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Abstract. The present paper deals with genuine Baskakov Durrmeyer operators which
have preserved certain functions. We have obtained quantitative Voronovskaya and
quantitative Griiss type Voronovskaya theorems using the weighted modulus of conti-
nuity. These results include the preservation properties of the classical genuine Baskakov
Durrmeyer operators.
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1. Introduction

In a recent paper [22], Patel et al. considered a new construction of Baskakov
operators on the unbounded interval [0, 0o),

(1.1) Vo) = 37 0007 (£) Plito)

where PY, (z) = ("H;*l)%,n € N,z € [0,00), ¥ is a continuous infinite
times differentiable function satisfying the condition ¥(1) = 0,9(0) = 0 and ¥'(z) >
0 for z € [0,00). They investigated some direct theorems, asymptotic formula and
A -statistical convergence. This function ¥ not only characterizes the operators but
also characterizes the Korovkin set {1,4,9?} in a weighted function space. Inspired
by this idea, many researchers studied in this direction, we can refer the readers to
[21,[3),[41,[5],[9].)

Very recently, Ada [8] have introduced Durrmeyer modifications of the operators

(1.1):
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12 Gla) =), P [ ae v )i

_ k
where py i (u) = ("*F 1)(1+Zm :

The operators defined in (1.2) are linear and positive. In case of ¥(z) = x, the
operators in (1.2) reduce to well known Baskakov Durrmeyer operators.

Other useful modifications of positive linear operators are genuine types in ap-
proximation theory. These modifications for Bernstein durrmeyer operators were
first considered by Chen [11]. Since then, many researchers have conducted studies
in this field. Among the others, we refer the readers to [[10],[16],[19],[20],[21]].

In [7], the authors introduced a genuine type modification of the operators in
(1.2) defined as

0 1 T th=1
D} (g;x) = ;Pg,k(fv)mo/(goﬁ 1)(ﬂmdt
(1.3) +P?o(x) (go971) (0).

In this paper, we will continue to study further approximation properties of the
operators (1.3). To describe the pointwise convergence of the operators, we prove a
quantitative Voronovskaya type theorem. This quantitative Voronovskaya theorem
tells us the rate of pointwise convergence and an upper bound for the error of the
approximation. For some other quantitative versions of Voronovskaya’s theorem,
we can refer the readers to [1],[13],[14].

To prove the main results, we need following moments and central moments of
our new operators.

2. Auxiliary results
Lemma 2.1. We have
(2.1) DY(1;2) =1, D2(0;z) = 9¥(x),

(2.2) DY (9% 7) = 192(17)(71:_1)1+ 20(z)

93 (z)(n + 1)(n + 2) + 69%(z)(n + 1) + 69(x)
(n—1)(n—2)

(23)  DI(Wa) =
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Lemma 2.2. If we describe the central moment operator by
My (@) = Dy (9 (8) = 9 (2))™ 5 2)

then we get

(2.4) Mg,o(w) =1, Mg,l(x) =0

29(x)(¥(x) +1)
n—1
_1203(z) + 189*(z) + 69 ()
Ms(@) = (n—1)(n—2)
MY (x) = 12 [94(z)(n + 7) + 293 (2)(n + 7) + 92(z) (n + 9) + 29(z)]
mee (n—1)(n—2)(n —3)

(2.5) M, (z) =

n7

My () (n—1)(n—z)(ﬁ%)(n—z;)(n_s) [0°(2)n® + 33n + 62)
+309°(z)n? + 33n + 62)
+39*(x)(n? + 36n + 75)
+9(z)(n* + 51n + 140)
+99%(z)(n + 5)
+69(x)]
for all n,m € N.

We suppose that:

(p1) ¢ is a continuously differentiable function on [0, 0o)
(p2) 9(0) =0, infyef0,00) V' () = 1.

Let ¢ (z) = 14+ 9% (z) and By(RT) = {f: |f(2)| < My (z)}, where My is
constant which may depend only on f. Cy(R™1) denote the subspace of all con-
tinuous functions in By (R*). By C} (R™), we denote the subspace off all functions
f € Cy(RT) for which lim, o f () /¢ (2) is finite. Also let Uy (R™) be the space
of functions f € Cy(R™) such that f/1¢ is uniformly continuous. By (R%) is the
linear normed space with the norm [|f||,, = sup,eg+ |f (z)| /¥ (2).

The weighted modulus of continuity defined in [17] is as follows

S ap HO-F@
wy (f30) = rere YO+ (@)

[9(t)—9(2)| <6

for each f € Cy (R1) and for every § > 0. We observe that wy (f;0) = 0 for every
f € Cy (RT) and the function wy (f;0) is nonnegative and nondecreasing with
respect to § for f € Cy (RT) and also lims_owy (f;8) = 0 for every f € Uy (RT).
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Lemma 2.3. ([17])For every f € Uy (RT), lims_,owy (f;6) =0 and
26 11— f@I <0 +ee) (20 2O g, ).

Remark 2.1. If ¥(z) = z, then wy is equivalent with 9 given in [18]

_ |f (z+h) = f(z)]
22(1,0) = S A+ h) ([ +22)

[h]<é

3. Main Results

’ 2 " ’ 3
Theorem 3.1. If the function ¥ satisfies the conditions (p1), (p2) and "'/ (19 ) g9/ (19 ) €
Cy (RT), then we get for any x € RT that

n[D; (g:2) — g (2)] = (v° 19( )) D* (go9™") (9 ()

< 120249 (x +192

)

where 63(a) — (12000 o0 |

Proof. By the Taylor expansion of g o ¥~ ! we get

(e ™) W) = (g0 ") W (x)+D(god™") W (x) (W () -V (z))
+D2 (gov™h) (@ (2) (¥ (1) — ¥ ()
2
(3.1) +h(t,z) (9 (t) — 0 (),
where

D?(gov~") (¥ (e)) = D*(gov¥") (9 (2))

h(t,xz)= )

and € is a number between ¥ (x) and 9 (t) .We can get
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and using Lemma 2.2 we write

2 ° —1 .
D} (g:2) g (r) - 2D+ D T (9 - ) (0 (x))

In order to complete the proof, we estimate the DY (|h (t,z)| (9 (t) — 0 (x))* ;x) .

Since

—~
~
2 | 5,
—~
~+

019,1 " 9 _ g
(9 ) (@(1) 0 (1)

and we have

(go971)" (3(e) = (909" (9(x))

2
_ 1 g (e) » () ¢ (@ 9" (z)
{19 oF Y w <w>>2+g”w'<w>>3}
g0 @ 0@ ()
2{ o wer Y uer g”w'(e)ﬁ}

< <>>(2+ ool

x w( o) e (559)}

In addition, since ¥ (¢)+1 (z) < §2+292 (x) +29 (x) 642 whenever |9 (t) — 9 (x)]| <
0, we have

|h(t,z)] < 3(0%+20°(z)+20(2)6+2)
g’ g
- {W <w/>2’6> e (<ﬁ'>3’5>}

and since o (£)+9 (z) < (%) * (52 4+ 202 () + 20 () 6 + 2) whenever [0 (1) — 9 (x)] >

0, we have

4
b (t,2)] < 3(6%+20% (x) + 20 (2) 6 + 2) W

g g
L) e (250
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Choosing 6 < 1 we deduce

lh(t,z)] < 6(9%(x)+0(x) +2) <M“>

Using Lemma 2.2 we have

n (D} (g;x) — g (x)] — (9 (z) + O(x)) D* (go ") (9 (z))

2 g g9
6n (24 9 (z) + 9*(z) {(Uﬂ <(19/)2,5> + wy (W,(S)}

IN

1
<Mfy(o) (14 5: )20

2 g’ ﬂ
6 (249 (z) +0*(z)) {(Uﬂ ((0/)2,5> + wy ((19/)3,6>}

x {219(33)(19(3;) +1)+

IN

1
and if we choose 67 = (120(1“(91(11_);;45”“6)2) " we get

IN
3
—~
[N
_|_
<
—
8
+
SRS
[ V)
8
~
S~—
—~
DN
<
[ V)
8
S~—"
+
<
—
8
S~—
+
[a—y
S~—

IA
—_
S
o
_|_

which completes the proof. [

Corollary 3.1. One has the following:

1. Let g" € Cy (RT). The choice of ¥(x) = x in Theorem 1 gives a quantitative

Voronovskaya type theorem for T, which defined in [12]
n [T (g52) — g (2)] = (2% + ) ¢ (2)] < 12(1+2)" Qa(g"; 6n(2))

1
where 0, (x) = (—120(1?;165(;}1+16)2) t
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2. Let g" /(9')%,g'0" )(9')% € Uy, (RT) . If we take limit with n — oo in Theorem
3.1, we get the Voronovskaya theorem for DY

lim n [Dz (g:2) — g (x)] = (9* () + V() D* (go 9™ ") I ().

n—roo

3. Let g"/(9)%, g9 ) (9')® € Uy (RY). If n — oo with 9(x) = = in Theorem 1,
we obtain the Voronovskaya theorem for T, which defined in [12]

lim n [T, (g;z) — g (2)] = (2° +z) ¢"(2).

n—00

The following results is a quantitative Griiss Voronovskaya type theorems. For

some applications of Griiss inequalities in approximation theory, one can refer to
[6],[15].

Theorem 3.2. Ifg,h, 271;1,9)/;, ?1;}9)/;, ({(9]:/)2 , % € Cy (R*) such that (Q(Z)l)z (g(hﬂ)l);? c

Cy (RT), then we get at any point © € Rt that

9 (x an "
D} (ghis) — D} (g52) D i) = 2220 Lot ) - LI ) )}‘

IN
[y
[N}
[N}
+

IN
[y
N

=

@[ (go0~")"]| o
where I,(9) = ———5——* (2M3,2 () + 2129((95)) Nz,s (z) + w(lz)ﬂz,zi (x)) and I, (h)

is the analogues one.

Proof. For x € R™ and n € N, we have

9 ) — D (a:2) D? (h-2) — 1% o ( g'(z)h (z)
Dn (ghv ) Dn (gv )Dn (h7 ) Mn,2( ) (19/(1'))2
h(z)g' ()9 (x) 9 B (2)g(x)d" (x)

—Mz,z () — Hpo ()

(9'(x))’
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Yo (x 1z
— DY ghia) — gl@h(e) — 22 (g 91y (o)

~g(z) [D:i (1i2) - hla) = 222 (1o 91)” @9@))]

ui’; 5 (2)

~h(x) lDz (g:2) = g(2) = == (go )" w(x))]

+ (h(z) — D} (h;2)) (D} (g5 ) — g(x))

so using (2.5) we can write

D (ohea) — DY (e D (e P2 @) [ 9" (@) (gh) ()
Dighia) = D a5 DY 1) — 22255 () ) }’
S IAu]+ Aol + ]+ LAl

By Theorem 1, we have the estimates

Al < 12249 (2) +9%(2)) (1 + I(x))?

9w g9
o o) v (5 00)

(

9w 99"
ot v (580

[As] < 12|hll, (240 (2) + 0% (2)) (1 + 0(2)?

9 g
X {wﬁ ((19/)2,5”(90)> + wy ((19/)3,5n(x)> } )

In addition we can write

|[As] <

A
—
[N}
s
=

DY (g:2)—g(w) = (g.007) (9w)) s ()45 D% ((909")" (0(e)) (9(1) — 9(a))* )
hence we have

| Dy (g5 %) = g(x))|
1D19 ( (9019_1)” (6)
2 n

H (gov™1)" . %DZ ((1 +9%(e)) (9(t) — 9(x)) ;x) :

IN

IN
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where € is an number between ¢t and z. If t < € < x, then 1+ 92(¢) < 1 +9%(z). In
this case we get

(go0™)"|| w(x)
Dy (g;2) — g(@)] < H st (@)
orif z < e <t, then 1+ 9¥%(e) <1+ 92(¢). In this case we get
9 (901971)” Y o 2 2
D2 (g:2) — g(a)| < 52D ((1+*() W) - 9(2))* ;)
(901971)”

= (L P (@) Lo () +20(0)ur) 5 () + 114 () -

Therefore, for two cases of 9¥(e) we obtain

(go)"|| w(x)
D) (g;2) — g(x)] < v {

2

o
Corollary 3.2. The following hold:
1. Ifg,h, g", 1 € Cy (RT) such that (gh)"” € Cy (RT). The choice of 9(z) =

in Theorem 2 gives a quantitative Griss Voronovskaya type theorem for T,

which defined in [12]
n| Ty (ghs ) = T (g52) T (h2) — (2° + 2)g' () (2)]
< 122+ 2 +22)(1+2)° ((gh)"; ())
+12{|gll,, (2 + 9 (z) )+ 92(2))(1 4+ 9(2))*Q (¢"; 60 ()
+12[]l, (249 (2) + 0% (2))(1 + 9(2))* Qa2 (B"; 60 (2))
+nl,(g) L, (h)

1
5o () = (120(1+1(97Sai)g§§n+16)2) ‘

2. Let g,h, g",h" € Uy (R") such that (gh)” € Uy (RY). If n — oo in Theorem
2, we obtain the Griiss Voronovskaya type theorem for DY :

08 (o) = D (g D ey = L@ EPE) [ @) )
D3 i) = Digi) D} hs) = DG g @) - TG }‘

3. Let g, h, g",0'Uy (RT) such that (gh)"” € Uy (RT). If n — oo with we select
Hx) = x in Theorem 2, we get the Griss Voronovskaya type theorem for the
operators T,, which defined in [12]:

lim n|T, (gh; ) — Ty (g; %) T (h; ) = (2* 4+ z)g ()1 (2)] .

n—oo
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