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Abstract. In this paper we deal with Jain-Schurer operators. We give an estimate,
related to the degree of approximation, via moduli of smoothness of the first and the
second order. Also, we present a Voronovskaja-type result. Moreover, we show that the
Jain-Schurer operators preserve the properties of a modulus of continuity. Finally, we
study monotonicity of the sequence of the Jain-Schurer operators when the attached
function is convex and non-decreasing.
Keywords: Jain-Schurer operators; monotonicity; moduli of smoothness; Voronovskaja-
type result.

1. Introduction

In [19], Schurer constructed the following linear positive operators

(1.1) Sn,p (f ;x) = e−(n+p)x
∞
∑

k=0

f

(

k

n

)

(n+ p)k xk

k!
,

where x ∈ [0, b], b < ∞, n ∈ N, p ≥ 0, and f is real valued and bounded function
on [0,∞). The case p = 0 gives the the well known Szász-Mirakjan operators. There
are a number of generalizations of Szász-Mirakjan operators, here we cite only a
few ([4], [6], [10], [11]) with references therein. Some works concerning Schurer’s
setting can be found in [3], [14], [20], [16] and [17]. Motivated by these statements,
we extend the well known Jain operators in the Schurer’s design. Recall that in
[12], Jain constructed the following linear positive operators

(1.2) P [β]
n (f ;x) =

∞
∑

k=0

f

(

k

n

)

wβ (k;nx) , x ∈ (0,∞) ,
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and P
[β]
n (f ; 0) = f (0) , where n ∈ N, β ∈ [0, 1), f ∈ C [0,∞) , and for 0 < α <

∞, wβ (k;α) is given by

(1.3) wβ (k;α) :=
α (α+ kβ)

k−1

k!
e−(α+kβ), k ∈ N ∪ {0}

and it satisfies
∞
∑

k=0

wβ (k;α) = 1. In the paper, the author studied convergence

properties and the order of approximation by the sequence of these operators on
any finite closed interval of [0,∞) by taking β as a sequence βn such that βn → 0
as n → ∞. For some interesting papers concerning Jain operators, we refer to [1],
[2], [7], [9], [18], [23] and references therein. Obviously, the case β = 0 gives the
well known Szász-Mirakjan operators [22].

In this work, for a fixed p ∈ N ∪ {0} , we consider the linear positive operators
denoted by Sβ

n,p, n ∈ N, and defined as

(1.4) Sβ
n,p (f ;x) =

∞
∑

k=0

f

(

k

n

)

wβ (k; (n+ p)x) , x ∈ (0,∞)

and Sβ
n,p (f ; 0) = f (0) , for f ∈ CB [0,∞) := {f ∈ C [0,∞) : f is bounded},

β ∈ [0, 1), and wβ (k; (n+ p)x) given by (1.3). We call Sβ
n,p as Jain-Schurer op-

erators. Note that, each Sβ
n,p maps CB [0,∞) into itself, and the case p = 0

covers the Jain operators: S
β
n,0 = P

[β]
n , n ∈ N. On the other hand, in the case

β = 0, Sβ
n,p reduces to the Schurer extension of the Szász-Mirakjan operators given

by (1.1). We obtain an estimate, which will be used next for the rate of conver-
gence, with the help of the modulus of smoothness of a bounded and continuous
function, and prove a Voronovskaja-type result. Moreover, we show that each Jain-
Schurer operator preserves the properties of a general modulus of continuity. Fi-
nally, we investigate the monotonicity of the sequence of the Jain-Schurer operators
Sβ
n,p (f) , with respect to n, when the function f is convex and non-decreasing.

Now, denoting ej (t) = tj , j ∈ N∪{0} and ϕj
x (t) := (t− x)

j
, j ∈ N, for the Jain

operators P
[β]
n we have (see, e.g., [11, Lemma 1])

Lemma 1.1. For the operators P
[β]
n given by (1.2), one has

P [β]
n (e0;x) = 1,

P [β]
n (e1;x) =

x

1− β
,

P [β]
n (e2;x) =

x2

(1− β)
2 +

x

n (1− β)
3 ,

P [β]
n (e3;x) =

x3

(1− β)3
+

3x2

n (1− β)4
+

(1 + 2β)x

n2 (1− β)5
,

P [β]
n (e4;x) =

x4

(1− β)4
+

6x3

n (1− β)5
+

(8β + 7)x2

n2 (1− β)6
+

(

6β2 + 8β + 1
)

x

n3 (1− β)7
.
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Making use of Lemma 1.1, straightforward computation shows that moments
and central moments of the Jain-Schurer operators are obtained as in the following
lemmas, respectively:

Lemma 1.2. For the operators Sβ
n,p given by (1.4), one has

Sβ
n,p (ej ;x) = P [β]

n

(

ej ;

(

n+ p

n

)

x

)

, j = 0, 1, . . . .

Lemma 1.3. For the operators Sβ
n,p given by (1.4), one has

Sβ
n,p

(

ϕ1
x;x

)

=
(

β +
p

n

) x

1− β
,

Sβ
n,p

(

ϕ2
x;x

)

=
(

β +
p

n

)2 x2

(1− β)
2 +

(

1 +
p

n

) x

n (1− β)
3 ,

Sβ
n,p

(

ϕ4
x;x

)

=
(

β +
p

n

)4 x4

(1− β)
4 + 6

(

β +
p

n

)2 (

1 +
p

n

) x3

n (1− β)
5

+
(

1 +
p

n

)

(

4nβ + 3n+ 8pβ + 7p+ 8nβ2
)

n3 (1− β)
6 x2 +

(

1 +
p

n

)

(

6β2 + 8β + 1
)

n3 (1− β)
7 x .

2. Modulus of smoothness K-Functional

In this part of the paper, we extend the result proved by Agratini for the Jain
operators [2, Theorem 2] to the Jain-Schurer operators. To this aim, we recall the
terminology that will be used in the results. As usual, let CB [0,∞) denote the
space of real valued, bounded and continuous functions defined on [0,∞) equipped
with the norm given by

‖f‖ = sup
x∈[0,∞)

|f (x)|

for f ∈ CB [0,∞) . Also, let UCB [0,∞) denote the space of all real valued bounded
and uniformly continuous functions on [0,∞) .

For a bounded, real valued function f on [0,∞) and δ > 0, the first modulus of
smoothness, modulus of continuity, of f is defined by

ω1 (f, δ) = sup
|h|≤δ

sup
x,x+h∈[0,∞)

|f (x+ h)− f (x)|

and second modulus of smoothness of f is defined by

ω2 (f, δ) = sup
|h|≤δ

sup
x+2h∈[0,∞)

|f (x+ 2h)− 2f (x+ h) + f (x)| .

We have the following well known property of the modulus of smoothness (see, e.g.,
[3, p. 266, Lemma 5.1.1]).
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Remark 2.1. If f ∈ UCB [0,∞) , then limδ→0+ ωk (f, δ) = 0 for k = 1, 2.

For convenience, we need the following Peetre’s K-functional defined by

K (f, δ) = inf
g∈C2

B
[0,∞)

{‖f − g‖+ δ ‖g′′‖} ,

where δ > 0 and

C2
B [0,∞) = {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)} .

Note that the modulus of smoothness and the K-functional of an f ∈ CB [0,∞) are
related to each other as in the following sense: There exist positive constants C1

and C2 such that

(2.1) C1ω2 (f, δ) ≤ K
(

f, δ2
)

≤ C2ω2 (f, δ)

(see, e.g., [8, p. 177, Theorem 2.4]).

Below, we present a quantitative estimate to reach to the subsequent result
concerning the rate of the approximation by

{

Sβn
n,p (f ;x)

}

n≥1
.

Theorem 2.1. Let p ∈ N0 be fixed, 0 ≤ β < 1 and f ∈ CB [0,∞) . Then, for each
x ∈ (0,∞), one has

(2.2)
∣

∣Sβ
n,p (f ;x)− f (x)

∣

∣ ≤ ω1

(

f,
(

β +
p

n

) x

1− β

)

+ Cω2

(

f, δβn,p (x)
)

,

where C > 0 is a positive constant and

(2.3) δβn,p (x) :=
1

2

√

(

β +
p

n

)2 x2

(1− β)
2 +

(

1 +
p

n

) x

2n (1− β)
3 .

Proof. Consider an auxiliary operator

(2.4) S
β

n,p (f ;x) := Sβ
n,p (f ;x) + f (x)− f

(

(

1 +
p

n

) x

1− β

)

for f ∈ CB [0,∞) , n ∈ N. In this case, S
β

n,p are linear and positive and each
operator preserves the linear functions. Now, let g ∈ C2

B [0,∞) . From Taylor’s
formula about an arbitrary fixed point x, one has

(2.5) g (t) = g (x) + g′ (x) (t− x) +

t
∫

x

(t− y) g′′ (y) dy

for t ∈ [0,∞) . Application of the operators S
β

n,p on both sides of (2.5) gives that

(2.6) S
β

n,p (g;x)− g(x) = g′ (x)S
β

n,p (t− x;x) + S
β

n,p





t
∫

x

(t− y) g′′ (y)dy;x



 .
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Taking (2.4) into account for f (t) =
t
∫

x

(t− y) g′′ (y) dy, expression (2.6) reduces to

S
β

n,p (g;x)−g(x) = Sβ
n,p





t
∫

x

(t− y) g′′ (y) dy;x



−

(1+ p
n )

x
1−β

∫

x

[

(

1 +
p

n

) x

1− β
− y

]

g′′ (y) dy.

Using the fact

∣

∣

∣

∣

∣

∣

∣

∣

(1+ p
n)

x
1−β

∫

x

[

(

1 +
p

n

) x

1− β
− y

]

g′′ (y) dy

∣

∣

∣

∣

∣

∣

∣

∣

≤
1

2

(

Sβ
n,p

(

ϕ1
x;x

))2
‖g′′‖ ,

by Lemma 1.3, we obtain

∣

∣

∣S
β

n,p (g;x)− g(x)
∣

∣

∣

≤ Sβ
n,p





∣

∣

∣

∣

∣

∣

t
∫

x

(t− y) g′′ (y) dy

∣

∣

∣

∣

∣

∣

;x



+

∣

∣

∣

∣

∣

∣

∣

∣

(1+ p
n )

x
1−β

∫

x

[

(

1 +
p

n

) x

1− β
− y

]

|g′′ (y)| dy

∣

∣

∣

∣

∣

∣

∣

∣

≤
‖g′′‖

2

[

Sβ
n,p

(

ϕ2
x;x

)

+
(

Sβ
n,p

(

ϕ1
x;x

))2
]

=
‖g′′‖

2

[

2
(

β +
p

n

)2 x2

(1− β)
2 +

(

1 +
p

n

) x

n (1− β)
3

]

.(2.7)

On the other hand, from (2.4) and Lemma 1.2, it can be easily obtained that

(2.8)
∣

∣

∣S
β

n,p (f ;x)
∣

∣

∣ ≤
∣

∣Sβ
n,p (f ;x)

∣

∣+ 2 ‖f‖ ≤ 3 ‖f‖

for f ∈ CB [0,∞) . Thus, taking (2.4), (2.7) and (2.8) into account, for f, g ∈
CB [0,∞) one has

∣

∣Sβ
n,p (f ;x)− f (x)

∣

∣

≤
∣

∣

∣S
β

n,p (f − g;x)− (f − g) (x)
∣

∣

∣ +
∣

∣

∣S
β

n,p (g;x)− g(x)
∣

∣

∣

+

∣

∣

∣

∣

f(x)− f

(

(

1 +
p

n

) x

1− β

)∣

∣

∣

∣

≤ ω1

(

f,
(

β +
p

n

) x

1− β

)

+4

{

‖f − g‖+
1

4

[

(

β +
p

n

)2 x2

(1− β)2
+
(

1 +
p

n

) x

2n (1− β)3

]

‖g′′‖

}

.
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Finally, taking infimum over all g ∈ C2
B [0,∞) on the right hand-side of the last

inequality and applying (2.1), we get

∣

∣Sβ
n,p (f ;x)− f (x)

∣

∣ ≤ ω1

(

f,
(

β +
p

n

) x

1− β

)

+K
(

f,
(

δβn,p (x)
)2
)

≤ ω1

(

f,
(

β +
p

n

) x

1− β

)

+ Cω2

(

f, δβn,p (x)
)

,

where δβn,p (x) is given by (2.3).

Note that the case p = 0 in the above theorem reduces to Theorem 2 in [2].

Taking Remark 2.1 and (2.2) into account, we reach to the following conclusion:

Corollary 2.1. i) If β is taken as a sequence βn such that 0 ≤ βn < 1 and
limn→∞βn = 0 and f ∈ UCB [0,∞) , then one gets limn→∞ Sβn

n,p (f ;x) = f (x) on

[0,∞) and the order of the approximation does not exceed to that of ω1

(

f,
(

βn + p
n

)

x
1−βn

)

+

Cω2

(

f, δβn
n,p (x)

)

.

ii) If β is taken as a sequence βn such that 0 ≤ βn < 1 and limn→∞βn = 0 and
f ∈ CB [0,∞), then

{

Sβn
n,p (f)

}

n≥1
converges uniformly to f on [a, b], 0 ≤ a < b <

∞, by the well known Korovkin theorem.

3. A Voronovskaja-type result

In [9], Farcaş obtained the following Voronovskaja-type result for the Jain operator

P
[β]
n given by (1.2):

lim
n→∞

n
{

P [βn]
n (f ;x)− f (x)

}

=
x

2
f ′′ (x) , x > 0,

for f ∈ C2[0,∞), the space of all continuous functions having continuous second
order derivative, where 0 ≤ βn < 1 is a sequence such that limn→∞ βn = 0.

Note that a Voronovskaja-type result for a generalization of the Jain operators
was obtained by Olgun et al. [18]. On the other hand, a Voronovskaja-type theorem
as well as its a generalized form for Schurer setting of the Szász-Mirakjan operators
were obtained by Sikkema in [20, p. 333].

In this part, we investigate a Voronovskaja-type result for the Jain-Schurer op-
erators Sβ

n,p, n ∈ N.

Theorem 3.1. Let p ∈ N0 be fixed and 0 ≤ βn < 1 be a sequence such that
limn→∞nβn = 0. If f is bounded and continuous on [0,∞) and has the second
order derivative at some x ∈ (0,∞), then one has

lim
n→∞

n
{

Sβn
n,p (f ;x)− f (x)

}

= pxf ′ (x) +
x

2
f ′′ (x) .
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Proof. From Taylor’s formula, one has

(3.1) f (t) = f (x) + f ′ (x) (t− x) +
1

2
f ′′ (x) (t− x)

2
+ h (t− x) (t− x)

2
,

at the fixed point x ∈ [0,∞), where h (t− x) is bounded for all t ∈ [0,∞) and
limt→x h (t− x) = 0. Application of the operators Sβ

n,p to (3.1) implies

n
[

Sβn
n,p (f ;x)− f (x)

]

= f ′ (x)nSβn
n,p (t− x;x) +

1

2
f ′′ (x)nSβn

n,p

(

(t− x)
2
;x

)

+nSβn
n,p

(

h (t− x) (t− x)2 ;x
)

.

Using the facts limn→∞nβn = 0 and Lemma 1.3, it readily follows that

lim
n→∞

nSβn
n,p (t− x;x) = px

and

lim
n→∞

nSβn
n,p

(

(t− x)
2
;x

)

= x.

Hence, we have

lim
n→∞

n
(

Sβn
n,p (f ;x)− f (x)

)

= pxf ′ (x)+
x

2
f ′′ (x)+ lim

n→∞
nSβn

n,p

(

h (t− x) (t− x)
2
;x

)

.

It suffices to prove that limn→∞ nSβn
n,p

(

h (t− x) (t− x)
2
;x

)

= 0. Indeed, defining

h (0) = 0 and taking the fact limt→x h (t− x) = 0 into account, we get that h is
continuous at x. Hence, for each ε > 0, there is a δ > 0 such that |h (t− x)| <
ε for all t satisfying |t− x| < δ. On the other hand, since h (t− x) is bounded on
[0,∞) , there is an M > 0 such that |h (t− x)| ≤ M for all t. Therefore, we may

write |h (t− x)| ≤ M
(t−x)2

δ2
when |t− x| ≥ δ. So, these arguments enable one to

write |h (t− x)| ≤ ε+M
(t−x)2

δ2
for all t. The monotonicity and linearity of Sβn

n,p give
that

Sβn
n,p

(

h (t− x) (t− x)2 ;x
)

≤ εSβn
n,p

(

(t− x)2 ;x
)

+
M

δ2
Sβn
n,p

(

(t− x)4 ;x
)

= εSβn
n,p

(

ϕ2
x;x

)

+
M

δ2
Sβn
n,p

(

ϕ4
x;x

)

.

Making use of Lemma 1.3, with β = βn,

lim
n→∞

nSβn
n,p

(

h (t− x) (t− x)2 ;x
)

= 0,

by the hypothesis on βn, which completes the proof.
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4. A Retaining Property

Recall that A continuous and non-negative function ω defined on [0,∞) is called a
modulus of continuity, if each of the following conditions is satisfied:

i) ω(u+ v) ≤ ω(u) + ω(v) for u, v, u+ v ∈ [0,∞), i.e., ω is semi-additive,

ii) ω(u) ≥ ω(v) for u ≥ v > 0, i.e., ω is non-decreasing,

iii) limu→0+ ω(u) = ω(0) = 0, ([15, p. 106]).

In [13], Li proved that each Bernstein polynomial preserves the properties of
modulus of continuity on [0, 1]. Motivated by this result, in this section we will
show that each Jain-Schurer operator has this preservation property as well. In the
proof, we need the following Jensen formula

(4.1) (u+ v) (u+ v +mβ)
m−1

=

m
∑

k=0

(

m

k

)

u (u+ kβ)
k−1

v [v + (m− k)β]
m−k−1

,

where u, v, and β ∈ R (see, e.g., [3, p. 326]).

Theorem 4.1. Let p ∈ N0 be fixed and 0 ≤ β < 1. If ω is a bounded modulus of
continuity on [0,∞), then for each n ∈ N, Sβ

n,p (ω;x) is also a modulus of continuity.

Proof. Let x, y ∈ [0,∞) and x ≤ y. From the definition of Sβ
n , we have

(4.2) Sβ
n,p (ω; y) =

∞
∑

j=0

ω

(

j

n

)

(n+ p) y[(n+ p) y + jβ]j−1

j!
e−[(n+p)y+jβ].

Taking u = (n+ p)x, v = (n+ p) y − (n+ p)x and m = j in (4.1), we obtain

(n+ p) y ((n+ p) y + jβ)
j−1

=

j
∑

k=0

(

j

k

)

(n+ p)x [(n+ p)x+ kβ]
k−1

× (n+ p) (y − x) [(n+ p) (y − x) + (j − k)β]j−k−1.
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Substituting this expression into (4.2) we get

Sβ
n,p (ω; y) =

∞
∑

j=0

j
∑

k=0

ω

(

j

n

)(

j

k

)

1

j!
(n+ p)x [(n+ p)x+ kβ]

k−1

× (n+ p) (y − x) [(n+ p) (y − x) + (j − k)β]j−k−1e−[(n+p)y+jβ]

=

∞
∑

k=0

∞
∑

j=k

ω

(

j

n

)

1

k! (j − k)!
(n+ p)x [(n+ p)x+ kβ]

k−1

× (n+ p) (y − x) [(n+ p) (y − x) + (j − k)β]j−k−1e−[(n+p)y+jβ]

=

∞
∑

k=0

∞
∑

l=0

ω

(

k + l

n

)

1

k!l!
(n+ p)x [(n+ p)x+ kβ]

k−1

× (n+ p) (y − x) [(n+ p) (y − x) + lβ]l−1e−[(n+p)y+kβ+lβ].(4.3)

On the other hand, from (1.3), we have

e(n+p)(y−x) =

∞
∑

l=0

(n+ p) (y − x) [(n+ p) (y − x) + lβ]l−1

l!
e−lβ.

Therefore, Sβ
n,p (ω;x) may be written as

Sβ
n,p (ω;x) =

∞
∑

k=0

ω

(

k

n

)

(n+ p)x[(n+ p)x+ kβ]k−1

k!
e−[(n+p)x+kβ]

=

∞
∑

k=0

ω

(

k

n

)

(n+ p)x[(n+ p)x+ kβ]k−1

k!
e−[(n+p)y+kβ]e(n+p)(y−x)

=

∞
∑

k=0

∞
∑

l=0

ω

(

k

n

)

1

k!l!
(n+ p)x [(n+ p)x+ kβ]

k−1

× (n+ p) (y − x) [(n+ p) (y − x) + lβ]l−1e−[(n+p)y+kβ+lβ].(4.4)

Subtracting (4.4) from (4.3), we obtain

Sβ
n,p (ω; y)− Sβ

n,p (ω;x)

=
∞
∑

k=0

∞
∑

l=0

{

ω

(

k + l

n

)

− ω

(

k

n

)}

1

k!l!
(n+ p)x [(n+ p)x+ kβ]k−1

× (n+ p) (y − x) [(n+ p) (y − x) + lβ]l−1e−[(n+p)y+(k+l)β].(4.5)
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Using the semi-additivity property of ω, we get

Sβ
n,p (ω; y)− Sβ

n,p (ω;x)

≤

∞
∑

k=0

(n+ p)x [(n+ p)x+ kβ]
k−1

k!
e−kβ

×

∞
∑

l=0

ω

(

l

n

)

(n+ p) (y − x) [(n+ p) (y − x) + lβ]l−1

l!
e−[(n+p)y+lβ]

= e(n+p)x
∞
∑

l=0

ω

(

l

n

)

(n+ p) (y − x) [(n+ p) (y − x) + lβ]l−1

l!
e−[(n+p)y+lβ]

=

∞
∑

l=0

ω

(

l

n

)

(n+ p) (y − x) [(n+ p) (y − x) + lβ]l−1

l!
e−[(n+p)(y−x)+lβ]

= Sβ
n,p (ω; y − x) ,

which shows the semi-additivity of Sβ
n,p. From (4.5) it readily follows that Sβ

n,p (ω; y) ≥

Sβ
n,p (ω;x) for y ≥ x, i.e., Sβ

n,p is non-decreasing. Moreover, since the series is uni-

formly convergent, it follows that limx→0+ Sβ
n,p (ω;x) = Sβ

n,p (ω; 0) = ω (0) = 0.
This comples the proof.

5. Monotonicity of the sequence of the Jain-Schurer operators

In [5], Cheney and Sharma proved that the sequence of Szász-Mirakjan operators

P
[0]
n (f) is non-increasing in n, when f is convex. The purpose of this section is to

observe the monotonicity of the sequence of the Jain-Schurer operators when the
attached function is convex and non-decreasing and p 6= 0. In the case p = 0, we
obtain monotonicity of the sequence of Jain operators in n when f is convex. For
the proof, we further need the following Abel-Jensen formula

(5.1) (u+ v +mβ)m =
m
∑

k=0

(

m

k

)

(u+ kβ)k v [v + (m− k)β]m−k−1

for non-negative real number β, where u, v ∈ R andm ≥ 1 (see, e.g., [21]). Reasoning
as in [5], we present the following result:

Theorem 5.1. Let f be a non-decreasing and convex function on [0,∞). Then,
for all n, Sβ

n,p (f) is non-increasing in n when p 6= 0. For the case p = 0, the same
result holds when f is only convex on [0,∞).

Proof. From (1.3), with α = x, it is obvious that

(5.2) ex =

∞
∑

k=0

x (x+ kβ)
k−1

k!
e−kβ .
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Since Sβ
n,p (f ; 0) = f (0) , we study only for x > 0. Taking the definition of Sβ

n,p and
(5.2) into consideration, one has

Sβ
n,p (f ;x)− S

β
n+1,p (f ;x)

= ex
∞
∑

k=0

f

(

k

n

)

(n+ p)x[(n+ p)x+ kβ]k−1

k!
e−[(n+1+p)x+kβ]

−

∞
∑

k=0

f

(

k

n+ 1

)

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1

k!
e−[(n+1+p)x+kβ]

=
∞
∑

l=0

x (x+ lβ)l−1

l!
e−lβ

∞
∑

k=0

f

(

k

n

)

(n+ p)x[(n+ p)x+ kβ]k−1

k!
e−[(n+1+p)x+kβ]

−

∞
∑

k=0

f

(

k

n+ 1

)

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1

k!
e−[(n+1+p)x+kβ].

By simple calculations, one can write

Sβ
n,p (f ; x)− S

β
n+1,p (f ; x)(5.3)

=
∞
∑

l=0

x (x+ lβ)l−1

l!
e−lβ

∞
∑

k=l

f

(

k − l

n

)

(n+ p)x[(n+ p)x+ (k − l)β]k−l−1

(k − l)!
e−[(n+1+p)x+(k−l)β]

−
∞
∑

k=0

f

(

k

n+ 1

)

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1

k!
e−[(n+1+p)x+kβ]

=
∞
∑

k=0

e−[(n+1+p)x+kβ]

{

k
∑

l=0

f

(

k − l

n

)

(n+ p)x[(n+ p)x+ (k − l)β]k−l−1

(k − l)!

x (x+ lβ)l−1

l!

−f

(

k

n+ 1

)

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1

k!

}

=
∞
∑

k=0

e−[(n+1+p)x+kβ]

{

k
∑

l=0

f

(

l

n

)

(n+ p)x[(n+ p)x+ lβ]l−1

l!

x [x+ (k − l)β]k−l−1

(k − l)!

−f

(

k

n+ 1

)

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1

k!

}

=
∞
∑

k=0

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1

k!
e−[(n+1+p)x+kβ] ×

{

k
∑

l=0

(k

l

) (n+ p)x[(n+ p)x+ lβ]l−1x [x+ (k − l)β]k−l−1

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1
f

(

l

n

)

− f

(

k

n+ 1

)

}

.

Now, it only remains to show that the curly bracket in the last formula must be
non-negative. For this, we denote

αl :=

(

k

l

)

(n+ p)x[(n+ p)x+ lβ]l−1x [x+ (k − l)β]
k−l−1

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1
> 0,

and

xl =
l

n
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for l = 0, 1, ..., k. Now, replacing u with (n+ p)x, v with x, m with k and k with
l in (4.1) we evidently get
(5.4)
k

∑

l=0

αl =
1

(n+ 1 + p)x[(n+ 1+ p)x+ kβ]k−1
(n+ 1 + p)x[(n+ 1 + p)x+kβ]k−1 = 1.

On the other hand, it follows that

k
∑

l=0

αlxl =
1

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1
×

k
∑

l=0

(

k

l

)

l

n
(n+ p)x[(n+ p)x+ lβ]l−1x [x+ (k − l)β]

k−l−1

=
k (n+ p)x

n (n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1
×

k−1
∑

l=0

(

k − 1

l

)

[(n+ p)x+ β + lβ]lx [x+ (k − l − 1)β]
k−l−2

.(5.5)

Making use of the Abel-Jensen formula given by (5.1) for u = (n+ p)x + β, v =
x, k = l, m = k − 1, (5.5) reduces to

k
∑

l=0

αlxl =
k (n+ p)x

n (n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1
[(n+ 1 + p)x+ kβ]k−1

=
k (n+ p)

n (n+ 1 + p)
.(5.6)

Taking into account (5.4), (5.6) and the convexity of f, (5.3) reduces to

Sβ
n,p (f ; x)− S

β
n+1,p (f ; x)(5.7)

=
∞
∑

k=0

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1

k!
e−[(n+1+p)x+kβ]

{

k
∑

l=0

αlf

(

l

n

)

− f

(

k

n+ 1

)

}

≥
∞
∑

k=0

(n+ 1 + p)x[(n+ 1 + p)x+ kβ]k−1

k!
e−[(n+1+p)x+kβ]

{

f

(

k (n+ p)

n (n+ 1 + p)

)

− f

(

k

n+ 1

)}

.

It is obvious that when p = 0, (5.7) gives the non-negativity of Sβ
n,0 (f ;x) −

S
β
n+1,0 (f ;x) under the convexity of f, which means that the sequence of Jain oper-

ators is non-increasing in n under the convexity of the function. On the other hand,
for p ∈ N it follows that

k (n+ p)

n (n+ 1 + p)
=

k

n+ 1

n+ 1

n

n+ p

n+ 1 + p
=

k

n+ 1

1 + p
n

(

1 + p
n+1

) .
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Hence, one has
k (n+ p)

n (n+ 1 + p)
≥

k

n+ 1

by the fact that
1+ p

n

1+ p
n+1

≥ 1. Then, the result follows directly from the non-decreasingness

of f.
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