ipf —;)Zp—i— snf) o, (1+2) %

2. Modulus of smoothness K-Functional

In this part of the paper, we extend the result proved by Agratini for the Jain
operators [2, Theorem 2] to the Jain-Schurer operators. To this aim, we recall the
terminology that will be used in the results. As usual, let Cp[0,00) denote the
space of real valued, bounded and continuous functions defined on [0, 00) equipped
with the norm given by

[fIl="sup [f(z)]

z€[0,00)
for f € Cp[0,00). Also, let UCE [0, 00) denote the space of all real valued bounded
and uniformly continuous functions on [0, c0) .

For a bounded, real valued function f on [0, 00) and ¢ > 0, the first modulus of
smoothness, modulus of continuity, of f is defined by

wi (f,6)=sup  sup |f(z+h)—f(2)
|h|<8 z,2+h€E[0,00)

and second modulus of smoothness of f is defined by

we (f,6) =sup  sup [f(z+2h)=2f(z+h)+[f(z)]
|h|<8 z+2h€]0,00)

We have the following well known property of the modulus of smoothness (see, e.g.,
[3, p. 266, Lemma 5.1.1]).
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Remark 2.1. If f € UCgpI0,00), then lims_ o+ wy (f,0) =0 for k =1, 2.

For convenience, we need the following Peetre’s K-functional defined by

K (f,0) inf OO){Hf—gH+5Hg”II},

geCE]

where § > 0 and
Og [Oa OO) = {g €Cp [0,00) : g/ag” €Cp [0,00)} .

Note that the modulus of smoothness and the K-functional of an f € Cg [0, 00) are
related to each other as in the following sense: There exist positive constants Ci
and Cy such that

(21) 01WQ (f, 5) S K (f, 52) S ngg (f, 6)

(see, e.g., [8, p. 177, Theorem 2.4]).
Below, we present a quantitative estimate to reach to the subsequent result

concerning the rate of the approximation by {Sﬁ; (f; a:)}n>1 .

Theorem 2.1. Let p € Ny be fized, 0 < 8 <1 and f € Cp[0,00). Then, for each
x € (0,00), one has

X

1-p

22 I8t U0 - @] e (£ (54 2) 255 ) + Cun (182, )

where C > 0 is a positive constant and

2o =g (D) T (D) g

Proof. Consider an auxiliary operator

(2.4) 5, (f52) = Sﬁ,p(f;w)Jrf(x)—f((H%) 1f[3)

for f € Cp[0,00), n € N. In this case, gﬁ)p are linear and positive and each

operator preserves the linear functions. Now, let g € C%[0,00). From Taylor’s
formula about an arbitrary fixed point =, one has

¢
(2:5) 9) =9 (@) +9 @) t-2)+ [ (¢-1)g" W)y
for t € [0,00) . Application of the operators ?ﬁﬁp on both sides of (2.5) gives that

t

(26) B0, (0) ~ 90) =g @3, (6~ wi) + 50, | (= 0)9" Wy

x
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Taking (2.4) into account for f (y) dy, expression (2.6) reduces to

H%w

' (142) %5
gﬁ)p (g;2)—g(x) = Sfip (/ t—v)g" (y) dy;ﬂﬁ) - / {(1 + %) 1 f B8 y} 9" (y) dy.

Using the fact

(1+2) 125

/ KlJF%) 1fﬁ_y] 9" Wdy| < %(Sﬁ (¥%52))" 9”1

x

by Lemma 1.3, we obtain

S (giw) — g(:v)‘

n,p (

< W sz, (i) + (52, (o))

2

oo+ ) e (48) ]|

On the other hand, from (2.4) and Lemma 1.2, it can be easily obtained that

t

/ (t—y)g" (y)dy

IA
n
I

(1+2) 25
;x)+ / [(H%)lfﬁ—y} 9" (y)| dy

x

(2.8)

S (fi)| < (S5, (Fio)] + 2071 <3111

for f € Cp[0,00). Thus, taking (2.4), (2.7) and (2.8) into account, for f,g €
Cp [0,00) one has

|Shp (fi2) = £ (2)]

IN

IN
&
N
s
~—
=
+
SRS
N—
—_
I8
=
N—
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Finally, taking infimum over all g € C% [0,00) on the right hand-side of the last
inequality and applying (2.1), we get

o (1.5 3) 725) 1 (10 0)

or (£.(8+2) 125 + Cun (182, )

1S5, (f;2) — f (2)]

IN

IN

where 07, () is given by (2.3). O

Note that the case p = 0 in the above theorem reduces to Theorem 2 in [2].

Taking Remark 2.1 and (2.2) into account, we reach to the following conclusion:

Corollary 2.1. i) If 8 is taken as a sequence B, such that 0 < 3, < 1 and
limy,—0oBn = 0 and f € UCpB[0,00), then one gets lim, Sf:j;) (f;2) = f(x) on

p xT

[0, 00) and the order of the approxzimation does not exceed to that of wq (f, (ﬂn + —) 3

Cuws (f, 55:}7 (x)) .

it) If B is taken as a sequence B, such that 0 < 8, < 1 and lim,—o0Bn =0 and
f € Cp[0,00), then {S5, (f)}n>1 converges uniformly to f on [a,b], 0 <a <b<
00, by the well known Korovkin theorem.

3. A Voronovskaja-type result

In [9], Farcas obtained the following Voronovskaja-type result for the Jain operator
pY given by (1.2):

x

tim n { P (fi0) = f (@)} = 2" (@), @ >0,

n—oo 2

for f € C5[0,00), the space of all continuous functions having continuous second
order derivative, where 0 < 3,, < 1 is a sequence such that lim, .., 8, = 0.

Note that a Voronovskaja-type result for a generalization of the Jain operators
was obtained by Olgun et al. [18]. On the other hand, a Voronovskaja-type theorem
as well as its a generalized form for Schurer setting of the Szasz-Mirakjan operators
were obtained by Sikkema in [20, p. 333].

In this part, we investigate a Voronovskaja-type result for the Jain-Schurer op-
erators Sﬁp, n € N.

Theorem 3.1. Let p € Ny be fized and 0 < B, < 1 be a sequence such that
limp—oonfBn = 0. If f is bounded and continuous on [0,00) and has the second
order derwative at some x € (0,00), then one has

lim {85, (fi2) = £ @)} = pof’ (@) + 5" (@)

n—roo

)+
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Proof. From Taylor’s formula, one has

(1) FO=F@+F @) 2)+ 3" @) (¢~ +h(t—a) (- 2),

at the fixed point z € [0,00), where h(t — z) is bounded for all ¢ € [0,00) and
limy , h (t — ) = 0. Application of the operators S}  to (3.1) implies

n[Si (i)~ 1@)] = @ nsf - a2)+ 57 @nsdy (-2 )
+n55§) (h (t —z) (t — ) ;:C) .

Using the facts lim,,—,oonB, = 0 and Lemma 1.3, it readily follows that

nh_)rr;OnSnﬁp(t x;x) = px

and
lim nSg)’;) ((t —z)? ;33) =z

n—oo

Hence, we have

lim n (S, (fi2) = f (2)) = pof’ (@)+5f" (2)+ lim nS, (h(t-2)@—2):z).

n—00

It suffices to prove that lim,_, nSﬁj;) (h (t —a)(t — ) ;:1:) = 0. Indeed, defining

h(0) = 0 and taking the fact lim;,, h (¢ —z) = 0 into account, we get that h is

continuous at z. Hence, for each ¢ > 0, there is a 6 > 0 such that |h (t — z)| <

e for all ¢ satisfying |t — x| < d. On the other hand, since h (t — z) is bounded on

[0,00), there is an M > 0 such that |h(t —z)] < M for all t. Therefore, we may
2

write |h(t — )| < M(t;—f) when |t — 2| > 4. So, these arguments enable one to

write |h(t — )| < e+ M(t_(;ff)2 for all £. The monotonicity and linearity of Sﬁfp give

that

Sﬁj}o (h (t—z) (t—z) ;x) < ESSZJ ((t —z)? ;x) + %Sﬁj}o ((t —z)*; :C)
M
= eSpn (v3i@) + S0, (ehie)

62 n,p

Making use of Lemma 1.3, with 8 = 3,,

lim nng";) (h (t—z) (t —2z) ;x) =0,

n—oo

by the hypothesis on (,,, which completes the proof. O
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4. A Retaining Property

Recall that A continuous and non-negative function w defined on [0,00) is called a
modulus of continuity, if each of the following conditions is satisfied:

i) wu+v) <w(u) +w) for u,v,u+v € [0,00), i.e., w is semi-additive,

it) w(u) > w(v) for u>v >0, i.e., w is non-decreasing,

4ii) lim, o+ w(u) = w(0) = 0, ([15, p. 106]).

In [13], Li proved that each Bernstein polynomial preserves the properties of
modulus of continuity on [0,1]. Motivated by this result, in this section we will

show that each Jain-Schurer operator has this preservation property as well. In the
proof, we need the following Jensen formula

(4.1) (uto)(ut+v+mp)" " = Z (?)u (w+kB) T vv+ (m—k)Bg™ T,
where u, v, and 3 € R (see, e.g., [3, p. 326]).

Theorem 4.1. Letp € Ny be fivred and 0 < 8 < 1. If w is a bounded modulus of
continuity on [0,00), then for eachn € N, Sﬁ_’p (w; x) is also a modulus of continuity.

Proof. Let z,y € [0,00) and x < y. From the definition of S2, we have

no

(4.2) Sff,p (wiy) = iw <i> (n+p)yltn + p)y+ i~ e l(nt+p)y+iB]

n !
=0 J

Takingu=(n+p)x,v=(n+p)y— (n+p)x and m =3 in (4.1), we obtain
i
(n+p)y (0 +p)y + 6)

(i:) ("+p)x[(”+p)x+k5]k—1

x(n+p)(y—=)[(n+p)(y—z)+(G—k) B *
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Substituting this expression into (4.2) we get

Sup(@iy) = ii“«%) (i)%(n‘Fp)fc[(n—i—p)x—i-kﬁ]k_l
(

X (n4p) (y—2z)[(n+p)(y—x)+ (j — k) g+ Le[(n+plytif]

= > >w <%> ﬁ (n+p)z[(n+p)a+kB8" "
k=0 j=k
X (n+p)(y—=2)[(n+p)(y—=z)+ (G — k) Y F e (ntrivtidl
= 23 () e nelon ek
k=0 =0 v
(4.3) x (n+p) (y —2) [(n+p) (y — ) + 18]\ L [Py +kB+I8]

On the other hand, from (1.3), we have

(n+p) (y—a) _ i (n+p) (=) [(n+p) (y—2) 18" 4

!
1=0

Therefore, Sﬁﬁp (w; x) may be written as

Sh, (wiz) = i w <E> (n+p) z(n Lp) T+ EBI T (ol
' n
k=0
- i w (k> (n+p) z[(n *]; 'P) 2B ksl (k) (y—)
n
k=0
0o o0 k 1 -
= 30 (}) g peiospa sk
(4.4) x (n+p)(y—2z)[(n+p) (y — x) + 18] Le~ (nTPIv+kE+5],

Subtracting (4.4) from (4.3), we obtain

e
i ('““) o (B)} e malons o wap

n+p)( —2) [(n+p) (y — z) + 18] Le ntR)yt(htDB]
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Using the semi-additivity property of w, we get

SE o (wiy) — SE ) (w;2)

n,p
< s tpalnrp etk
- = k!

X ;w (%) (n+p)(y—2)n ;L' P)Y=a) + 187 jspyyrig
_ e, (L) =D 6=+ s

—0 n I

— (I (+p)y—2)[(n+p)ly—2) +16"" iy
- ;w (E) i e~ (D) (y—2)+15]
= Sp,(wy—a),

which shows the semi-additivity ofoip. From (4.5) it readily follows that Sﬁﬂp (wyy) >
Sfip (wyz) fory >z, i.e., Sf:)p is non-decreasing. Moreover, since the series is uni-
formly convergent, it follows that limg,_,o+ Sﬁyp (wyz) = Sﬁyp (w;0) = w(0) = 0.
This comples the proof. O

5. Monotonicity of the sequence of the Jain-Schurer operators

In [5], Cheney and Sharma proved that the sequence of Szdsz-Mirakjan operators
pY (f) is non-increasing in n, when f is convex. The purpose of this section is to
observe the monotonicity of the sequence of the Jain-Schurer operators when the
attached function is convex and non-decreasing and p # 0. In the case p = 0, we
obtain monotonicity of the sequence of Jain operators in n when f is convex. For
the proof, we further need the following Abel-Jensen formula

m

(5.1) (u+v+mB)" = Z (7:) (u—i—kﬁ)kv[v—i— (m—k) B]mfk*l

k=0

for non-negative real number 3, where u,v € R and m > 1 (see, e.g., [21]). Reasoning
as in [5], we present the following result:

Theorem 5.1. Let f be a non-decreasing and convex function on [0,00). Then,
for all n, Sff)p (f) is non-increasing in n when p # 0. For the case p =0, the same
result holds when f is only convez on [0, c0).

Proof. From (1.3), with @ = x, it is obvious that

o0 k—1
(5.2) e = Z Me*kﬁ'

k!
k=0
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Since Sﬁﬁp (f;0) = f(0), we study only for z > 0. Taking the definition of Sﬁyp and
(5.2) into consideration, one has

( ,LL’) n+lp(f7 )

k!

= f E (n+p)eal(n +p)x + k" —[(n+1+p)z+kB]
n k!
_ f k\(+1l+paf(nt1+p)z+kp! o~ [(n+1+p)z+kB]
n+1 k!
k=0
= i Lwll —1B i f (k) n+p)a[(n+p)x+kBF! o~ (n+1+p)z+k]
n

=0

_ i TELRYCES! +p> 2l 14 p)a+ kEF Y i pains)
n+1 k!

By simple calculations, one can write
(5397, (fi2) = Sy, (fi2)

= ZM ’wa( _l) n+p)m[(n+f)w+)'(k_l)mIHAef[(n+1+p)z+(kfz)m
k— 1)

=0

- i f ( ) (nt+1+pallnt1+p)et kst e~ l(n+14+p)z+kp]
n+1 k!

—i(n = n+ n+p)z+ (k—0pF 1tz (x4+18) 1
_ Ze[(+1+p)+k5{zf( )( p)[( f;_l)!( ) A] ( “>

() e e k) )

—[(n T n —+ n -+ $+lﬁl71mm+ k_lﬁk,l71
- Ze [(n+1+p)z+kB] {Zf( )( p) =[( “p) ] [ ((k_g)!]

(g e

_ i (n+1+p):c[(n+1+p):c+k6]k*167[(n+1+p)z+k6] y

!
=0 k!

= ky (n+p)al(n+p) e+ 18 efe+ (k- BT (1 k
{¥<l) (n+1+p)zl(n+1+p)z+ kpJk-1 f(;)—f(n_i_l) .

Now, it only remains to show that the curly bracket in the last formula must be
non-negative. For this, we denote

o (k) (n+p)al(n+p)a+ 18 e+ (k-1)p" "
=y (n+1+p)z[(n+1+p)x+kBJk1!

>0,

and
l
T, = —
n
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for 1 =0,1,..., k. Now, replacing u with (n+ p)z, v with z, m with k and k with
[ in (4.1) we evidently get
(5.4)

a 1

T A itp)alnt 1t p)at kBFT (n+ 1+ p)aln+1+p)athf =1

=0

On the other hand, it follows that

1
= X
;am (n+1+p)al(n+1+p)z+kplF!

k
S (§) 5 ot phalint o+ 1a oo+ (6= 0 g
=0

B kin+p)x y
T on(ntl+p)a[(n+1+p)z+kEFT
(k-1
(5.5) Z( z )[(”+p)$+5+lﬁ]l:v[:v+(k—l—1)ﬁ]k_l_2,

=0

Making use of the Abel-Jensen formula given by (5.1) for u = (n+p)z+ 8, v =
xz, k=1, m=k—1, (5.5) reduces to

k(n+p)x

> oum = n(n—|—1—i—p):v[(n-i—1—I—p)x—i—kﬁ]k—l[(n+1+p>x+kﬂ]k_l
7 k(n+p)
(5.6)  n(n+1+p)

Taking into account (5.4), (5.6) and the convexity of f, (5.3) reduces to
(7)., (fi2) = 874 p (F52)

i (n+1+p)z[(n+1+p)z+kpJF ! —[(n+1+p)z+kB] ia ( ) ( k )
k! P n+1

(n+1+p)al(n+1+p)z+kplFL —[(n+1+ )z+k,8]{ k(n+p) ) ( k )}
g k! ! f n(n+1+p) f n+1 '

I\/

It is obvious that when p = 0, (5.7) gives the non-negativity of 5’570 (f;z) —

Sg 41,0 (f;z) under the convexity of f, which means that the sequence of Jain oper-
ators is non-increasing in n under the convexity of the function. On the other hand,
for p € N it follows that

k(n+p) k n+1 n+p k 1+

P
n(n—l—l—i—p):n—i—l n n—i—l—f—p:n—i—l(l_i_L)'

n+1

+
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Hence, one has

k(n+p) k
nn+1+p) ~“n+1
by the fact that 1Ti > 1. Then, the result follows directly from the non-decreasingness
n+1
of f.. O
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