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Abstract. Let RG be the group ring of a group G over ring R and let U (RG) be its
unit group. In this paper, we study the structure of the unit group of F3n T39.
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1. Introduction

Let FG be the group ring of a group G over a field F and let U (FG) be its unit
group, which is the multiplicative subgroup containing all invertible elements. The
study of a unit group is one of the classical topics in ring theory that started in
1940 with a famous paper written by G. Higman [11]. In recent years many new
results have been achived; however, only few group rings have been computed. Unit
groups are useful, for instance, in the investigation of Lie properties of group rings
(for example see [3]) and isomorphism problems (for example see [4]).

Up to now, the structure of unit groups of some group rings has been found.
For instance, on an integral group ring [12], on a permutation group ring [18], on a
commutative group ring [16], on a linear group ring [13], on a quaternion group ring
[6], on a modular group ring [17] and on a pauli group ring [9]. In [7], the authors
proved which groups can be unit groups as well as properties of unit elements
themselves [2] and also we studied the structure of U (F2n D14) in [1].

In this paper we will study the unit group of F3n T39. So far, some cases, in
characteristic 3, have been studied. For instance, in [5], the authors obtained
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the structure of unit group of F3k D6, in [8], Gildea determined the structure of
unit group of F3k (C3 × D6) and in [10] Gildea and Monaghan studied groups of
order 12 and recently in [15], Monaghan studied groups of order 24. In this paper
we characterize the unit group structure of group T39 over any finite field with
characteristic 3.

2. Preliminaries and Notations

In this section, we collect some notations and lemma which we need for the proofs
of our main results. We denote the order of an element g in the group G by OrdG(g),
the sum of all elements of subset X in ring R by X̂ , which is

∑
r∈X r. Notice there is

no need for X to be a subring or subgroup; it defines for any arbitrary subset. In
group ring RG, when X is the subset of all different powers of g, an element of group
G, we may simply write ĝ instead of X̂ . Also when X is the right coset 〈g〉h, we may
write ĝh for X̂ . In group, xy denotes the conjugate of x by y, that is, xy = y−1xy. Let
f : X → Y be an arbitrary function. Define SuppX ( f ) = {x ∈ X | f (x) 6= 0}. Also,
we use the following notations: AnnR(a) = {r ∈ R | ra = ar = 0}, we denote a finite
field of characteristic p with order pn by Fpn . If E is a vector space over F , then
DimF(E) is the dimension of E over F . Let U (R) be the unit group of ring R, which
is U (R) = {u ∈ R | u−1 ∈ R} and let J(R) be the Jacobson radical of ring R. Now
we state a useful definition and recall a lemma.

Definition 2.1. Let RG be group ring of ring R over the group G, let p be a prime
number and let Sp be subset of all p−elements including identity element of G, which
is Sp = {g ∈ G | ∃n ∈ Z>0; OrdG(g) = pn }. We define a binary map T : G → R as
follows:

T (g) =

{
1 If g ∈ Sp

0 If g /∈ Sp

As we know that T on G is the base of RG, so we can linearly extend it to whole
RG, of course no more remains binary. Also if see elements of RG as functions from
G to R, that map every group element (g) to its coefficient (rg), then their supports
will be feasible. Now we can define Krn(T ) := {α ∈ RG | ∀g ∈ G; αg ∈ KerRG(T )}
and Spr(α) := SuppG(α). Also Anh(a) := AnnRG(a) and Dmn(S) := DimF(S).

Lemma 2.1. Let F be a finite field of characteristic p, let G be a finite group, let
T be a function defined as above and s = Ŝp. Then:

(1) J(FG) ⊆ Krn(T ) .
(2) Krn(T ) = Anh(s) .
(3) J(FG) ⊆ Anh(s) .

Proof. [19, Lemma 2.2 on p. 151].

In the next section we present our main results.
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3. Unit Group of F3n T39

Let T39 = 〈x, y | x13 = y3 = 1, xy = x3〉, let Cn be the cyclic group of order n and
let GLn(R) be the general linear group of degree n on ring R. Our main result is:

Theorem 3.1. Let G = T39 and F = F3n . Then the structure of U (FG) can be
obtained as follows:

U (FG) = C2n
3 ×C3n−1 × GL3(F)4.

Let p = 3, let s be defined as in Lemma 2.1, let 〈x〉 be the cyclic subgroup
generated by x and let 〈x〉y be a right coset of 〈x〉, that is, 〈x〉y = {xiy | −6 6 i 6 +6},
or equivalently, 〈x〉y = {x−6y, x−5y, x−4y, x−3y, x−2y, x−1y, y, xy, x2y, x3y, xy4, x5y, x6y}.
By definition, we have

x̂ = x−6 + x−5 + x−4 + x−3 + x−2 + x−1 + 1 + x + x2 + x3 + x4 + x5 + x6

x̂y = x−6y + x−5y + x−4y + x−3y + x−2y + x−1y + y + xy + x2y + x3y

+x4y + x5y + x6y.

Now we show:

Proposition 3.1. Let p = 3 and G = T39. Then the structure of annihilator will
be as follows:

Anh(s) = {a−x̂y−1 + ax̂ + a+x̂y | a− + a + a+ = 0}.

Proof. It is easy to find that the conjugacy classes of G are as below:

(3.1)

C0 = {1}
C−1 = {x−1, x−3, x4}
C+1 = {x, x3, x−4}
C−2 = {x−2, x−5, x−6}
C+2 = {x2, x5, x6}
C−3 = 〈 x 〉y−1

C+3 = 〈 x 〉y

It is clear that T39 has three types of elements: Identity, elements of the form
xiy±1 with order 3 and elements of the form xi 6= 1 with order 13. Therefore,
S3 = C−3 ∪ C0 ∪ C+3, so Ŝ3 = Ĉ−3 + Ĉ0 + Ĉ+3 = x̂y−1 + 1 + x̂y, sum of 3−elements
including identity. Let α =

∑+3
i=−3 αi ∈ Anh(s) where, Spr(αi) ⊆ Ci and s = Ŝ3.
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Then we have

0 = α.s = (

+3∑
i=−3

αi).(Ŝ3)

= (α−3 + α−2 + α−1 + α0 + α+1 + α+2 + α+3)(x̂y−1 + 1 + x̂y)

= (α−3 + (α−2 + α−1 + α0 + α+1 + α+2) + α+3)(x̂y−1 + 1 + x̂y)

= (α−3 + (α−2 + α−1 + α0 + α+1 + α+2)x̂y−1 + α+3x̂y)

+ (α−3x̂y + (α−2 + α−1 + α0 + α+1 + α+2) + α+3x̂y−1)

+ (α−3x̂y−1 + (α−2 + α−1 + α0 + α+1 + α+2)x̂y + α+3)

(3.2)

Notice that for every j, we know:

(3.3)

x jy .x̂y = x j .x̂y−1 = x̂y−1

x jy−1.x̂y = x jy.x̂y−1 = x̂

x jy−1.x̂y−1 = x j .x̂y = x̂y

So the conjugacy classes of three last parentheses of (3.2) are different and since
the left hand side is zero, every parentheses should be zero separately. Hence,

(α−3 + (α−2 + α−1 + α0 + α+1 + α+2)x̂y−1 + α+3x̂y) = 0

(α−3x̂y + (α−2 + α−1 + α0 + α+1 + α+2) + α+3x̂y−1) = 0

(α−3x̂y−1 + (α−2 + α−1 + α0 + α+1 + α+2)x̂y + α+3) = 0.

Similarly, using (3.3) we can conclude that:

(3.4)

α−3 + ε((α−2 + · · ·+ α+2) + α+3)x̂y−1 = 0

(α−2 + · · ·+ α+2) + ε(α−3 + α+3)x̂ = 0

α+3 + ε(α−3 + (α−2 + · · ·+ α+2))x̂y = 0.

As mentioned above α =
∑+3

i=−3 αi = α−3 + α−2 + α−1 + α0 + α+1 + α+2 + α+3

where Spr(αi) ⊆ Ci and by definition of Ci’s from (3.1), we can write:

α0 = a0
α−1 = a−1x−1 + a−3x−3 + a4x4

α+1 = a1x + a3x3 + a−4x−4

α−2 = a−2x−2 + a−5x−5 + a−6x−6

α+2 = a2x2 + a5x5 + a6x6

α−3 =

6∑
i=−6

a−i xiy−1

α+3 =

6∑
i=−6

a+i xiy
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By substitution of each αi’s in (3.4), we can calculate the coefficients of each
element of the group in the left hand sides of equations and since the right hand
sides are zero, so each coefficient must be zero too. Thus for every h, i and j we
have

a−h = −ε(

+2∑
r=−2

αr + α+3) ai = −ε(α+3 + α−3) a+j = −ε(α−3 +

+2∑
r=−2

αr)

a−h = −
6∑

r=−6
(ar + a+r ) ai = −

6∑
r=−6

(a+r + a−r ) a+j = −
6∑

r=−6
(a−r + ar)

a−−6 = · · · = a−6 —
r

k

a−6 = · · · = a6 —
r

k

a+−6 = · · · = a+6

So by knowing a−0 , a0 and a+0 , all coefficients can be computed. Also since we
deal with a field of characteristic 3, so 13 = 1, therefore, we have a−0 + a0 + a+0 = 0,
thus:

Anh(s) = {a−0 x̂y−1 + a0x̂ + a+
0 x̂y | a−0 + a0 + a+0 = 0}.

Let s be as in Proposition 3.1, that is s = Ŝ3, then we have

Proposition 3.2. Anh(s) is a nilpotent ideal.

Proof. Let α, β , γ ∈ Anh(s). According to Proposition 3.1, we have

(3.5)

α = a−x̂y−1 + ax̂ + a+x̂y

β = b−x̂y−1 + bx̂ + b+x̂y

γ = c− x̂y−1 + cx̂ + c+ x̂y.

So their production is:

α.β .γ = (a−x̂y−1 + ax̂ + a+x̂y).(b−x̂y−1 + bx̂ + b+x̂y).(c−x̂y−1 + cx̂ + c+x̂y)

= (a+ − a−)(b+ − b−)Ĝ.(c−x̂y−1 + cx̂ + c+x̂y)

= (a+ − a−)(b+ − b−)(c− + c + c+)Ĝ|〈x〉|

(3.6)

By Proposition 3.1, α.β .γ = 0, thus Anh3(s) = 0, therefore, Anh(s) is a nilpotent
ideal.

Let s be as in Proposition 3.2, that is s = Ŝ3, then we have

Proposition 3.3. Anh(s) ⊆ J(FG).
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Proof. Since every nilpotent ideal is a nil ideal, so Proposition 3.2 shows Anh(s) is
a nil ideal. On the other hand, by [14, Lemma 2.7.13 on p. 109], Jacobson radical
contains all of the nil ideals, so,

Anh(s) ⊆ J(FG).

In the next corollary, we will show that the equality hold:

Corollary 3.1. J(FG) = Anh(s).

Proof. By Proposition 3.3, Anh(s) ⊆ J(FG) and we know from Lemma 2.1 part (3)
that J(FG) ⊆ Anh(s), so the equality is hold:

J(FG) = Anh(s).

We will need the following proposition in the next steps:

Proposition 3.4. Dmn(J(FG)) = Dmn(Anh(s)) = 2.

Proof. By Proposition 3.1 and Corollary 3.1 we have

(3.7) J(FG) = Anh(s) = {a−0 x̂y−1 + a0x̂ + a+
0 x̂y | a−0 + a0 + a+

0 = 0}.

That means, J(FG) and Anh(s) are generated by three elements, with one
restriction. Hence,

Dmn(J(FG)) = Dmn(Anh(s)) = 3− 1 = 2.

Let H := 〈x〉 = {x−6, x−5, x−4, x−3, x−2, x−1, 1, x, x2, x3, x4, x5, x6} � G, a normal
subgroup of G. Also we recall augmentation ideals ∆(G,H) := 〈h− 1| h ∈ H〉, that
in special case H = G, we denote ∆(G) := ∆(G,G). Now it is obvious that, by using
[14, Proposition 3.3.3 on p. 135], we have

Dmn(∆(G,H)) = |G| − [G : H] = 39− 3 = 36

Dmn(∆(G,G)) = |G| − [G : G] = 39− 1 = 38.

Therefore we obtain the following remark:

Remark 3.1. Dimensions of ∆(G,H) and ∆(G) can be computed as follows:

Dmn(∆(G,H)) = 36

Dmn(∆(G,G)) = 38.
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We want to represent a decomposition for ∆(G) over J(FG) and ∆(G,H). As
both of them are included in ∆(G), first we show that they are disjoint:

Proposition 3.5. J(FG) ∩∆(G,H) = 0.

Proof. Let α ∈ J(FG) ∩∆(G,H). By (3.7), J(FG) = 〈Ĝ〉. Now we compute α.x̂ in
two different ways, in order to see α as an element of J(FG) or ∆(G,H) separately:

α ∈ J(FG) = 〈Ĝ〉 α ∈ ∆(G,H) = 〈x− 1〉
α = a.Ĝ α = β (x− 1)

α x̂ = aĜx̂ = aĜ|〈x〉| α x̂ = β (x− 1)x̂ = β (xx̂− 1x̂)

= a.Ĝ.n = a.Ĝ = α = β .(x̂− x̂) = β .0 = 0

So we conclude that:

(3.8) α = α.x̂ = 0.

And therefore we have

J(FG) ∩∆(G,H) = 0.

Now the decomposition can be achieved:

Proposition 3.6. ∆(G) = J(FG)⊕∆(G,H).

Proof. By Proposition 3.4 and Remark 3.1, we have

Dmn(J(FG)) + Dmn(∆(G,H)) = 2 + 36 = 38 = Dmn(∆(G))

Now Proposition 3.5 together with above equality shows that:

∆(G) = J(FG)⊕∆(G,H).

In the next Proposition, we prove that ∆(G,H) is a semisimple ring:

Proposition 3.7. ∆(G,H) is a semisimple ring.

Proof. By Proposition 3.6, we have ∆(G,H) = ∆(G)/J(FG) ⊆ FG/J(FG). From
[14, Theorem 6.6.1 on p. 214], the group ring of a field over a finite group is Artinian,
so FG is an Artinian ring, and [14, Lemma 2.4.9 on p. 87], implies its quotient ring,
FG/J(FG), is an Artinian ring too. Also from [14, Lemma 2.7.5 on p. 107] we
know that J(FG/J(FG)) = 0. Now by using [14, Theorem 2.7.16 on p. 111] we can
conclude that FG/J(FG) is semisimple, and by [14, Proposition 2.5.2 on p. 91], all
of its subrings are semisimple too. So ∆(G,H) is semisimple.
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By the Artin-Wedderburn Theorem, semisimple ring ∆(G,H), decomposes to
its simple components that are division rings of matrices over extensions of F . Now
we need to know their numbers and dimensions. First we show that the center of
∆(G,H) is included in the center of FG:

Proposition 3.8. Z(∆(G,H)) ⊆ Z(FG).

Proof. For the proof of this proposition, we need show that each element of Z(FG)
must commute with all of elements of FG. Since F is commutative and G is
generated by x and y, so it suffices to show they commute with x and y. Let
α ∈ Z(∆(G,H)), so it commutes with x− 1 as it is in ∆(G,H):

α.(x− 1) = (x− 1).α
α.x− α = x.α − α

α.x = x.α

So α commutes with x. Now we show that α also commutes with y. First we show
that αy−yα is in Anh(x−1). Notice we know that (x−1)y = y(x−1−1) ∈ ∆(G,H),
so,

(x− 1)y ∈ ∆(G,H) y(x− 1) ∈ ∆(G,H)
α.(x− 1).y = (x− 1).y.α α.y.(x− 1) = y.(x− 1).α
(x− 1).αy = (x− 1).yα αy.(x− 1) = yα.(x− 1)
(x− 1)(αy− yα) = 0 (αy− yα)(x− 1) = 0

So (αy − yα) ∈ Anh(x − 1) and by [14, Lemma 3.4.3 on p. 139] we know that
Anh(x− 1) = Anh(∆(G,H)) = FGx̂. Now we compute (αy− yα).x̂ in two different
ways, directly itself or consider (αy − yα) as an element of FG.x̂ separately. Note
that α ∈ Z(∆(G,H)) ⊆ ∆(G,H), so by (3.8), α.x̂ = 0, and although x does not
commute with y, but x̂ does, also |〈x〉| = OrdG(x) = 7 = 1. So we have

(αy− yα).x̂ = α.y.x̂− y.α.x̂ = (αy− yα).x̂ = β .x̂.x̂ =
α x̂.y− y.α x̂ = 0.y− y.0 = 0 β .x̂.|〈x〉| = β x̂ = (αy− yα)

Hence αy−yα = (αy−yα).x̂ = 0. Thus αy = yα, which means α also commutes
with y and therefore

Z(∆(G,H)) ⊆ Z(FG).

In the next proposition, we obtain the exact structure of Z(∆(G,H)):

Proposition 3.9. Z(∆(G,H)) = 〈Ĉ1, Ĉ2, Ĉ3〉.

Proof. Let α ∈ Z(∆(G,H)), from [14, Theorem 3.6.2 on p. 151] we know that

Z(FG) = 〈Ĉ−3, Ĉ−2,C−1, Ĉ0, Ĉ+1, Ĉ+2, Ĉ+3〉, so for center of augmentation ideal we

have Z(∆(G,H)) ⊆ 〈Ĉ−3, Ĉ−2,C−1Ĉ0, Ĉ+1, Ĉ+2, Ĉ+3〉, by using Proposition 3.8. So
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α =
∑+3

i=−3 riĈi = r−3Ĉ−3 + r−2Ĉ−2 + r−1Ĉ−1 + r0Ĉ0 + r+1Ĉ+1 + r+2Ĉ+2 + r+3Ĉ+3.

By (3.8), α.x̂ = 0 and notice that xix̂ = x̂, so for i ∈ {−2,−1,+1,+2} we have

Ĉix̂ = 3x̂ = 0. Hence,

0 = α x̂ =

+3∑
i=−3

riĈix̂ = r−3Ĉ−3x̂ + (

−1∑
i=−2

riĈix̂) + r0Ĉ0x̂ + (

+2∑
i=+1

riĈix̂) + r+3Ĉ+3x̂

= r−3y−1x̂ + 0 + r0.1.x̂ + 0 + r+3yx̂ = r−3x̂y−1 + r0.1.x̂ + r+3x̂y

(3.9)

Since the left hand side of (3.9) is zero, so the right hand side coefficients
must be zero too, hence we have r−3 = r0 = r+3 = 0, terefore we conclude that

α = r−2Ĉ−2 + r−1Ĉ−1 + r+1Ĉ+1 + r+2Ĉ+2. As α was an arbitrary element in center

of ∆(G,H), thus Z(∆(G,H)) ⊆ 〈Ĉ−2, Ĉ−1, Ĉ+1, Ĉ+2〉. Now it suffices to show that
all of these types of elements are included in ∆(G,H). We must show that there is
a β such that α = β (x− 1). It is straightforward to find β ’s coefficients by solving
a system of linear equations. So α ∈ ∆(G,H), and therefore

Z(∆(G,H)) = 〈Ĉ−2, Ĉ−1, Ĉ+1, Ĉ+2〉.

Now the dimension of the center of ∆(G,H) can be computed:

Corollary 3.2. Dmn(Z(∆(G,H))) = 4.

Proof. By Proposition 3.9,we know that Z(∆(G,H)) = 〈Ĉ−2, Ĉ−1, Ĉ+1, Ĉ+2〉. So,

Dmn(Z(∆(G,H))) = 4.

Let Mn(R) be the ring of the square matrices of order n on the ring R and let
GLn(R) be its unit group. Also Rn be the direct sum of n copy of the ring R, which
is Rn = ⊕n

i=1R and let Fn be the extension of the finite field F of the order n that is
[Fn : F ] = n. Now we are ready to prove Theorem 3.1:

Proof. [Proof of Theorem 3.1] Let α ∈ Z(∆(G,H)). From Proposition 3.9, we

know that α can be written as α = r−2Ĉ−2 + r−1Ĉ−1 + r+1Ĉ+1 + r+2Ĉ+2. Since
char(F) = 3, we have

α
1 = r−2Ĉ−2 + r−1Ĉ−1 + r+1Ĉ+1 + r+2Ĉ+2

α
3 = r3−2Ĉ

3
−2 + r3−1Ĉ

3
−1 + r3+1Ĉ

3
+1 + r3+2Ĉ

3
+2

α
3 = r3−2Ĉ−2 + r3−1Ĉ−1 + r3+1Ĉ+1 + r3+2Ĉ+2

α
3n = r3n

−2Ĉ−2 + r3n
−1Ĉ−1 + r3n

+1Ĉ+1 + r3n
+2Ĉ+2

α
3n = r−2Ĉ−2 + r−1Ĉ−1 + r+1Ĉ+1 + r+2Ĉ+2.
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Since |F | = 3n, we know r3
n

i = ri, so α3n
= α. Therefore we have

∆(G,H) ∼= M3(F)4.

By [14, Proposition 3.6.7 on p. 153], FG ∼= F(G/H) ⊕ ∆(G,H), therefore,
U (FG) ∼= U (F(C3))×U (∆(G,H)). So we have

U (FG) = Cn
3 ×C3n−1 × GL3(F)4.
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