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Abstract. Let R be a commutative ring with identity and let M be an R-module. A
proper submodule P of M is called a classical prime submodule if abm ∈ P , for a, b ∈ R,
and m ∈ M , implies that am ∈ P or bm ∈ P . The classical prime spectrum of M ,
Cl.Spec(M), is defined to be the set of all classical prime submodules of M . We say M
is classical primefule if M = 0, or the map ψ from Cl.Spec(M) to Spec(R/Ann(M)),
defined by ψ(P ) = (P : M)/Ann(M) for all P ∈ Cl.Spec(M), is surjective. In this
paper, we study classical primeful modules as a generalization of primeful modules.
Also, we investigate some properties of a topology that is defined on Cl.Spec(M), named
the Zariski topology.
Keywords: Classical prime, Classical primeful, Classical top module

1. Introduction

Throughout the paper all rings are commutative with identity and all modules
are unital. Let M be an R-module. If N is a submodule of M , then we write
N ≤ M . For any two submodules N and K of an R-module M , the residual of
N by K is denoted by (N : K) = {r ∈ R : rK ⊆ N}. A proper submodule P
of M is called a prime submodule if am ∈ P , for a ∈ R and m ∈ M , implies
that m ∈ P or a ∈ (P : M). Also, a proper submodule P of M is called a
classical prime submodule if abm ∈ P , for a, b ∈ R and m ∈ M , implies that
am ∈ P or bm ∈ P (see for example [5]). The set of prime(resp. classical prime)
submodules of M is denoted by Spec(M)(resp. Cl.Spec(M)). The class of prime
submodules of modules was introduced and studied in 1992 as a generalization of
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the class of prime ideals of rings. Then, many generalizations of prime submodules
were studied such as primary, classical prime, classical primary and classical quasi
primary submodules, see [1, 8, 16, 4] and [7].

For a proper submodule N of an R-module M , the prime radical of N is
p
√
N = ∩{P |P ∈ V∗(N)}, where V∗(N) = {P ∈ Spec(M) | N ⊆ P}. Also the

classical prime radical of N is Cl
√
N = ∩{P |P ∈ V(N)}, where V(N) = {P ∈

Cl.Spec(M) | N ⊆ P}. If there are no such prime (resp. classical prime) sub-
modules, p

√
N (resp. Cl

√
N) is M . We say N is a radical (resp. classical radical)

submodule, if p
√
N = N(resp. Cl

√
N = N).

The set of all maximal submodules of M is denoted by Max(M). A Noetherian
module M is called a semi-local (resp. a local) module if Max(M) is a non-empty
finite (resp. a singleton) set. A non-Noetherian commutative ring R is called a
quasisemilocal (resp. a quasilocal) ring if R has only a finite number (resp. a
singleton) of maximal ideals. An R-module M is called a multiplication (resp. weak
multiplication) module if for every submodule (resp. prime submodule) of M , there
exists an ideal I of R such that N = IM(see [14] and [2]). If N is a prime submodule
of a multiplication R-module M , then N1 ∩ N2 ⊆ N , where N1, N2 ≤ M , implies
that N1 ⊆ N or N2 ⊆ N (see for more detail [11] and [19]). An R-module M is called
compatible if its classical prime submodules and its prime submodules coincide. All
commutative rings and multiplicative modules are examples of compatible modules,
(see for more detail [8]). A submodule N of M is said to be strongly irreducible if
for submodules N1 and N2 of M , the inclusion N1 ∩ N2 ⊆ N implies that either
N1 ⊆ N or N2 ⊆ N . Strongly irreducible submodules have been characterized in
[13].

Let M be an R-module. For any subset E of M , we consider classical varieties
denoted by V(E). We define V(E) = {P ∈ Cl.Spec(M) : E ⊆ P}. Then

(a) If N is a submodule generated by E, then V(E) = V(N).

(b) V(0M ) = Cl.Spec(M) and V(M) = Ø.

(c)
⋂

i∈I V(Ni) = V(
∑

i∈I Ni), where Ni ≤M
(d) V(N) ∪ V(L) ⊆ V(N ∩ L), where N,L ≤M .

Now, we assume that C(M) denotes the collection of all subsets V(N) of
Cl.Spec(M). Then, C(M) contains the empty set and Cl.Spec(M), and also C(M)
are closed under arbitrary intersections. However, in general, C(M) is not closed
under finite union. An R-module M is called a classical top module if C(M) is
closed under finite unions, i.e., for every submodules N and L of M , there exists a
submodule K of M such that V(N)∪V(L) = V(K), for in this case, C(M) satisfies
the axioms for the closed subsets of a tological space, then in this case, C(M) induce
a topology on Cl.Spec(M). We call the induced topology the classical quasi-Zariski
topology(see [9]).

In this paper, we introduce the notion of classical primeful modules and also we
investigate some properties of classical quasi-Zariski topology of Cl.Spec(M). In
Section 2, we introduce the notion of classical primeful modules as a generalization
of primefule modules. In particular, in Proposition 2.3, it is proved that if M is
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a classical primeful R-module, then Supp(M) = V(Ann(M)). Then we get some
properties of classical top modules. In Section 3, we get some properties of classical
quasi-Zariski topology of Cl.Spec(M) and also we get some properties of classical
top modules.

2. Classical primeful module

The notion of primeful modules was introduced by Chin P. Lu in [18] as follows:

Definition 2.1. An R-module M is primeful if either M = (0), or M 6= (0) and
the map φ : Spec(M) −→ Spec(R/Ann(M)), defined by φ(P ) = (P : M)/Ann(M)
for all P ∈ Spec(M), is surjective.

Now, we extend the notion of primeful modules to classical primeful modules.

Definition 2.2. Suppose Cl.Spec(M) 6= Ø, then the map ψ from Cl.Spec(M) to
Spec(R/Ann(M)) defined by ψ(P ) = (P : M)/Ann(M) for all P ∈ Cl.Spec(M),
will be called the natural map of Cl.Spec(M).

An R-module M is classical primeful if either

(i) M = (0), or

(ii) M 6= (0) and the map ψ : Cl.Spec(M) −→ Spec(R/Ann(M)) from above is
surjective.

Lemma 2.1. Let M be a classical top R-module. Then the natural map
ψ : Cl.Spec(M) −→ Spec(R/Ann(M)) is injective.

Proof. Let P,Q ∈ Cl.Spec(M). If ψ(P ) = ψ(Q), then

(P : M)/Ann(M) = (Q : M)/Ann(M).

So (P : M) = (Q : M) and then P = Q. �

Theorem 2.1. Let M be a classical top R-module. Then, If R satisfies ACC on
prime ideals, then M satisfies ACC on classical prime submodules.

Proof. Let N1 ⊆ N2 ⊆ . . . be an ascending chain of classical prime submodules of
M . This induces the following chain of prime ideals, ψ(N1) ⊆ ψ(N2) ⊆ . . ., where
ψ is the natural map

ψ : Cl.Spec(M) −→ Spec(R/Ann(M)).

Since R satisfies ACC on prime ideals, there exists a positive integer k such that
for each i ∈ N, ψ(Nk) = ψ(Nk+i). Now by Lemma 2.1, we have Nk = Nk+i as
required. �
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Remark 2.1. ([8, Proposition 5.3])) Let S be a multiplicatively closed subset of R,
p a prime ideal of R such that p ∩ S = Ø and let M be an R-module. If P is a
classical p-prime submodule of M with Ps 6= Ms, then Ps is also a classical ps-prime
submodule of Ms. Moreover if Q is a prime Rs-submodule of Ms, then

Qc = {m ∈M : f(m) ∈ Q}

is a classical prime submodule of M.

Let p be a prime ideal of a ring R, M an R-module and N 6 M . By the
saturation of N with respect to p, we mean the contraction of Np in M and designate
it by Sp(N). It is also known that

Sp(N) = {e ∈M |es ∈ Nfor some s ∈ R \ p}.

Saturations of submodules were investigated in detail in [17].

Proposition 2.1. For any nonzero R-module M , the following are equivalent:

(1) The natural map ψ : Cl.Spec(M) −→ Spec(R/Ann(M)) is surjective;

(2) For every p ∈ V(Ann(M)), there exists P ∈ Cl.Spec(M) such that (P : M) =
p;

(3) pMp 6= Mp, for every p ∈ V(Ann(M));

(4) Sp(pM), the contraction of pMp in M , is a classical p-prime submodule of M
for every p ∈ V(Ann(M));

(5) Cl.Specp(M) 6= Ø; for every p ∈ V(Ann(M)).

Proof. (1)⇐⇒(2): It is clear by Definition 2.2.

(2)=⇒(3): Let p ∈ V(Ann(M)) and let N be a classical p-prime submodule of
M . Then Np is a classical pRp-prime submodule of Mp by Remark 2.1. Now, since
pMp ⊆ Np (Mp, we conclude that pMp 6= Mp.

(3)=⇒(4): Since pRp is the maximal ideal of Rp and pMp 6= Mp, pMp =
(pRp)Mp is a pRp-prime, and therefore classical pRp-prime, submodule of Mp. Then
Sp(pM) = (pMp)c, the contraction of pMp in M , is a classical p-prime submodule
of M by Remark 2.1.

(4)=⇒(5) and (5)=⇒(2) are easy. �

Proposition 2.2. Every finitely generated R-module M is classical primeful.

Proof. If M = 0, evidently the results is true. Now, let M be a nonzero finitely
generated R-module. Then Supp(M) = V(Ann(M)), so for every p ∈ V(Ann(M)),
Mp is a nonzero finitely generated module over the local ring Rp. Then by virtue
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of Nakayama’s Lemma, pMp 6= Mp, for every p ∈ V(Ann(M)). Therefore by
Proposition 2.1, M is classical primeful. �

For every finitely generated module M , Supp(M) = V(Ann(M)). The next
proposition proves that the equality holds even if M is only a classical primeful
module.

Proposition 2.3. (see [18, Proposition 3.4])) If M is a classical primeful R-
module, then Supp(M) = V(Ann(M)).

Proof. If M = (0), then Supp(M) = V(Ann(M)) = Ø. Now let M be a nonzero
classical primeful R-module, so V(Ann(M)) 6= Ø. By Proposition 2.1, if p ∈
V(Ann(M)), then Sp(pM) is a classical p-prime submodule of M , so Sp(pM) 6= M .
Since Sp(0) ⊆ Sp(pM), then M 6= Sp(0), from which we can see that Mp 6= (0).
Thus V(Ann(M)) ⊆ Supp(M). The other inclusion is always true.

For every prime, ideal p of R, Rp is always a quasilocal ring. However, for
an arbitrary R-module M , Mp is not necessarily a local Rp-module. But by the
next proposition, if M is a nonzero classical top classical primeful R-module, then
R/Ann(M) is a quasilocal ring.

Proposition 2.4. Let M be a nonzero classical top classical primeful R-module.
If M is a semi-local (resp. local) module, then R/Ann(M) is a quasisemilocal (resp.
a quasilocal) ring.

Proof. Let M be a local module with unique maximal submodule P . Then p :=
(P : M) ∈ Max(R). Now let Ann(M) ⊆ q ∈ Max(R). It is enough to prove
q = p. To prove this, we note that Sq(qM) is a classical q-prime submodule of M
by Proposition 2.1. Now we show that Sq(qM) ∈ Max(M). Let Sq(qM) ⊆ K for
some submodule K of M . Then we have q = (Sq(qM) : M) = (K : M). Hence
Sq(qM) = K by Lemma 2.1. This implies that Sq(qM) = P and therefore q = p.
For the semi-local case we argue similarly. �

In the rest of this section, we get some properties of classical top modules. First
note that every classical top module is a top module([9, Proposition 2.4]). In the
next theorem, we introduce some modules that they are classical top modules.

Theorem 2.2. Let M be an R-module. Then M is a classical top module in each
of the following cases:

(1) M is a multiplication R-module.

(2) M be a module that every classical prime submodule of M is strongly irre-
ducible.
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(3) M is an R-module with the property that for any two submodules N and L of
M , (N : M) and (L : M) are comaximal.

Proof. (1). Let P ∈ V(N1∩N2) and so N1∩N2 ⊆ P . Since M is compatible, then
(N1 ∩ N2 : M) ⊆ (P : M), so N1 ⊆ P or N2 ⊆ P . Therefore P ∈ V(N1) or P ∈
V(N2). This implies that M is a classical top module.

(2). Let P ∈ V(N ∩ L). Since V(N) ∪ V(L) ⊆ V(N ∩ L), for each submodules
N and L of M , then N ∩L ⊆ P . Now, since P is strongly irreducible, then N ⊆ P
or L ⊆ P . Therefore P ∈ V(N) ∪ V(L). Thus C(M) is closed under finite unions.
Hence M is a classical top module.

(3). Let P be a classical prime submodule of M with N ∩ L ⊆ P . Then
(N : M)∩(L : M) ⊆ (P : M) ∈ Spec(R). We may assume that (N : M) ⊆ (P : M).
Then clearly (L : M) * (P : M) by assumption. Hence N ⊆ P . Therefore P is
strongly irreducible. This implies that M is a classical top module by (2). �

If Y is a nonempty subset of Cl.Spec(M), then the intersection of the members
of Y is denoted by T(Y ). Thus, if Y1 and Y2 are subsets of Cl.Spec(M), then
T(Y1∪Y2) = T(Y1)∩T(Y2). AnR-moduleM is said to be distributive if (A+B)∩C =
(A ∩ C) + (B ∩ C), for all submodules A, B and C of M(see for example [12]).

Theorem 2.3. Let M is a classical top module and cl
√
E = E for each submodule

E of M . Then M is a distributive module.

Proof. Let A, B and C be any submodules of M . Then,

(A+B) ∩ C = cl
√

(A+B) ∩ C
= ∩{P ∈ Cl.Spec(M)|(A+B) ∩ C ⊆ P}
= ∩{P |P ∈ V((A+B) ∩ C)}
= T(V((A+B) ∩ C))
= T(V(A+B) ∪ V(C))
= T((V(A) ∩ V(B)) ∪ V(C))
= T((V(A) ∪ V(C)) ∩ (V(B) ∪ V(C)))
= T((V(A ∩ C)) ∩ (V(B ∩ C)))
= T((V(A ∩ C) + (B ∩ C)))
= cl

√
(A ∩ C) + (B ∩ C)

= (A ∩ C) + (B ∩ C)

Hence M is a distributive module. �

Proposition 2.5. Let M be a classical top module. Then for every two submodules
A and B of M the equality cl

√
A ∩B = cl

√
A ∩ cl

√
B holds.

Proof. By definition, cl
√
A ∩B = T(V(A ∩B)) = T(V(A) ∪ V(B))

= T(V(A)) ∩ T(V(B)) = cl
√
A ∩ cl

√
B. �



Some Remarks on the Classical Prime Spectrum of Modules 21

3. Some properties of topological space Cl.Spec(M)

In this section, we study some properties of topological space Cl.Spec(M). The
closure of Y in Cl.Spec(M) with respect to the classical quasi-Zariski topology
denoted by Y .

Lemma 3.1. Let M be a classical top module and let Y be a nonempty subset of
Cl.Spec(M). Then Y = V(T(Y )). Hence, for every N ≤M , V(T(V(N))) = V(N).

Proof. Suppose V(E) is a closed set of Cl.Spec(M) containing Y . Then for ev-
ery classical prime submodule P in Y , E ⊆ P . Therefore E ⊆ T(Y ) and so
V(T(Y )) ⊆ V(E). Since Y ⊆ V(T(Y )), then V(T(Y )) is the smallest closed subset
of Cl.Spec(M) containing Y . Thus Y = V(T(Y )).

Finally, since V(T(V(N))) = V(N), and since V(N) is a closed subset of Cl.Spec(M),
then V(N) = V(N). Consequntly V(T(V(N))) = V(N). �

Let X be a topological space and let x and y be two points of X. We say that
x and y can be separated if each lies in an open set which does not contain the
other point. X is a T1- space if any two distinct points in X can be separated. A
topological space X is a T1-space if and only if the singleton set {x} is a closed set,
for any x in X.

Theorem 3.1. Let M be an R-module. Then Cl.Spec(M) is T1-space if and only
if each classical prime submodule is maximal in the family of all classical prime
submodules of M . i.e, Max(M) = Cl.Spec(M).

Proof. Let P be maximal in Cl.Spec(M) with respect inclution. Then {P} =
V(T({P})) = V(P ), but P is maximal in Cl.Spec(M), so {P} = {P}. Then {P} is
a closed set in Cl.Spec(M). Thus Cl.Spec(M) is a T1 - space, and vice versa. �

Definition 3.1. Let X be a topological space and Y ⊆ X. Then:

(1) X is irreducible if X 6= Ø and for every decomposition X = A1 ∪ A2 with
closed subsets Ai ⊆ X, i = 1, 2, we have A1 = X or A2 = X.

(2) Y is irreducible if Y is irreducible as a space with the relative topology. For
this to be so, it is necessary and sufficient that, for every pair of sets F , G which
are closed in X and satisfy Y ⊆ F ∪G, then Y ⊆ F or Y ⊆ G[10, Ch. II, p. 119].

Lemma 3.2. Let M be an R-module. Then for every P ∈ Cl.Spec(M), V(P ) is
irreducible.

Proof. Let V(P ) ⊆ Y1∪Y2, for some closed sets Y1 and Y2. Since P ∈ V(P ), either
P ∈ Y1 or P ∈ Y2. Suppose that P ∈ Y1. Then Y1 = ∩i∈I(∪ni

j=1V(Nij)), for some
I, ni(i ∈ I) and Nij ≤ M . Then for all i ∈ I, P ∈ ∪ni

j=1V(Nij). Thus for all i ∈ I,
V(P ) ⊆ ∪ni

j=1V(Nij)), so V(P ) ⊆ Y1. Thus V(P ) is irreducible. �
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M. Behboodi and M. R. Haddadi show that if Y ⊆ Spec(M) and T(Y ) is a
prime submodule of M and T(Y ) ∈ Y , then Y is irreducible([6, Theorem 3.4]). In
the next proposition, we extend this fact to classical prime submodules.

Proposition 3.1. Let M be a classical top module and Y ⊆ Cl.Spec(M). Then
T(Y ) is a classical prime submodule of M if and only if Y is an irreducible space.

Proof. Let P = T(Y ) be a classical prime submodule of M and P ∈ Y , so
Y = V(P ). If Y ⊆ Y1 ∪ Y2, for closed sets Y1 and Y2, then Y ⊆ Y1 ∪ Y2. Since
V(P ) ⊆ Y1 ∪ Y2 and by Lemma 3.2, V(P ) is irreducible, then V(P ) ⊆ Y1 or V(P ) ⊆
Y2. Now, since Y ⊆ V(P ), then either Y ⊆ Y1 or Y ⊆ Y2. Thus Y is irreducible.
For the converse, we can apply [6, Theorem 3.4]. �

Corollary 3.1. Let M be a classical top module. Then for every classical prime
submodule P , V(P ) is an irreducible subspace of Cl.Spec(M). Consequently, V(N)
is irreducible if and only if Cl

√
N is a classical prime submodule.

Proof. First note that T(V(P )) =
⋂
{P |P ∈ V(P )} = cl

√
P = P . Then V(P ) is

an irreducible subspace of Cl.Spec(M), by Proposition 3.1. Finnaly, it is enough to
note that Cl

√
N = T(V(N)). �

Proposition 3.2. Let M be a classical top R-module, R = R/Ann(M) and let
ψ : Cl.Spec(M) −→ Spec(R/Ann(M)) be the natural map of Cl.Spec(M). Then ψ
is continuous in the classical quasi-Zariski topology.

Proof. It suffices to prove that ψ−1(V(I)) = V(IM), for every I ∈ V(Ann(M)).
Let P ∈ Cl.Spec(M), then P ∈ ψ−1(V(I)), so ψ(P ) ∈ V(I), therefore (P : M) ∈
V(I). Then (P : M) ∈ Spec(R) and I ⊆ (P : M), so (P : M) ∈ Spec(R) and
I/Ann(M) ⊆ (P : M)/Ann(M). Hence (P : M) ∈ Spec(R) and Ann(M) ⊆ I ⊆
(P : M). Now, since IM ⊆ (P : M)M ⊆ P , then P ∈ V(IM), which it shows that
ψ−1(V(I)) ⊆ V(IM). In similar way, we can show V(IM) ⊆ ψ−1(V(I)) and hence

ψ−1(V(I)) = V(IM).�

Lemma 3.3. Let M be a classical top R-module, R = R/Ann(M) and let ψ be the
natural map of Cl.Spec(M). If M is classical primeful, then ψ is both closed and
open; more precisely, for every submodule N of M , ψ(V(N)) = V((N : M)) and

ψ(Cl.Spec(M) \ V(N)) = Cl.Spec(R/Ann(M)) \ (V((N : M)).

Proof. First we show that ψ(V(N)) = V((N : M)), for every N ≤ M , whenever
M is classical primeful. Since ψ is continuous, as we have seen in Proposition 3.2,

ψ−1(V((N : M))) = V((N : M)M) = V(N).

Hence, ψ(V(N)) = ψ ◦ ψ−1(V((N : M)) = V((N : M), since ψ is surjective and M
is classical primeful. Consequently:

ψ(Cl.Spec(M) \ V(N)) = Spec(R/Ann(M)) \ (V((N : M)).�
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Corollary 3.2. Let M be a classical top R-module, R = R/Ann(M) and let ψ be
the natural map of Cl.Spec(M). Then ψ is bijective if and only if it is a homeo-
morphism.

Proof. This follows from Proposition 3.2 and Lemma 3.3. �

Proposition 3.3. Let M be a classical top R-module and let Y be a subset of
Cl.Spec(M). If Y is irreducible, then T = {(P : M)|P ∈ Y } is an irreducible subset
of Spec(R), with respect to Zariski topology.

Proof. Let R = R/Ann(M), ψ the natural map of Cl.Spec(M) and let Y be a
subset of Cl.Spec(M). Since ψ is continuous by proposition 3.2, Then ψ(Y ) = Y is
an irreducible subset of Spec(R/Ann(M)). Therefore

T(Y ) = (T(Y ) : M)/Ann(M) ∈ Spec(R/Ann(M)).

Therefore T(T ) = (T(Y ) : M) is a prime ideal of R, then by Proposition 3.1, T is
an irreducible subset of Spec(R). �

Clearly the next lemma is true(see for example [8], page 10).

Lemma 3.4. If {Pi}i∈I is a chain of classical prime submodules of an R-module
M , then

⋂
i∈I Pi is a classical prime submodule of M .

Let Y be a closed subset of a topological space. An element y ∈ Y is called a
generic point of Y if Y = Cl({y}), where Cl({y}) is the closure of {y} in Y . Note
that a generic point of a closed subset Y of a topological space is unique if the
topological space is a T0-space.

Theorem 3.2. Let M be a classical primeful R-module. If M is a classical top
module, then a subset Y of Cl.Spec(M) is an irreducible closed subset if and only
if Y = V(P ), for some P ∈ Cl.Spec(M). Thus every irreducible closed subset of
Cl.Spec(M) has a generic point.

Proof. By Corollary 3.1, for every P ∈ Cl.Spec(M), Y = V(P ) is an irreducible
closed subset of Cl.Spec(M). Conversely, if Y is an irreducible closed subset of
Cl.Spec(M), then Y = V(N), for some N ≤M . Now, since Y = V(N) = V( Cl

√
N),

then T(Y ) = T(V(N)) = Cl
√
N is a classical prime submodule of M by Lemma

3.4. Then V(T(Y )) = V(T(V(N))) = V( Cl
√
N), so by Theorem 3.1, Y = V(N) =

V( Cl
√
N), with Cl

√
N ∈ Cl.Spec(M). �

A maximal irreducible subset Y of X is called an irreducible component of X
and it is always closed. In the next theorem, we show that there exists a bijection
map from the set of irreducible components of Cl.Spec(M) to the set of minimal
classical prime submodules of M .
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Theorem 3.3. Let M be a classical top R-module. Then the map V(P ) 7−→ P
is a bijection from the set of irreducible components of Cl.Spec(M) to the set of
minimal classical prime submodules of M .

Proof. Let Y be an irreducible component of Cl.Spec(M). By Theorem 3.2, each
irreducible component of Cl.Spec(M) is a maximal element of the set {V(Q)|Q ∈
Cl.Spec(M)}, so for some P ∈ Cl.Spec(M), Y = V(P ). Obviously, P is a mini-
mal classical prime submodule of M . Suppose T is a classical prime submodule of
M that T ⊆ P , then V(P ) ⊆ V(T ), so P = T . Now, let P be a minimal classi-
cal prime submodule of M , so for every Q ∈ Cl.Spec(M), P ⊆ Q. Then for all
Q ∈ Cl.Spec(M), V(Q) ⊆ V(P ). Thus V(P ) is a maximal irreducible subset of
Cl.Spec(M). �

Theorem 3.4. Consider the following statements for a nonzero classical top prime-
ful R-module M :

1. Cl.Spec(M) is an irreducible space.

2. Supp(M) is an irreducible space.

3.
√

Ann(M) is a prime ideal of R.

4. Cl.Spec(M) = V(pM), for some p ∈ Supp(M).

Then (1) =⇒ (2) =⇒ (3) =⇒ (4). In addition, if M is a multiplication module,
then all of the four statements are equivalent.

Proof. (1) =⇒ (2): By Proposition 3.2, the natural map ψ is continuous and
by assumption ψ is surjective. Therefore Im(ψ) = Spec(R/Ann(M)) is also ir-
reducible. Now by Proposition 2.3, Supp(M) = V(Ann(M)) is homeomorphic to
Spec(R/Ann(M)). Therefore Supp(M) is an irreducible space.

(2) =⇒ (3): By Proposition 3.1, T(Supp(M)) is a prime ideal of R. Then
T(Supp(M)) = T(V(Ann(M))) =

√
Ann(M) is a prime ideal of R.

(3) =⇒ (4) Let a ∈
√

Ann(M). So for some integer n ∈ N , anM = 0. Therefore
for every classical prime submodule P of M , a ∈ (P : M). Then for each P ∈
Cl.Spec(M), Ann(M) ⊆

√
Ann(M) ⊆ (P : M). Since M is classical primeful, there

exists a classical prime submodule Q of M such that (Q : M) =
√

Ann(M). Then,

Cl.Spec(M) = {P ∈ Cl.Spec(M)|(Q : M) ⊆ (P : M)}

= V((Q : M)M)

= V(
√

Ann(M)M).

It is clear that p :=
√

Ann(M) ∈ Supp(M). Therefore Cl.Spec(M) = V(pM).

Now, let M be a multiplication module and let Cl.Spec(M) = V(pM), for some
p ∈ Supp(M). Since M is classical primeful, there exists P ∈ Cl.Spec(M), such
that (P : M) = p. Since M is multiplication, we have Cl.Spec(M) = V(pM) =
V((P : M)M) = V(P ). This implies that Cl.Spec(M) is an irreducible space by
Corollary 3.1. �
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Let M be an R-module. For each subset N of M , we denote Cl.Spec(M)−V(N)
by U(N). Further for each element m ∈M , U({m}) is denoted by U(m). Hence

U(m) = Cl.Spec(M)− V({m}).

Moreover, for any family {Ni}i∈I of submodules of M , we have

U(
∑
i∈I

Ni) = U(
⋃
i∈I

Ni).

Theorem 3.5. Let M be a classical top module. Then for every m ∈M , the sets
U(m) form a base for Cl.Spec(M).

Proof. Let U(N) be an open set in Cl.Spec(M), where N is a submodule of M .
Then:

U(N) = U(
⋃
n∈N
{n}) = Cl.Spec(M)− V(

⋃
n∈N
{n})

= Cl.Spec(M)−
⋂
n∈N
V({n})

=
⋃
n∈N

(Cl.Spec(M)− V({n}))

=
⋃
n∈N
U(n)

Then for every m ∈M , the sets U(m) form a base of Cl.Spec(M). �

For a submodule N of an R-module M , we put:

FG(N) := {L|L ⊆ N and L is finitely generated}

Lemma 3.5. Let M be an R-module and N be a submodule of M . Then V(N) =⋂
L∈FG(N) V(L) and U(N) =

⋃
L∈FG(N) U(L).

Proof. Suppose that P ∈ V(N). If L ∈ FG(N), then L ⊆ N ⊆ P . Then
P ∈ V(L), and V(N) ⊆

⋂
L∈FG(N) V(L). Now, let for every L ∈ FG(N), P ∈ V(L)

and P /∈ V(N). Since N * P , then there exists x ∈ N \ P . Then Rx ⊆ N and Rx
is finitely generated, hence Rx ∈ FG(N). Therefore x ∈ Rx ⊆ P , a contradiction.
Thus

⋂
L∈FG(N) V(L) ⊆ V(N). �

Theorem 3.6. Let M be a classical top R-module. Then every quasi-compact open
subset of Cl.Spec(M) is of the form U(N), for some finitely generated submodule
N of M .
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Proof. Suppose U(B) = Cl.Spec(M) \ V(B) is a quasi-compact open subset of
Cl.Spec(M). Then by Lemma 3.5, U(B) =

⋃
L∈FG(B) U(L). Now, since U(B) is

quasi-compact, then every open covering of U(B) has a finite subcovering, therefore
U(B) = U(L1) ∪ ... ∪ U(Ln) = U(

∑n
i=1 Li). �

Proposition 3.4. Let M be a classical top R-module. If Spec(R) is a T1-space,
then Cl.Spec(M) is also a T1-space.

Proof. Suppose Q is a classical prime submodule of M . Then Cl({Q}) = V(Q).
If P ∈ V(Q), then by Theorem 3.1, every prime ideal of R is a maximal ideal, so
(Q : M) = (P : M), then by Lemma 2.1, Q = P . Therefore Cl({Q}) = {Q} and
this implies that Cl.Spec(M) is a T1-space. �

Definition 3.2. A topological space X is Noetherian provided that the open (re-
spectively, closed) subsets ofX satisfy the ascending (respectively, descending) chain
condition (see for example [3], page 79 or [10], §4.2).

Theorem 3.7. An R-module M has Noetherian calssical spectrum if and only if
the ACC for classical radical submodules of M holds.

Proof. Let N1 ⊆ N2 ⊆ N3 ⊆ . . . be an ascending chain of classical radical sub-
modules of M . Since for all i ∈ N, Cl

√
Ni = Ni, then equivalently

Cl
√
N1 ⊆ Cl

√
N2 ⊆ Cl

√
N3 ⊆ . . .

is an ascending chain of classical radical submodules of M . Then equivalently

T(V(N1)) ⊆ T(V(N2)) ⊆ T(V(N3)) ⊆ . . .

is an ascending chain of classical radical submodules of M . Therefore

V(N1) ⊇ V(N2) ⊇ V(N3) ⊇ . . .

is a descending chain of closed sets V(Ni) of Cl.Spec(M). Now, R-module M has
Noetherian spectrum if and only if Cl.Spec(M) is a Noetherian topological space if
and only if there exists a positive integer k such that V(Nk) = V(Nk+n) for each
n = 1, 2, .... if and only if Cl

√
Nk = Cl

√
Nk+n if and only if Nk = Nk+n if and only

if the ACC for classical radical submodules of M holds.�

Theorem 3.8. Let M be a classical top R-module such that Cl.Spec(M) is a
Noetherian space. Then the following statements are true.

1. Every ascending chain of classical prime submodules of M is stationary.

2. The set of minimal classical prime submodules of M is finite. In particular,
Cl.Spec(M) =

⋃n
i=1 V(Pi), where Pi are all minimal classical prime submod-

ules of M .
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Proof. (1). Suppose N1 ⊆ N2 ⊆ N3 ⊆ . . . is an ascending chain of classical prime
submodules of M . Therefore V(N1) ⊇ V(N2) ⊇ . . . is a descending chain of closed
subsets of Cl.Spec(M), which is stationary by assumption. There exists an integer
k ∈ N such that V(Nk) = V(Nk+i), for each i ∈ N. Then for each i ∈ N, Nk = Nk+i.

(2). This follows from Theorem 3.3 and the fact that if X is a Noetherian space,
then the set of irreducible components of X is finite(see for example [10, Proposition
10]). �

Recall that if M is a Noetherian module, then each open subset of Spec(M) is
quasi-compact(see for example [15, Theorem 3.3]). The next theorem shows that
the same result is true for Cl.Spec(M) in Noetherian classical top modules.

Theorem 3.9. Let M be a Noetherian classical top module. Then each open subset
of Cl.Spec(M) is quasi-compact.

Proof. Let for every submodule N of M , U(N) be an open subset of Cl.Spec(M).
Also, let {U(ni)}ni∈N be a basic open cover for U(N). We show that there ex-
ist a finite subfamily of {U(ni)}ni∈N which covers Cl.Spec(M). Since U(N) ⊆⋃

ni∈N U(ni) = U(
⋃

ni∈N ni), then for every submodule K of M that is gener-
ated by the set A = {ni}i∈I , U(N) ⊆ U(K). Since M is a Noetherian module,
then K =< k1, k2, ..., kn >, for some ki ∈ K, therefore bi =

∑n
j=1 rijnij , where

i = 1, ..., n and nij ∈ A. Thus there exists the subset {ni1, ..., nin} ⊆ A such that
K =< ni1, ..., nin >. So U(N) ⊆ U(K) = U(< ni1, ..., nin >). Then

U(N) ⊆ U(

n⋃
i=1

ni) =

n⋃
i=1

U(ni).

consequently, U(N) is quasi-compact. �

Recall that a function Φ between two topological spaces X and Y is called an
open map if, for any open set U in X, the image Φ(U) is open in Y . Also, Φ is
called a homeomorphism if it has the following properties

(i) Φ is a bijection;

(ii) Φ is continuous;

(iii) Φ is an open map

A spectral space is a topological space homeomorphic to the prime spectrum of
a commutative ring equipped with the Zariski topology. By Hochster’s characteri-
zation [15], a topology τ on a set X is spectral if and only if the following axioms
hold:

(i) X is a T0-space.

(ii) X is quasi-compact and has a basis of quasi-compact open subsets.
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(iii) The family of quasi-compact open subsets of X is closed under finite intersec-
tions.

(iv) X is a sober space; i.e., every irreducible closed subset of X has a generic
point.

For any ring R, it is is well-known that Spec(R) satisfies these conditions(cf.
[10], Chap. II, 4.1 - 4.3]). We show that Cl.Spec(M) is necessarily a spectral space
in the classical quasi-Zariski topology for every module M .

We remark that any closed subset of a spectral space is spectral for the induced
topology.

Theorem 3.10. Let M be a classical top primful R-module, R = R/Ann(M) and
let ψ be the natural map of Cl.Spec(M). Then ψ is a homeomorphism.

Proof. It is clear by Lemma 2.1, Proposition 3.2, Lemma 3.3 and Corollary 3.2. �

Corollary 3.3. Let M be a classical top primful R-module. Then Cl.Spec(M)
with classical quasi-Zariski topology is a spectral space.

Lemma 3.6. Let M be a classical top R-module. Then the following statements
are equivalent:

(a) the natural map ψ : Cl.Spec(M) −→ Spec(R/Ann(M)) is injective.

(b) Cl.Spec(M) is a T0-space.

Proof. We recall that a topological space is T0 if and only if the closures of distinct
points are distinct. Now, the result follows from

P = Q⇐⇒ V(P ) = V(Q), ∀P,Q ∈ Cl.Spec(M).�

Corollary 3.4. Let M be a Noetherian classical primeful top module. Then the
following statements are holed:

(i) Cl.Spec(M) is a T0-space.

(ii) Cl.Spec(M) is quasi-compact and has a basis of quasi-compact open subsets.

(iii) The family of quasi-compact open subsets of Cl.Spec(M) is closed under finite
intersections.

(iv) Cl.Spec(M) is a sober space; i.e., every irreducible closed subset of Cl.Spec(M)
has a generic point.

Proof. It is clear by Lemma 3.6, Theorem 3.5, Theorem 3.9, Theorem 3.2. �
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