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Abstract. In this paper, we have introduced the concepts of ideal A®—lacunary statis-
tical convergence of order 8 with the fractional order « and ideal A*—lacunary strongly
convergence of order 5 with the fractional order o ( where 0 < 8 < 1) and given some
relations about these concepts.
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1. Introduction

The idea of statistical convergence was formerly given under the name “almost
convergence” by Zygmund [53] in the first edition of his monograph published in
Warsaw in 1935. The concept of statistical convergence was introduced by Steinhaus
[48] and Fast [24] and later reintroduced by Schoenberg [45]. Over the years and
under different names statistical convergence has been discussed in the theory of
Fourier analysis, Ergodic theory, Number theory, Measure theory, Trigonometric
series, Turnpike theory and Banach spaces. Later on, it was further investigated
from the sequence space point of view and linked with summability theory by Cakall
et al. ([7],[8],[9]). Caserta et al. [10], Cinar et al. [12], Connor [11], Et et al. ([20],
[23]), Fridy [26], Fridy and Orhan [27], Isik et al. ([29],[30],[31]), Mursaleen [40],
Salat [47], Mohiuddine et al. ([5],[6],[33],[38],[39],[41]) and many others.

The idea of statistical convergence depends upon the density of subsets of the
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set N of natural numbers. The density of a subset E of N is defined by

1 n
= lim — Z Xk (k), provided that the limit exists.

S(E)

A sequence = = () is said to be statistically convergent to L if for every € > 0,
d({keN:|xp—L|>e})=0.

Recently, Colak [13] have generalized the statistical convergence by ordering the
interval (0, 1] and defined the statistical convergence of order 8 and strong p—Cesaro
summability of order 8, where 0 < # < 1 and p is a positive real number. Sengiil
and Et ([19],[49]) generalized the concepts such as lacunary statistical convergence
of order 8 and lacunary strong p—Cesaro summability of order 3 for sequences of
real numbers.

The notation of I-convergence is a generalization of the statistical convergence.
Kostyrko et al. ([36]) introduced the notation of I-convergence. Some further
results connected with the notation of I-convergence can be found in ([14],[15],[37],
[43],144],[52]).

Let X be non-empty set. Then a family sets I C 2% ( power sets of X ) is said
to be an ideal if I additive i.e. A, B € I implies AU B € I and hereditary, i.e.
Ael, BC Aimplies B € I.

A non-empty family of sets F' C 2% is said to be a filter of X if and only if (4)
¢ ¢ F, (ii) A,B € F implies AN B € F and (iii) A € F, A C B implies B € F.

An ideal T C 2% is called non-trivial if T #* 92X

A non-trivial ideal I is said to be admissible if I D {{z}:x € X}.

If I is a non-trivial ideal in X, X # ¢, then the family of sets

F(I)={M CcX:(3Acl)(M =X\ A)}isafilter of X, called the filter associated
with I. Throughout this study, I will stand for a non-trivial admissible ideal of N
and by a sequence we always mean a sequence of real numbers.

Difference sequence spaces were defined by Kizmaz [35] and the concept was
generalized by Et et al. ([16],[17]) as follows:

A™(X) ={z = (zx) : (A™ap) € X},

where X is any sequence space, m € N, A%z = (x3,), Az = (2 — 2p41), A™z =
(Amag) = (A™ oy, — A™ gy ) and so A™ay = Y00 0 (=1)Y (7)) Tkt

If © € A™ (X)) then there exists one and only one sequence y = (y;) € X such
that y, = A™xy and

(1.1) xk=§<—1>m< o )y =i<—1)’"( vl )yvm,

v=1
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yl—m:yQ—m:”':yO:O

for sufficiently large k, for instance k > 2m. After then, some properties of difference
sequence spaces have been studied in ([1],[2],[21],[22],[34],[44]).

For a proper fraction «, we define a fractional difference operator A® : w — w
defined by

(oo}

o4 o 7 F(O& + 1)
(1-2) A (xk) = ;(*1) mﬂ%ﬂ-

Ir;lparticular, we have A%xk =z — %xkﬂ — %xk+2 — %ka+3 — %xmﬁl — %xk% —
7024 Tk+6 """
Afémk =2+ %l'k+1 + %$k+2 + %karB + %$k+4 + %karS + %karG e
Aszy, = xp — 3Tkl — 5Thi2 — SrTh+3 — 35 Th44 — 75 Tht5 — GoprLht6 -
ASzp =2 — 20411 — $Th42 — B Th43 — 23 Thid — By Thts — G Thi6 "
By I'(r), we denote the Gamma function of a real number r and

r ¢ {0,—1,—2,-3,...}. By the definition, it can be expressed as an improper
integral as:

F(r):/ et at.
0

From the definition, it is observed that:
(i) For any natural number n, I'(n + 1) = nl,
(ii) For any real number n and n ¢ {0,—1,—-2,-3,...},T'(n + 1) = nl'(n),
(iii) For particular cases, we have I'(1) =T'(2) = 1,T'(3) = 2,,T'(4) = 3|, ....

Without loss of generality, we assume throughout that the series defined in (1.2)
is convergent. Moreover, if « is a positive integer, then the infinite sum defined in
(1.2) reduces to a finite sum i.e., Z?:O(—l)i%$k+i. In fact, this operator
is generalized the difference operator introduced by Et and Colak [16].

Recently, using fractional operator A% (fractional order of «) Baliarsingh et al.
([3],]4],[42]) defined the sequence space A% (X) such as:

AY(X) ={z = (zx) : (A%y) € X},
where X is any sequence space.

By a lacunary sequence we mean an increasing integer sequence 6 = (k,) of
non-negative integers such that ko = 0 and h, = (k, — k,—1) — 0o as r — co. The
intervals determined by 6 will be denoted by I, = (kr_1, k] and the ratio k’:—il
will be abbreviated by ¢,, and q; = k7 for convenience. In recent years, lacunary
sequences have been studied in ([7],[8],9],[25],[27],[28],[32],[46],[50],[51]).
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1.1. Definitions and Main Results

Definition 1 Let 6§ = (k) be a lacunary sequence, 8 € (0,1] and « be a
proper fraction. The sequence x = (xy) is said to be (A%, I)—lacunary statistically
convergent of order 3 (or Aa(Sg,I)—convergent ) to the number L, if there is a
real number L such that

{reNzhlﬂHkGIr:Aaxk—L>5}}5}6]

for each € > 0 and 6 > 0. In this case, we write z;, — L(AO‘(Sg,I)). The set of
all (A%, I)—lacunary statistically convergent of order 8 sequences will be denoted
by A%(S5,I). If = (2"), then we write A*(S?, T) instead of A*(Sj,T). In the
special cases § = (27) and § = 1, we write A¥(S, I) instead of Aa(Sg, I).

In particular, Aa(Sg , I)—convergence includes many special cases; for example,
in case of « = m € N, (A%, I)—lacunary statistical convergence of order 5 reduces
to the (A™, I')—lacunary statistical convergence which was defined and studied by
Et and Sengiil [18].

Definition 2 Let 6 = (k) be a lacunary sequence, 8 € (0,1], @ be a fixed
proper fraction and p > 1 be a real number. A sequence x = (xy) is said to be
A« (NQB ,I)—summable to L (or ideal A*—lacunary strongly summable of order f3)

if
1 e
{TGN:hﬁkzI:A xk—L|p2€}EI.
T kel,

In this case we write x, — L(A“(N(,ﬁ,p7 I)). We denote the class of all ideal
A%—lacunary strongly summable sequences of order 8 by Aa(Naﬁ 0, I).

Theorem 1 Let 0 < 8 <y < 1. Ifzy, — L(A%(S5, 1)), then z;, — L(A*(S],1)).

Proof. The inclusion part of the proof is trivial. The following example shows
that the inclusion is strict. Let o € N and define a sequence A%xj by

k k=n
« —
A%y = { % otherwise

Then z € (A%(Sy, 1)) for § <y <1but z ¢ (A*(S,, 1)) for 0 < 8 < L by (1.1).

Theorem 2 If 7, — L(A%(NJ,p, 1)), then x;, — L(A*(N,,p,I)) and the
inclusion is proper.

Proof. The inclusion part of the proof is easy. The following example shows
that the inclusion is strict. Let o € N and define a sequence A%xj by

o 1 k=n?
A%y _{ 0 otherwise
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Then z € (A%(Ny,p,I)) for £ <y < 1butz ¢ (Aa(Ng,p,I)) for 0 < 8 <
(1.1).

by

1
2

Theorem 3 If z;, — L(A“(Nf,p, I)), then xp, — L(A“(Sg,[)) and the inclu-
sion is proper.

Proof. Taking p = 1 and L = 0, we show the strictness of the inclusion. Let
«a € N and define a sequence A%xy, by

«a _ [3hr k:172>37"’,[3hr
A { 0 otherwise

Then we have for every € > 0 and % < B <1,

(V]

hy

i

1
h—ﬂ|{k €l : |A%, — 0] > e}| <

and for any § > 0 we get

1 N [V/h
rEN:ﬁHkEIrﬂA 2 —0/>e} =26y C<reN: W >0

and so xp, — O(AQ(SOB,I)) for % < B8 < 1by (1.1). On the other hand, for 0 < 8 < %,

3 3
%Z|Ao‘xk70\:%%oo
ha kel, hr

and for a = %,
Vhe| |V
VR V)
hy
1 o _ [V V] _
{T€N~h72keh‘A a:k—0|21} =qgreN:i—sr—2>1: = {a,a + 1,a +
2,..} € F(I) for some a € N, since I is admissible. Thus zj - O(A“(me, I)) by
(1.1).

The proof of the following theorems is straightforward, so we choose to state
these results without proof.

Theorem 4 If liminf, ¢, > 1, then z;, — L(A%(S?,I)) implies z3, — L(A“(S’g, 1)).
Theorem 5 If lim inf, % > 0, then ¢, — L(A*(S,I)) implies z, — L(A“(Sg, I)).
Theorem 6 Aa(Sg,I) N Lo (A%) is closed subset of £o (A%) for 0 < § < 1.

Theorem 7 Let § = (k) and 8" = (s,.) be two lacunary sequences such that
I. C J, (for all » € N) and 8,~ € (0,1] be real numbers such that § < and a be
a proper fraction.
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Theorem 8 i) If

hB
(1.3) Jiminf 2 > 0,
then A*(S},, 1) C A%(S5, 1)
i) If
.y
(1.4) lim i 1,

then A%(S5, 1) C A*(S],, I).
Proof. i) Omitted.

ii) Let z = (zy) € A“(Sg,[) and be (1.4) satisfied. Since I, C J,, for € > 0 we
may write

1 (o3 1 [}
ﬁHk € J,: |A%y, — L] 2 €}| = EHsr_l <k <kpoy o |A%, — L| > e}

1 1
Jrﬁ\{kr <k<s :|A%y — L] > e} + E‘{kr_l <k <kp:|A%y, — L| > e}

kr—l — Sr—1 Sr*k

T ]‘ (0%
+ﬁ|{k€Ir:\A xp — L| > e}

= a8 oy
6 —hy 1 .
=7 +€7|{k€Ir:\A xp — L| > e}
r r
6 —hy 1 .
< h’y +ﬁ|{kEIT|A Ik7L|>€}|
r v

L, 1 o
< <}LZ—1)+}LE|{REIT:|A xp — L| > €}

for all r € N, where I, = (ky—1,k.], Jr = (Sr—1,8+], by = kp — kr—1 and £, =
S, — Sp—1. Thus

1
{reN:€6|{keJT:|A%k—L|ze}|>5}g

1
g{reNzhﬁHk‘EIT:Aaxk—L|25}|26 el

—

This implies that A* (Sg, I) C A%(Sy,, ).

Theorem 9 Let § = (k,.) and 8" = (s,.) be two lacunary sequences such that
I. C J. for all » € N, 8 and v be fixed real numbers such that 0 < 8 < v < 1 and
0 < p < 0co. Then we have,
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i) I (1.3) holds then A®(Ny,,p,I) C A*(N} p, 1),
ii) If (1.4) holds and = € A*(£y,) then A*(NS,p,I) € A*(Ny,p, I).
Proof. Omitted.

Theorem 10 Let § = (k) and 8’ = (s,.) be two lacunary sequences such that
I. C J, (for all » € N), 8 and v be fixed real numbers such that 0 < 8 <~ < 1 and
0 < p < co. Then,

i) Let (1.3) holds, if a sequence is strongly A®(Ny,, p, I)-summable to L, then it
is A® (Sg7 I)-statistically convergent to L.

ii) Let (1.4) holds and = = (x) be a A®*—bounded sequence if A("(Sg,l)-
statistically convergent to L, then it is strongly A®(Ny,,p, I)—summable to L.

Proof. i) For any sequence x = (z1) and £ > 0, we have

SA —LPP = > A% — LI+ > A%y - L

ke, jacnc T 5. acar <
S
P
>|{k €l : |A%y — L| > e}|e?
and so that

1 1
7 > 1A% — L > sk € Lo |A% — L] > e}fe”
" ked, "

he 1

> 7yl € I [A% — L] > c}er.

{TGN:hlB|{k€IT:|A"xk—L|>s}|26}C

1 h?
c {TGN: 7D 1A% — L > [:651’} el
" ke, "

Hence z = (xy) is A (Sg, I)—statistically convergent to L.

ii) Suppose that AO‘(Sg, I)-statistically convergent to L and © = (z) € A% ({s)-
Then there exists some M > 0 such that [A%x, — L| < M for all k. Then for every
€ > 0 we may write

1 1 1
il > A%y, — LPP = yil > 1A%, — LPP + yil > A% — L)

" keJ, " ked.—I, " kel
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Ly — h, 1
< () e op
r r kel,.

0, — h) 1 N
g( 7 >MP+WZ|A xy, — L|P

" kel

gr 1 a 1 o D
<(h7_—1>MP+hZ > |Axk—L|p+h—Z > A%y — L

kel, kel
|ACz, —L|>e |acs, —L|<e

‘, M . .
KT MP o T _p
for all r € N.

1
{reN;WZm%k—Lv’w}g

" ked,

1 5
Q{TGN:hﬁHkJEIT:Aa:z:k—L|25}|> }EI.

M
Using (1.4) we obtain that A%(N,,p,I)-statistically convergent to L, whenever
Aa(Sg, I)-summable to L.

Definition 3 Let 8 = (k) be a lacunary sequence, 3 € (0,1], a be a proper
fraction. The sequence x = () is said to be (A%, I')—lacunary statistically Cauchy
sequence of order 3 (or A*(S§, I)—Cauchy ) if there is a subsequence (2gr(ry) of (1)
such that &'(r) € J, for each r € N, 2,y — L(A®) (i.e. lim, [A%2p () — L] = 0)

1 [eY
{TEN:hIBZ |A (oskxk,(r))|25}61

T ked,

for each € > 0.

Theorem 11 If x = (zy) is a Aa(NQB,I)—summable if and only if it is a
AO‘(Sg, I)—Cauchy sequence.

Proof. Assume that (xy) is a A® (Ng7 I)—summable sequence to L. Then there
exists L such that z; — L(AQ(NQB, I). Therefore,

1
Hi{ieN:|Aaka|<,}
(3

for each ¢ € N. Hence for each i, H;11 C H; and

H.nJ| _ 1
{rem A5 2her
hy r

T
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We choose k1, such that r > kq, then

HinJ,

Next we choose ko > ki such that r > ko implies

|Hy 0 |

r

Proceeding this way, we can choose kj,y1 > k, such that » > k,y;, implies that
H,i1NJ, #©. Also, we can choose k'(r) € H, N J, for each r satisfying k, < r <
kp+1 such that

o 1
|A Tk (r) 7L| < -.
p

This implies that z () — L(A%). Therefore, for every £ > 0, we get

1 1 €
TEN:—ﬁ Z A% (2 — 2 ()] > € Q{TEN:52|AO‘xk—L|22}
T kK (r)eJd, T ked,

1 o €
U TENI*/B Z |A xk/(T)*L‘Zi
T k/(r)ed,
Then,

1 a
TGN:? Z |A (:Ckfﬂjkr(T))‘ZE el.
" kK (r)EJ,

Therefore (zy) is a A® (Sg7 I)—Cauchy sequence.
Conversely suppose (zy) is a A"‘(Sg , I)—Cauchy sequence. Then for every ¢ > 0,
we have

1 1
{TGN:hBZ|A“ka|25}Q reN: — |Aa(xkka/(r))\zg
T ko k!

T ked, Kk (r)ed,

1 €
U<reN: 7 Z |Aa$k/(,r) — Ll Z 5
T Kk (r)ed,

and so (x) is a (AO‘(Nf, I)—summable sequence to L.

Definition 4 A lacunary sequence p = (k(r)) is called a lacunary refinement of
the lacunary sequence 0 = (k,.) if (k) C (k(r)).



52 N.D. Aral and H. Sengiil Kandemir

Theorem 12 If p = (k(r)) is a lacunary refinement of a lacunary sequence
and z, — L(A®(NS, I)), then z;, — L(A*(N}, I)).

Proof. Suppose that for each J, of 6 contains the points (IET,t)t”L? of p such
that k.1 < k1 < kro <o+ < kpyr) = kr, where J.y = (kpt—1, k] For all r
and let v(r) > 1 this implies k. C (k(r)). Let (J5)52; be the sequence of intervals
(J,+) ordered by increasing right end points. Since z) € L(A“(Nf,])), then for
each € > 0,

1

(h3)P

jeN:

> A%y —Llzep el
J;CJT

Also since h, = k, — k,_1, so BW = l%ht - /57»,1:—1- For each € > 0, we get

1
ST A% — L] >
{TEN e Z| T, | 8}

keJ,

1 1
C N: —— j e N:
CymEN: s k; JEN: o

Therefore {r € N: (h,) ? Y, o, A%y — L] > e} € I. Thus zy, € (AD‘(N57I)).
Theorem 13 Let 1) be set of lacunary sequences.

a) If 4 is closed under arbitrary union, then A*(NJ,I) = Nocy AQ(NGﬁ,I)7
where p = Jge,, 0

b) If ¢ closed under arbitrary intersection, then A%(N? I) = Ugey A (Nf7 1),
where 7 = [y, 0,

c) If 9 is closed under union and intersection, then A"‘(Nﬁ,]) C A"‘(Neﬂ,f) C
A%(NET).

Proof. a) By hypothesis, we have p € ¢ which is a refinement of each 6 € .
Then from Theorem 12, we have if z), € AO‘(NE,I) implies that zy € A“(Nf,[).
Therefore, for each 6 € 1), we have A“(Nﬁ7 I)C AO‘(N(f7 I). The reverse inclusion
is obvious. Hence A“(Nf,I) = Nocy AO‘(Nf,I).

b) By part a) and Theorem 12, we have A%(NZ T) = Usey AO‘(NGH,I).

¢)By part a) and b)we get A®(Nf,I) C A*(N,,I) € A(N£,I).
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