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Abstract. The paper presents a method for building fuzzy systems using the input-
output data that can be obtained from the examples. Using this method, a rule-
based system is created, where fuzzy logic depends on the opinions and preferences of
decision-makers involved in the process. Some advantages of the proposed method are
highlighted. We have provided a practical example to illustrate the application of the
process.
Keywords: fuzzy systems; rule-based system; fuzzy rule; membership function.

1. Introduction

Zadeh’s fuzzy rule based systems deal with fuzzy rules instead of classical logic
rules. Nowadays, they have been successfully used for modeling and control in
different fields and industries [1, 2, 5, 15, 16].

Fuzzy rule based systems with fuzzifier and defuzzifier introduced by Mamdani
[9, 10] are commonly known as fuzzy logic controllers. Mamdani fuzzy rule based
systems deal with real-valued inputs and outputs, and therefore, they can be used
in a wide range of real-world applications. The behavior of the system is guided
by linguistic rules with the ”IF-THEN” form whose premises and consequents are
composed of fuzzy logic statements [3, 12, 14]. More on linguistic Mamdani-type
fuzzy rule-based systems can be found in [17].

One of drawbacks of Mamdani fuzzy rule based systems can be viewed in a fact
that good performance on input-output training data do not nonsensically led to
good performance on novel inputs [4, 6, 11]. Therefore, a construction of fuzzy
functions and corresponding base of rules based on inclusion of expert knowledge
into the process is proposed.

The model presented in this paper is shown to be very good, because of its
flexibility, therefore it can be very easy for implementing and application in various
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fields. In this work, trough one illustrative example, it will be shown that greater
number of functions for presenting the input data will give much better results, and
therefore, the flexibility od the model is limited by the lower bound in the number
of functions for presenting input data.

2. Automated method for designing fuzzy systems based on learning
from example

The input of the observed fuzzy system is a set of N input-output pairs, of the
form

(2.1) {(Xp
0 , y

p
0)}, p ∈ 1, . . . , N,

where Xp
0 ∈ U = [α1, β1]× · · · × [αn, βn] ⊂ Rn and yp0 ∈ V = [αy, βy] ⊂ R. Clearly,

the input of a fuzzy system (2.1) is the collection of data given by Table 2.1.

Table 2.1: Input-output data collection

Input C1 C2 . . . Ci . . . Cn Output

X1
0 x101 x102 . . . x10i . . . x10n y10

X2
0 x201 x202 . . . x20i . . . x20n y20

. . . . . .
Xp

0 xp01 xp02 . . . xp0i . . . xp0n yp0
. . . . . .

XN
0 xN01 xN02 . . . xN0i . . . xN0n yN0

Designing the fuzzy system based on these input-output data collection can be
described in the the following five steps.

Step 1. Experts opinion

For each i ∈ {1, 2, . . . , n} and corresponding attribute Ci, values represented
in the ith column of Table 2.1 can have different importance to a decision expert.
Some values are extremely important, while others are totally unacceptable. On the
other hand, different decision experts can have different intuition and preferences
on what’s important. Therefore, Ni decision experts are involved to express their
preference on attribute Ci.

For each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , Ni}, the jth expert on attribute Ci

choose four elements aji , b
j
i , c

j
i , d

j
i ∈ [αi, βi].

Table 2.2: Expert’s preference on atributes

aji bji cji dji

For example, let attribute Ci represent price of some article (or service) which
can generally range between αi and βi. Given values aji , b

j
i , c

j
i and dji have the



Automated Method for Designing Fuzzy Systems 1359

following meaning: If the price is lower than ai or it is higher than di, then we
are not interested in buying that article (too cheap or too expensive items are
not interesting to us). If the price is between bji and cji , then we are absolutely
interested in buying the article (shopping surely). As price goes from ai to bi, we
are increasingly interested for buying it, and if price goes from ci to di our interest
in the purchase of item drops.

In this way, for each attribute Ci (i = 1, 2, . . . , n), we have determined Ni fuzzy
sets

(2.2) Aj
i : [αi, βi]→ [0, 1], j = 1, 2, . . . , Ni,

as follows:

Aj
i (x) =


0, αi 6 x ≤ aji or dji 6 x ≤ βi;

x−aj
i

bji−a
j
i

, aji 6 x ≤ bji ;
1, bji 6 x ≤ cji ;

x−dj
i

cji−d
j
i

, cji 6 x ≤ dji .

It is assumed that, for each i = 1, 2, . . . , n, the set of fuzzy functions (2.2) is
complete in [αi, βi], i.e., for every xi ∈ [αi, βi], there exists Aj

i such that µAj
i
(xi) 6= 0.

With similar arguments, Ny decision experts are involved to express their pref-
erence on output column (y10 , y

2
0 , . . . , y

N
0 )T .

Table 2.3: Expert’s preference on output

ai bi ci di

Consequently, Ny fuzzy sets

(2.3) Bj : [αy, βy]→ [0, 1], j = 1, 2, . . . , Ny,

are defined in the following way:

Bj(x) =


0, αy 6 x ≤ aj or dj 6 x 6 βy;

x−aj

bj−aj , aj 6 x ≤ bj ;
1, bj 6 x ≤ cj ;

x−dj

cj−dj , cj 6 x ≤ dj ,

Again, the assumption is that they are complete in [αy, βy].

One can notice that in the case of incompleteness of obtained fuzzy sets (2.2) or
(2.3), the number of experts being examined must increase. Also, let us notice that
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obtained fuzzy sets are trapezoidal, and in a naturally way they can be transformed
to triangular fuzzy sets or singletons.

Step 2. Rules generated by input-output data

In this step, for every input-output pair

(Xp
0 , y

p
0), p = 1, 2, . . . , N,

and corresponding inputs and output

xp0i, i = 1, 2, . . . , n and yp0 ,

we will determine the membership values

Aj
i (x

p
0i), j = 1, 2, . . . , Ni,

and the membership values

Bl(yp0), l = 1, 2, . . . , Ny.

Then for every input variable xp0i, i = 1, 2, . . . , n, we will determine the fuzzy

set in which xp0i has the largest membership value, that is, we will determine Aj∗
i

such that
Aj∗

i (xp0i) > Aj
i (x

p
0i), j = 1, 2, . . . , Ni.

Similarly, we will determine Bl∗ such that

Bl∗(yp0) > Bl(yp0), 1 = 1, 2, . . . , Ny.

Finally, we obtain a fuzzy IF-THEN rule as

(2.4) IF x1 = Aj∗
1 and · · · and xn = Aj∗

n THEN y = Bl∗.

Step 3. Degrees of fuzzy rules

Since the number of input-output pairs is usually large, and for every pair one
rule is generated, it is highly likely that there are conflicting rules, i.e., there are
rules with the same IF part and different THEN part. In order to overcome this
conflict, the degree to each rule generated in Step 2 is assigned and only one rule
from a conflicting group that has the maximum degree is chosen. That procedure
resolves the conflict problem, but also reduced the number of rules.

The degree of the rule, denoted by D, is defined as follows: Let the rule (2.4)
be generated by a pair (Xp

0 , y
p
0), then its degree is defined by:

(2.5) D(rule) =

n∏
i=1

Aj∗
1 (xp0i) ·B

l∗(yp0)
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If the input-output pairs have different reliability and we can determine a number
to asses it, we may incorporate this information into the degrees of the rules.

Specifically, suppose the input-output pair (Xp
0 , y

p
0) has the degree µp ∈ [0, 1],

then the degree of the rule generated by a pair (Xp
0 , y

p
0) is defined by:

(2.6) D(rule) =

n∏
i=1

Aj∗
1 (xp0i) ·B

l∗(yp0) · µp.

In practice, an expert may check the data (if the number of input-output pairs
is small) and estimate the degree µp. If we cannot tell the difference among the
input-output pairs, we simply choose all µp value 1, in that way (2.6) is reduced to
(2.5).

Step 4. Fuzzy rule base

The fuzzy rule base consists of the following set of rules:

1. The rules generated in Step 2 that do not conflict with any other rules;

2. The rule from a conflicting group that has the maximum degree, where a
group of conflicting rules consists of rules with the same IF parts;

3. Linguistic rules from human experts (due to conscious knowledge).

Step 5. Fuzzy system

In this step of algorithm, the fuzzy system is constructed based on the fuzzy
rule base obtained in Step 4 (see [13, 17]).

In the sequel, we present an simple example, with a small amount of input-
output data, which will illustrate working of the previous procedure and problems
that may occur when using this method.

3. Example

In order to rate the quality of service offered by the hotel, one hotel booking
site measures two components - cleanliness and comfort. Cleanliness takes values
from interval [0, 6], while comfort takes values from interval [0, 11]. According to
these components, as a result the rating of hotel, which takes values from 1 to 5,
is obtained. The following table presents the rate of the quality that customers
specified based on the ratings they gave for cleanliness and comfort:

For this two input - one output space system, we will present how using of
automated method for designing fuzzy systems based on learning from example
works. Moreover, we will compare the results for certain value, which is obtained
when for the same system, we change only the number of membership functions
used for presenting the input data.
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Table 3.1: Input-output data of example

Id Clean Comfort Rate

1 2.8 2 2
2 3.9 8.2 4
3 1.2 5 2
4 2 8.4 3
5 5 10.3 5
6 5 9.2 4
7 4 4 3
8 3.7 1 1
9 4 9.8 5
10 4 8.7 4
11 2 9 3
12 1.3 5.7 2
13 0.8 4.1 1
14 3 9.4 3
15 3.1 9.9 4

For presenting the cleanliness and the comfort the trapezoid functions will be
used. The input space is Ux = [0, 6] × [0, 11]. For presenting the rate, singleton
functions will be used, and the output space is Uy = {1, .., 5}.

In the first case, we will have 4 membership functions for the cleanliness and 6
for comfort. Trapezoid functions A1, A2, A3, A4 : [0, 6]→ [0, 1] for cleanliness:

A1(x) =

 1, 0 6 x 6 1;
2−x
1 , 1 6 x 6 2;

0, otherwise.
A2(x) =


x−1
0.5 , 1 6 x 6 1.5;

1, 1.5 6 x 6 2.5;
3−x
0.5 , 2.5 6 x 6 3;

0, otherwise.

A3(x) =


x−2
1 , 2 6 x 6 3;

1, 3 6 x 6 4;
5−x
1 , 4 6 x 6 5;

0, otherwise.

A4(x) =


x−3
2 , 3 6 x 6 5;

1, 5 6 x 6 6;
0, otherwise.

Trapezoid functions B1, .., B6 : [0, 11]→ [0, 1] for comfort:

B1(x2) =

 1, 0 6 x2 6 1;
2.5−x
1.5 , 1 6 x2 6 2.5;

0, otherwise.
B2(x2) =


x−0.5
1.5 , 0.5 6 x2 6 2;

1, 2 6 x2 6 3;
4.5−x
1.5 , 3 6 x2 6 4.5;

0, otherwise.
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Fig. 3.1: Membership functions A1 (blue), A2 (yellow), A3 (green) and A4 (red).

B3(x2) =


x2−2.5

1.5 , 2.5 6 x2 6 4;
1, 4 6 x2 6 5;
6.5−x2

1.5 , 5 6 x2 6 6.5;
0, otherwise.

B4(x2) =


x2−4.5

1.5 , 4.5 6 x2 6 6;
1, 6 6 x2 6 7;
6.5−x2

1.5 , 6.5 6 x 6 8;
0, otherwise.

B5(x2) =


x2−6.5

1.5 , 6.5 6 x2 6 8;
1, 8 6 x2 6 9;
10.5−x2

1.5 , 9 6 x2 6 10.5;
0, otherwise.

B6(x2) =


x2−8.5

1.5 , 8.5 6 x2 6 10;
1, 10 6 x2 6 11;
0, otherwise.

Fig. 3.2: Membership functions B1 (blue), B2 (yellow), B3 (green), B4 (red), B5 (purple)

and B6 (brown).

In the second case, we will have 2 membership functions for the cleanliness and
3 for comfort. Trapezoid functions A′1, A

′
2 : [0, 6]→ [0, 1] for cleanliness:

A′1(x1) =


1, 0 6 x1 6 2;
3.5−x1

1.5 , 2 6 x1 6 3.5;
0, otherwise.

A′2(x1) =


x1−1.5

1.5 , 1.5 6 x1 6 3;
1, 3 6 x1 6 5;
0, otherwise.

Trapezoid functions B′1, .., B
′
3 : [0, 11]→ [0, 1] for comfort:

B′1(x2) =


1, 0 6 x2 6 3;
6−x2

3 , 3 6 x2 6 6;
0, otherwise.

B′2(x2) =


x2−2

3 , 2 6 x2 6 5;
1, 5 6 x2 6 7;
10−x2

3 , 7 6 x2 6 10;
0, otherwise.
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Fig. 3.3: Membership functions A′1 (blue) and A′2 (yellow).

B′3(x2) =


x2−6

3 , 6 6 x2 6 9;
1, 9 6 x2 6 11;
0, otherwise.

Fig. 3.4: Membership functions B′1 (blue), B′2 (yellow) and B′3 (green).

For presenting the rate of the hotel, in the both cases, 5 singleton functions
Ci : Uy → {0, 1}, i ∈ {1, .., 5} will be used:

Ci(y) =

{
1, y = i;
0, otherwise.

Fuzzy rule base, constructed from input-output data, in the first case is given
by Table 3.2, and in the second case, fuzzy rule base constructed from input-output
data is given by Table 3.3.

As we can see from Table 3.3, there is a lot of conflict rules. When we solve all
the conflicts, and get rid of double rules, we obtain reduced Model 2., presented in
Table 3.4

Fuzzy inference engine used here is Minimum Inference Engine, that is: individual-
rule based inference with union combination, Mamdani’s minimum implication, and
min for all the t-norm operators and max for all the s-norm operators [7, 8]:

O(y) = maxMl=1[sup(x1,x2)∈Ux
min(I(x1, x2), Al(x1), Bl(x2), Cl(y))].

where M is the number of rules. Fuzzifier I(x1, x2), used here, is the the singleton
fuzzifier, i.e. for the given input (x01, x

0
2):

I(x1, x2) =

{
1, (x1, x2) = (x01, x

0
2);

0, otherwise.
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Table 3.2: Model 1.

Rule 1 IF x1 is A2 and x2 is B2 then y is C2

Rule 2 IF x1 is A3 and x2 is B5 then y is C4

Rule 3 IF x1 is A1 and x2 is B3 then y is C2

Rule 4 IF x1 is A2 and x2 is B5 then y is C3

Rule 5 IF x1 is A4 and x2 is B6 then y is C5

Rule 6 IF x1 is A4 and x2 is B5 then y is C4

Rule 7 IF x1 is A3 and x2 is B3 then y is C3

Rule 8 IF x1 is A3 and x2 is B1 then y is C1

Rule 9 IF x1 is A3 and x2 is B6 then y is C5

Rule 10 IF x1 is A3 and x2 is B5 then y is C4

Rule 11 IF x1 is A2 and x2 is B5 then y is C3

Rule 12 IF x1 is A1 and x2 is B4 then y is C2

Rule 13 IF x1 is A1 and x2 is B3 then y is C1

Rule 14 IF x1 is A2 and x2 is B5 then y is C3

Rule 15 IF x1 is A2 and x2 is B6 then y is C4

The outputs obtained by both methods are given in Table 3.5. As we can see
from Table 3.5 and Table 3.1, better approximation is obtained by Model 1. For
example, in the first row of input output Table 3.1 cleanliness is valued by 2.8,
comfort by 2 and the overall impression rate is 2, and in the second row of Table 3.2
cleanliness is valued by 2, comfort by 3 and the overall impression rates are 2 and 1,
by Model 1 and Model 2, respectively. Similarly, fifth row of Table 3.1 corresponds
to fourth row of Table 3.4, and again we can see that better approximation is
achieved by Model 1. The reason for this lies in the fact that Model 1 consider
higher number of fuzzy functions for cleanliness and comfort (in Model 1 there are
four fuzzy functions for cleanliness and six fuzzy functions for comfort, while in
Model 2 we have only two fuzzy functions for cleanliness and tree for comfort).
Therefore Model 1 provides sophisticated and finer fuzzy partition of the universe
of the discourse. On the other hand, the Model 2, due to insufficient number of
input functions, will never rate the quality of a hotel with a rating of 2 or 5, which
is a serious disadvantage of this model. So, the suggestion is that there must be a
lower bound on the number of functions that represent the input data-set.
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Table 3.3: Model 2.

Rule 1 IF x1 is A′2 and x2 is B′2 then y is C2

Rule 2 IF x1 is A′2 and x2 is B′3 then y is C4

Rule 3 IF x1 is A′1 and x2 is B′2 then y is C2

Rule 4 IF x1 is A′2 and x2 is B′2 then y is C3

Rule 5 IF x1 is A′2 and x2 is B′3 then y is C5

Rule 6 IF x1 is A′2 and x2 is B′3 then y is C4

Rule 7 IF x1 is A′2 and x2 is B′2 then y is C3

Rule 8 IF x1 is A′2 and x2 is B′1 then y is C1

Rule 9 IF x1 is A′2 and x2 is B′3 then y is C5

Rule 10 IF x1 is A′2 and x2 is B′3 then y is C4

Rule 11 IF x1 is A′1 and x2 is B′3 then y is C3

Rule 12 IF x1 is A′1 and x2 is B′2 then y is C1

Rule 13 IF x1 is A′1 and x2 is B′2 then y is C1

Rule 14 IF x1 is A′2 and x2 is B′3 then y is C3

Rule 15 IF x1 is A′2 and x2 is B′3 then y is C4

Table 3.4: Reduced model 2.

Rule 1 IF x1 is A′2 and x2 is B′2 then y is C3

Rule 2 x1 is A′1 and x2 is B′2 then y is C1

Rule 3 x1 is A′2 and x2 is B′3 then y is C4

Rule 4 x1 is A′2 and x2 is B′1 then y is C1

Rule 5 x1 is A′1 and x2 is B′3 then y is C3

Table 3.5: Output of the algorithm.

Id Input Model 1 Model 2

1 (2, 3) 2 1
2 (2.5, 1.9) 2 1
3 (3, 8) 3 4
4 (5, 10.6) 5 4
5 (4, 6) 3 3
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4. Conclusion

The paper presents an algorithm for designing fuzzy systems based on learning
from examples. The concept uses Mamdani’s fuzzy rule systems with a fuzzifier and
defuzzifier. Particular attention has been given to the preferences of decision mak-
ers involved in the process as experts with extensive practical experience. Based
on their opinion, corresponding fuzzy functions that express the importance of at-
tributes in the model are defined. An example to illustrate the process has also
been provided. Moreover, through this example, the importance of determining the
lower number of functions which represent the input data set is highlighted. In
other words, it is shown that the number of these functions significantly influences
the quality of the solution.
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