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Abstract. Rhoades and Savaş [6], [11] established necessary conditions for inclusions
of the absolute matrix summabilities under additional conditions. In this paper, we
determine necessary or sufficient conditions for some classes of infinite matrices, and
using this, we get necessary or sufficient conditions for more general absolute summa-
bilities applied to all matrices.
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1. Introduction

Let X and Y be two sequence spaces of the space ω, the set of all sequences with
real or complex terms. Let A = (anv) be an infinite matrix of complex numbers.
By A(x) = (An (x)) , we denote the A-transform of the sequence x = (xv), i.e.,

An (x) =

∞∑

v=0

anvxv,

provided that the series are convergent for v, n ≥ 0. If A(x) ∈ Y for all x ∈ X, then
A is called a matrix transformation from X into Y , and denoted by (X,Y ) .

In many cases, since an infinite matrix can be considered as a linear operator be-
tween two sequence spaces, the theory of matrix transformations in sequence spaces
has aroused interest for many years, of which purpose is to provide the necessary
and sufficient conditions for a matrix to map a sequence space into another.

X is called aBK-space, if it is a Banach space on which all coordinate functionals
defined by pn(x) = xn are continuous.
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Let Σav be a given infinite series with n-th partial sum sn and let (γn) be a
sequence of nonnegative numbers. By (An(s)), we denote the A-transform of the
sequence s = (sn). The series Σxv is said to be summable |A, γn|k, k ≥ 1, if (see [7])

(1.1)

∞∑

n=1

γk−1
n |An(s)−An−1(s)|

k
< ∞.

Note that, for γn = n, |A, γn|k = |A|k [12] , Also, if A is chosen as the matrices
of the weighted mean (R, pn) (resp.γn = Pn/pn) and Cesàro mean (C,α) together
with γn = n, then, it reduces to the summabilities |R, pn|k [8]

(
resp.|N, pn|k [1]

)

and |C,α|k [2], respectively. By the weighted and Cesàro matrices we mention

anv =

{ pv

Pn
, 0 ≤ v ≤ n

0, v > n,

and

anv =

{
Aα−1

n−v

Aα
n

, 0 ≤ v ≤ n

0, v > n.

respectively, where (pn) is a sequence of positive numbers with Pn = p0 + p1 + ...+
pn → ∞, and

Aα
n =

(α+ 1) (α+ 2) · · · (α+ n)

n!
, n ≥ 1, Aα

0 = 1

|Aα
n | ≤ A(α)nα for all α

Aα
n ≥ A(α)nα and Aα

n > 0 for α > −1.

Let A = (anv) be a lower triangular matrix, we derive the matrices A = (anv)

and Â = (ânv) from the matrix A as follows:

a00 = â00 = a00

anv =
n∑

r=v

anr; n, v = 0, 1, ...

ânv = anv − an−1,v, an−1,n = 0.

Then, Â is a triangular matrix and has unique inverse which is also triangular (see

[13]). We will denote its inverse Â′. Hence, it can be written that

An(x) =
n∑

v=0

anvsv =
n∑

r=0

(
n∑

v=r

anv

)
xr =

n∑

v=0

anvxv

and

Ân(x) = An(x)− An−1(x) =

n∑

v=0

(anv − an−1,v)xv =

n∑

v=0

ânvxv.(1.2)
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which means that the summability |A, γn|k is equivalent to

(1.3)

∞∑

n=0

γk−1
n

∣∣∣Ân(x)
∣∣∣
k

< ∞.

By |γA|k , we define the set of all series summable by |A, γn|k. Then, a series
Σxv is summable |A, γn|k iff x = (xv) ∈ |γA|k , i.e.,

(1.4) |γA|k =
{
x = (xv) : Ã(x) =

(
Ãn(x)

)
∈ ℓk

}

where Ãn(x) = γ
1−1/k
n Ân(x) for all n ≥ 0 and ℓk is the set of all k-absolutely

convergent series.

We note that, since Ã = (ãnv) is a triangle matrix, it is routine to show that
|γA|k is a BK- space if normed by

(1.5) ‖x‖|γA|
k

=
∥∥∥Ã(x)

∥∥∥
ℓk
, 1 ≤ k < ∞.

Dealing with the absolute weighted mean summability of infinite series, Bor
and Thorpe [1] established sufficient conditions in order that all

∣∣N, pn
∣∣
k
summable

series is also summable
∣∣N, qn

∣∣
k
, and conversely. The author [10] showed that Bor

and Thorpe’s conditions are not only sufficient but also necessary for the conclusion.
Also, these results of the author [10] were extended by Rhoades and Savaş [6] using
a triangle matrix instead of weighted mean matrix as follows.

Theorem 1.1. Let 1 < k ≤ s < ∞, (pn) be a sequence satisfying

(1.6)

∞∑

n=v+1

nk−1

(
pn

PnPn−1

)k

= O

(
1

P k
n

)
.

Let B be a lower triangular matrix. Then, necessary conditions for Σxv summable∣∣N, pn
∣∣
k
to imply Σxv is summable |B|s are

Pv |bvv|

pv
= O

(
v1/s−1/k

)
,

∞∑

n=v+1

ns−1
∣∣∣∆v b̂nv

∣∣∣
s

= O

(
vs−s/k pv

Pv

)
,

∞∑

n=v+1

ns−1
∣∣∣̂bn,v+1

∣∣∣
s

= O (1) .

This result has also been extended by Savaş [11] to the matrix methods as follows
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Theorem 1.2. Let 1 < k ≤ s < ∞, A and B be two lower triangular matrices.
A satisfying

(1.7)

∞∑

n=v+1

nk−1 |∆v ânv|
k
= O

(
|avv|

k
)
.

Then necessary conditions for Σxv summable |A|k to imply Σxv is summable |B|s
are

|bvv| = O
(
v1/s−1/k |avv|

)
,

∞∑

n=v+1

ns−1
∣∣∣∆v b̂nv

∣∣∣
s

= O
(
vs−s/k |avv|

s
)

and
∞∑

n=v+1

ns−1
∣∣∣̂bn,v+1

∣∣∣
s

= O

(
∞∑

n=v+1

nk−1 |ân,v+1|
k

)s/k

.

2. Main results

We note that Theorem 1.1 and Theorem 1.2 give necessary conditions for the trian-
gle matrices under the conditions (1.6) and (1.7). In the present paper, we determine
necessary or sufficient conditions for a matrix T ∈ (|γA|k , |φB|s) , 1 ≤ k ≤ s < ∞.
Also, in the special case, we get some more general results that do not include the
conditions (1.6) and (1.7) . More precisely, we give the following theorems.

Theorem 2.1. Let A, B be infinite triangle matrix and T be any infinite
matrix of complex numbers. Further, let (γn) and (φn) be two sequences of positive
numbers. Then, the necessary conditions for T ∈ (|γA|k , |φB|s) , 1 < k ≤ s < ∞,
are

(2.1) lnr = γ−1/k∗

r

∞∑

i=r

tniâ
′
ir converges for n, r ≥ 0

(2.2) sup
m

m∑

v=0

1

γr

∣∣∣∣∣

m∑

v=r

tnvâ
′
vr

∣∣∣∣∣

k∗

< ∞ for n, r ≥ 0

(2.3)

∞∑

n=m

φs−1
n

∣∣∣∣∣

n∑

v=0

∞∑

i=m

b̂nvtviâ
′
im

∣∣∣∣∣

s

= O(γs/k∗

m ),

where k∗ is the conjugate of k, i.e., k∗ = k/(k − 1).
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Theorem 2.2. Let A, B be infinite triangle matrix and T be any infinite matrix
of complex numbers. Further, let (φn) be a sequences of positive numbers. Then,
the necessary and sufficient conditions for T ∈ (|A| , |φB|s) , 1 = k ≤ s < ∞, are

(2.4) lnr =

∞∑

i=r

tniâ
′
ir converges for all n, r ≥ 0

(2.5) sup
m,r

∣∣∣∣∣

m∑

v=r

tnv â
′
vr

∣∣∣∣∣ < ∞

(2.6)

∞∑

n=0

∣∣∣∣∣

n∑

v=0

b̃nvlvr

∣∣∣∣∣

s

= O(1).

Note that for 1 < k ≤ s < ∞, the characterization of the class of all matrices (ℓk, ℓs)
are not known. Hence one can not expect to get a set of necessary and sufficient
conditions for Theorem 2.1.

We require the following lemmas for the proof of our theorems.

Lemma A. Let X and Y be BK spaces, and A be an infinite matrix of complex
numbers. If A is a matrix transformation from X into Y , i.e., A ∈ (X,Y ) , then it
is a bounded linear operator [13] .

Lemma B. Let 1 < k < ∞ and A be an infinite matrix of complex numbers.
Then

a-) A ∈ (ℓ, c) iff

i-) lim
n

anv exists for all v ≥ 0, and ii-) sup
n,v

|anv| < ∞,

b-) A ∈ (ℓk, c) iff

i-) (i) is satisfied, and ii-) sup
n

∞∑

v=0

|anv|
k∗

< ∞,

where c is the set of all convergent sequences, and 1/k + 1/k∗ = 1 [13] .

Lemma C. Let 1 ≤ s < ∞ and A be an infinite matrix. Then A ∈ (ℓ1, ℓs) iff

sup
v

∞∑

n=0

|anv|
s < ∞

where ℓs is the set of all s- absolutely convergent sequences [3] .

Proof of the Theorem 2.1. Let 1 < k ≤ s < ∞. Suppose, T ∈ (|γA|k , |φB|s).

Then, T (x) exists and T (x) ∈ |φB|s for all x ∈ |γA|k . Now, x ∈ |γA|k iff y = Ã(x) ∈
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ℓk,where yn = Ãn(x) = γ
1/k∗

n Ân(x), and Ân(x) is defined by (1.2) . By the inverse
of (1.2) , we have

xn =

n∑

r=0

â′nrÂr(x) =

n∑

r=0

â′nrγ
−1/k∗

r yr,

and so

m∑

v=0

tnvxv =

m∑

v=0

tnv

v∑

r=0

â′vrγ
−1/k∗

r yr

=
m∑

r=0

(
γ−1/k∗

r

m∑

v=r

tnvâ
′
vr

)
yr =

∞∑

r=0

l(n)mryr

= L(n)
m (y)

where

l(n)mr =

{
γ
−1/k∗

r
∑m

v=r tnv â
′
vr, 0 ≤ r ≤ m

0, r > m.

This implies that T (x) exists for all x ∈ |γA|k iff L(n)(y) exists for y ∈ ℓk, or

equivalently, L(n) =
(
l
(n)
mr

)
∈ (ℓk, c) . So, it follows from Lemma B that T (x) exists

iff (2.1) and (2.2) are satisfied. Further,

Tn(x) =

∞∑

v=0

tnvxv =

∞∑

r=0

lim
m→∞

l(n)mryr

=

∞∑

r=0

lnryr = Ln(y),

which means T (x) = L(y). On the other hand, since x ∈ |φB|s iff B̃n(x) ∈ ℓs,

T (x) ∈ |φB|s iff B̃n(T (x)) ∈ ℓs, i.e., C(y) ∈ ℓs, where

cnr =

n∑

v=0

b̃nvlvr for n, r ≥ 0,

because, for each n ≥ 0,

Cn(y) =

∞∑

v=0

cnryr =

∞∑

r=0

(
n∑

v=0

b̃nvlvr

)
yr

=
n∑

v=0

b̃nvLv(y) =
n∑

v=0

b̃nvTv(x)

= B̃n(T (x)).

Also, it can be seen that C = B̃.L. So, by combining the above calculations we
get C ∈ (ℓk, ℓs) . On the other hand, since ℓk is BK space for k ≥ 1, then, by
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Lemma A , the matrix C defines a bounded linear operator LC : ℓk → ℓs such that
LC(x) = (Cn(x)) for all x ∈ ℓk, and so there exists a constant M such that

(2.7) ‖LC(x)‖ℓs ≤ M ‖x‖ℓk for all x ∈ ℓk.

Now in particular we put xm = 1 and xn = 0 for n 6= m. Then, we obtain

Cn(x) =

{
0, n < m
cnm, n ≥ m

and

‖LC(x)‖ℓs =

(
∞∑

n=m

∣∣∣∣∣φ
1/s∗

n γ−1/k∗

m

n∑

v=0

∞∑

i=m

b̂nvtviâ
′
im

∣∣∣∣∣

s)1/s

.

So, it follows from (2.7) that (2.3) holds. This completes the proof.

Proof of the Theorem 2.2. Let 1 = k ≤ s < ∞. Then, T ∈ (|A| , |φB|s)
iff T (x) exists and T (x) ∈ |φB|s for all x ∈ |A| . Now, x ∈ |A| iff y ∈ ℓ, where

yn = Ân(x) and Ân(x) is defined by (1.2) . Then, by the inverse of (1.2) , we have

xn =

n∑

r=0

â′nrÂr(x) =

n∑

r=0

â′nryr,

and so
m∑

v=0

tnvxv =
m∑

v=0

tnv

v∑

r=0

â′vrγ
−1/k∗

r yr

=

m∑

r=0

(
m∑

v=r

tnvâ
′
vr

)
yr =

∞∑

r=0

l(n)mryr

= L(n)
m (y)

where

l(n)mr =

{ ∑m
v=r tnv â

′
vr, 0 ≤ r ≤ m

0, r > m.

This implies that T (x) exists for all x ∈ |A| iff L(n)(y) ∈ (ℓ, c) , or equivalently, by
Lemma B, (2.4) and (2.5) are satisfied. Further, we have

Tn(x) =
∞∑

v=0

tnvxv =
∞∑

r=0

lim
m→∞

l(n)mryr

=

∞∑

r=0

lnryr = Ln(y),

which also means T (x) = L(y). On the other hand, since T (x) = L(y), then,
T (x) ∈ |φB|s iff C(y) ∈ ℓs, where

cnr =

n∑

v=0

b̃nvlvr for n, r ≥ 0,



1388 M.A. Sarıgöl

because,

Cn(y) =

∞∑

r=0

cnryr =

∞∑

r=0

(
n∑

v=0

b̃nvlvr

)
yr

=

n∑

v=0

b̃nvLv(y) =

n∑

v=0

b̃nvTv(x)

= B̃n(T (x)).

Thus it follows from Lemma C that

∞∑

n=0

∣∣∣∣∣

n∑

v=0

b̃nvlvr

∣∣∣∣∣

s

= O (1) ,

which completes the proof.

We note that in the special case T = I, identity matrix, then I ∈ (|γA|k, |φB|s)
means that if a series is summable |A, γn|k, then it is also summable |B, φn|s, and
also, conditions (2.1) , (2.2) hold and (2.3) reduces to

φs−1
m

∣∣∣∣
bmm

amm

∣∣∣∣
s

+

∞∑

n=m+1

φs−1
n

∣∣∣∣∣

n∑

i=m

b̂niâ
′
im

∣∣∣∣∣

s

= O(γs/k∗

m ).

So, as consequences of Theorem 2.1-2.2, we have many results. Now we list some
of them.

Corollary 2.3. Let A and B be infinite triangle matrix of complex numbers.
Further, let (γn) and (φn) be two sequences of positive numbers.

a-) If 1 < k ≤ s < ∞, then, the necessary conditions in order that a series by
summable |A, γn|k is also summable |B, φn|s are

(2.8) φ1/s∗

m

∣∣∣∣
bmm

amm

∣∣∣∣ = O(γ1/k∗

m )

(2.9)
∞∑

n=m+1

φs−1
n

∣∣∣∣∣

n∑

i=m

b̂niâ
′
im

∣∣∣∣∣

s

= O(γs/k∗

m ).

b-) If 1 = k ≤ s < ∞, then, the necessary and sufficient conditions in order that
a series by summable |A| is also summable |B, φn|s are that (2.8) and (2.9) with
k = 1 are satisfied.

Let us take φn = γn = n for all n. Since |A, γn|k = |A|k and |B, φn|s =
|B|s, then, Corollary 2.3 reduces to the following result which do not include the
additional condition (1.7) of Theorem 1.2.
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Corollary 2.4. Let 1 < k ≤ s < ∞, A and B be triangle matrix of complex
numbers. Then necessary conditions in order that a series by summable |A|k is also
summable |B|s are

m1/k−1/s

∣∣∣∣
bmm

amm

∣∣∣∣ = O (1)

and
∞∑

n=m+1

ns−1

∣∣∣∣∣

n∑

i=m

b̂niâ
′
im

∣∣∣∣∣

s

= O
(
ms/k∗

)
.

If 1 = k ≤ s < ∞, by Theorem 2.2, these conditions with k = 1 are also
necessary and sufficient for the conclusion to satisfy.

Also, if we put A = I and γv = v for all v ≥ 1, then the summability |A, γn|k is
equivalent to the condition

∞∑

n=1

nk−1 |xn|
k < ∞.

Hence the following result is deduced by theorem 2.1, which is due to Sarıgöl [9] .

Corollary 2.5. Let 1 ≤ s < ∞ and B be triangle matrix of complex numbers.
Then, the necessary and sufficient conditions in order that an absolutely convergent
series is also summable |B|s are

∞∑

n=v

ns−1
∣∣∣̂bnv

∣∣∣
s

= O (1) .

Further, if A and B are the matrix of weighted means (R, pn) and (R, qn) then,
it is easily seen that ânv = pnPv−1/PnPn−1, 1 ≤ v ≤ n, and zero otherwise, â′vv =

Pv/pv, â′v,v−1 = −Pv−2/pv−1 and â′n,v = 0 for n 6= v, v + 1, and also, b̂nv =
qnQv−1/QnQn−1, 1 ≤ v ≤ n, and zero otherwise. So the following result follows
immediately from Theorem 2.2, of which sufficiency for the case φv = γv = v and
k = s is due to Orhan and Sarıgöl [5] .

Corollary 2.6. Let 1 = k ≤ s < ∞ and B be triangle matrix of complex num-
bers. Then, necessary and sufficient conditions in order that a series by summable
|R, pn| is also summable |R, qn|s are

v1−1/s

∣∣∣∣
Pvqv
pvQv

∣∣∣∣ = O (1)

and ∣∣∣∣Qv−1
Pv

pv
−Qv

Pv−1

pv

∣∣∣∣
s ∞∑

n=v+1

ns−1

(
qn

QnQn−1

)s

= O (1) .
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Let A and B be Cesàro matrices (C,α) and (C, β), respectively. In this case, it

is well known that ânv = vAα−1
n−v/nA

α
n, b̂nv = vAβ−1

n−v/nA
β
n, and â′nv = vA−α−1

n−v Aα
v /n.

So, (2.1) is equivalent to
vα−β+1/k−1/s = O (1) ,

or β ≥ α+ 1/k − 1/s. Also, since (see, Lemma 5, Mehdi [4])

∞∑

n=v

1

n

∣∣∣∣∣
Aβ−α−1

n−r

Aβ
n

∣∣∣∣∣

s

=





O(v−sβ−1), s (β − α− 1) < −1
O(v−sβ−1 log v), s (β − α− 1) = −1

O(v−s(α+1)), s (β − α− 1) > −1

we have

Ev =

∞∑

n=v

ns−1

∣∣∣∣∣

n∑

r=v

b̂nrâ
′
rv

∣∣∣∣∣

s

= (vAα
v )

s
∞∑

n=v

ns−1

∣∣∣∣∣
1

nAβ
n

n∑

r=v

Aβ−1
n−rA

−α−1
r−v

∣∣∣∣∣

s

= (vAα
v )

s
∞∑

n=v

1

n

∣∣∣∣∣
Aβ−α−1

n−v

Aβ
n

∣∣∣∣∣

s

= O
(
vs−s/k

)
.

In fact, since β ≥ α+ 1/k− 1/s, it is clear that s (β − α− 1) + s+ 1− s/k ≥ 0.
So, it is easy to see from Mehdi’s lemma that (2.8) is satisfied, because, Ev is
equal to O(1)v−s(β−α−1)−1−s+s/k, O(1)v−s(β−α−1)−1−s+s/k log v and O(1)v−s+s/k

for s (β − α− 1) < −1, s (β − α− 1) = −1 and s (β − α− 1) > −1, respectively.
So Theorem 2.1 reduces to the following result of which sufficiency was proved by
Flett [2].

Corollary 2.7. Let 1 < k ≤ s < ∞, and α > −1. Then, necessary conditions
in order that a series by summable |C,α|k is also summable |C, β|s are β ≥ α +
1/k − 1/s.
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