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Abstract. For a given element g of a finite group G, the probablility that the com-
mutator of randomly choosen pair elements in G equals g is the relative commutativity
degree of g.

In this paper we are interested in studying the relative commutativity degree of the
Dihedral group of order 2n and the Quaternion group of order 2n for any n ≥ 3 and
we examine the relative commutativity degree of infinite class of the Moufang Loops of
Chein type, M(G, 2).
Keywords. Relative commutativity degree, Moufang loop.

1. Introduction

Every algebraic structure here is non-commutative. A quasi-group is a non-
empty set with a binary operation such that for every three elements x, y and z
of that, the equation xy = z has a unique solution in this set, whenever two of
the three element are specified. A quasi-group with a neutral element is called a
loop and following [2, 6, 7, 8] one may see the definition of Moufang loop satisfying
four tantamount relators. These loops are of interest because of their appearance
in the projective geometry as planes and even they are non-associative, they retain
many properties of the groups. During the study of these loops an interesting
class introduced by Chein [3, 4, 5] where, for a finite group G and a new element
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u, (u /∈ G), the loop M(G, 2) is defined as M(G, 2) = G ∪Gu such that the binary
operation in M(G, 2) is defined by:

goh = gh, if g, h ∈ G,
go(hu) = (hg)u, if g ∈ G, hu ∈ Gu,
(gu)oh = (gh−1)u, if gu ∈ Gu, h ∈ G,
(gu)o(hu) = h−1g, if gu, hu ∈ Gu.

These loops are studied for their finiteness property in [1, 2]. It is obvious
that M(G, 2) is non-associative if and only if the group G is non-abelian. Our next
preliminary is the definition of generalized relative commutativity degree. Following
[1], for an integer n ≥ 2, the probability that for two elements x and y of an algebraic
structure, xny = yxn holds is called the nth-commutativity degree of the algebraic
structure and denoted this probability by Pn(S), for an algebraic structure S.

In what follows we examine Prg(M) and Prg(G), where for a given group G we
give a general relationship between them with M = M(G, 2). Since then we give
explicit descriptions for Prg(M) in two special cases when G is one of the dihedral
group of order 2m and the quaternion group of order 2m, for every m ≥ 3. Note that
these groups are non-abelian and then the loop M = M(G, 2) is non-associative.

2. Main results

For a given element g ∈ G we define the g-relative commutativity set of G as

Cg(G) = {(x, y) | x, y ∈ G, xyx−1y−1 = g}.

This set will be used in computation of Prg(G) and we have

Prg(G) =
|Cg(G)|
|G|2

.

Also we use the presentations < a, b | an = b2 = (ab)2 = 1 > and < a, b | a2n−1

=

1, b2 = a2
n−2

, (ab)2 = 1 > for the groups D2n and Q2n . Our main results are:

Lemma 2.1. For even values of n ≥ 4, if a, b ∈ D2n then

(i) [ai, b] = g if and only if [ai, ajb] = g,

(ii) [ai, b] = g if and only if [a
n
2 +i, b] = g,

(iii) [b, ai] = g if and only if [ajb, ai] = g,

(iv) [b, ai] = g if and only if [b, a
n
2 +i] = g,

(v) [b, aib] = g if and only if [b, a
n
2 +ib] = g,

(vi) [aib, ajb] = g if and only if [ai+1b, aj+1b] = g,
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where g ∈ D2n and (1 ≤ i, j ≤ n− 1).

Proof. Let n ≥ 4 be an even integer. Then by presentation of the group D2n we
get:

(i) :

[ai, b] = g ⇐⇒ aiba−ib−1 = g
⇐⇒ a−2ib2 = g
⇐⇒ a2iaj−jb2 = g
⇐⇒ ai+jba−i+jb = g
⇐⇒ aiajba−iajb = g
⇐⇒ aiajba−ib−1a−j = g
⇐⇒ [ai, ajb] = g.

(ii) :

[ai, b] = g ⇐⇒ aiba−ib−1 = g
⇐⇒ a2ib2 = g
⇐⇒ an+2ib2 = g
⇐⇒ a

n
2 +iba−

n
2−ib−1 = g

⇐⇒ [a
n
2 +i, b] = g.

The proof in other cases is similar and we omit it.

Corollary 2.1. Let n ≥ 4 be an even integer and a, b ∈ D2n. For every integers
0 ≤ i, j ≤ n− 1 if [aib, ajb] = g then g ∈ {1, a2, a4, . . . , an−2}.

Theorem 2.1. For even values of n > 3 if g ∈ D2n, (g 6= 1) then

Prg(D2n) =
3

2n

where, g = a2, a4, . . . , an−2.

Proof. Let n be an even integer and G = D2n = A∪B where, A = {1, a, . . . , an−1}
and B = {b, ab, . . . , an−1b}. Clearly, [ai, aj ] = 1, now if [ai, b] = g then by using [i]
in Lemma 2.1 we get there are n pairs (x, y) ∈ A× B such that [x, y] = g, also by
[ii] in Lemma 2.1 we get there are n pairs (x, y) ∈ A×B such that [x, y] = g. Also,
by [iii] and [iv] in Lemma 2.1 we heve there are 2n pairs (x, y) ∈ B × A such that
[x, y] = g and by [v] and [vi] in Lemma 2.1 there are 2n pairs (x, y) ∈ B × B such
that [x, y] = g.

Consequently,
|Cg(D2n)| = 2n + 2n + 2n = 6n,

and

Prg(D2n) =
|Cg(D2n)|
|D2n|2

=
6n

4n2
=

3

2n
.
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Lemma 2.2. For odd values of n ≥ 3, if a, b ∈ D2n then

(i) [ai, b] = g if and only if [ai, ajb] = g,

(ii) [b, ai] = g if and only if [ajb, ai] = g,

(iii) [b, aib] = g if and only if [b, a
n
2 +ib] = g,

where, g ∈ D2n and (1 ≤ i, j ≤ n− 1).

Proof. The proof is similar to the proof of Lemma 2.1.

Corollary 2.2. Let n ≥ 4 be an odd integer and a, b ∈ D2n. For every integers
0 ≤ i, j ≤ n− 1 if [aib, ajb] = g then g ∈ {1, a, a2, . . . , an−1}.

Theorem 2.2. For odd values of n > 3 if g ∈ D2n, (g 6= 1) then

Prg(D2n) =
3

4n

where, g = a, a2, . . . , an−1.

Proof. Let n be an odd integer and G = D2n = A ∪B where, A = {1, a, . . . , an−1}
and B = {b, ab, . . . , an−1b}. Clearly, [ai, aj ] = 1, now if [ai, b] = g then by using [i]
in Lemma 2.2 we get there are n pairs (x, y) ∈ A×B such that [x, y] = g. Also, by
[ii] in Lemma 2.2 we heve there are n pairs (x, y) ∈ B ×A such that [x, y] = g and
by [iii] in Lemma 2.2 there are n pairs (x, y) ∈ B ×B such that [x, y] = g.

Consequently,
|Cg(D2n)| = n + n + n = 3n,

and

Prg(D2n) =
|Cg(D2n)|
|D2n|2

=
3n

4n2
=

3

4n
.

Lemma 2.3. For a given element g ∈ Q2n and any values of n ≥ 3, if a, b ∈ Q2n

and (1 ≤ i, j ≤ n− 1) then

(i) [ai, b] = g if and only if [ai, ajb] = g,

(ii) [ai, b] = g if and only if [a
n
2 +i, b] = g,

(iii) [b, ai] = g if and only if [ajb, ai] = g,

(iv) [b, ai] = g if and only if [b, a
n
2 +i] = g,

(v) [b, aib] = g if and only if [b, a
n
2 +ib] = g,

(vi) [aib, ajb] = g if and only if [ai+1b, aj+1b] = g.
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Corollary 2.3. Let n ≥ 3 be a positive integer and a, b ∈ Q2n . For every 0 ≤
i, j ≤ 2n−1 − 1, if [aib, ajb] = g then g ∈ {1, a2, a4, . . . , a2n−1−2}.

Theorem 2.3. For any values of n ≥ 3 if g ∈ Q2n , (g 6= 1) then

Prg(Q2n) =
3

2n

where, g ∈ {1, a2, a4, . . . , a2n−1−2}.

Proof. Let n ≥ 3 be an even integer and G = Q2n = A∪B, where A = {1, a, . . . , an−1}
and B = {b, ab, . . . , an−1b}. Clearly, [ai, aj ] = 1, now if [ai, b] = g then by using
[i, ii] in Lemma 2.3 we get there are 2n−1 pairs (x, y) ∈ A×B such that [x, y] = g.
Also, by [iii, iv] in Lemma 2.3 we heve there are 2n−1 pairs (x, y) ∈ B × A such
that [x, y] = g and by [v, vi] in Lemma 2.3 there are 2n−1 pairs (x, y) ∈ B×B such
that [x, y] = g. Consequently,

|Cg(Q2n)| = 2(2n−1) + 2(2n−1) + 2(2n−1) = 3(2n),

and

Prg(Q2n) =
|Cg(Q2n)|
|Q2n |2

=
3(2n)

(2n)2
=

3

2n
.

Lemma 2.4. Let G be a finite group of order n, g ∈ G and M(G, 2) be a finite
Moufang loop of order 2n. we have for all x, y ∈ G:

(i) ((xu)oy)o((xu)−1oy−1) = g if and only if y−2 = g,

(ii) ((xu)o(yu))o((xu)−1o(yu)−1) = g if and only if (x−1y)−2 = g.

Proof. By definition of the multiplication in M(G, 2) clearly:

(i)
((xu)oy)o((xu)−1oy−1) = g ⇐⇒ ((xy−1)u)o((xy)u) = g

⇐⇒ y−1x−1xy−1 = g
⇐⇒ y−2 = g.

(ii)
((xu)o(yu))o((xu)−1o(yu)−1) = g ⇐⇒ (y−1x)o(y−1x) = g

⇐⇒ (y−1x)2 = g
⇐⇒ (x−1y)−2 = g.

Proposition 2.1. For a given integer n ≥ 2 and a non-abelian group G,

Prg(M) =
1

4
(Prg(G) +

3Ng

|G|
),

where Ng is the number of elements y ∈ G such that y−2 = g.
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Proof. Let g ∈ M = M(G, 2) and Cg(M) = {(x, y) | x, y ∈ G, xyx−1y−1 = g}.
We first note that the multiplication table of the Moufang loop M(G, 2) will be as
follows:

o G Gu

G G ∗G G ∗Gu
Gu Gu ∗G Gu ∗Gu

Since Prg(M) =
|Cg(M)|
|M |2 . Thus it is sufficient to enumerate |Cg(M)|. For every

(x, y) ∈M we have the following four cases:
Case1: Both x, y ∈ G. Then there are |Cg(G)| distinct ordered pairs (x, y) ∈
Cg(M) in this case.
Case2: x ∈ Gu and y ∈ G. Then x = x1u where x1 ∈ G. By (i) of Lemma 2.1 we
conclude that y−2 = g, so there are precisely Ng|Gu| = Ng|G| pairs (x, y) ∈ Cg(M)
of this type.
Case3: x ∈ G and y ∈ Gu. Then y = y1u where y1 ∈ G. By using (i) of Lemma
2.1 we get there are Ng|G| distinct pairs in Cg(M) of this type.
Case4: Both x, y ∈ Gu. Then x = x1u and y = y1u where x1, y1 ∈ G. Using (ii) of
Lemma 2.1 we get there are Ng|G| distinct pairs in Cg(M) such that (x−1y)−2 = g.

Consequently,
|Cg(M)| = |Cg(M)|+ 3Ng|G|,

and so,

Prg(M) =
|Cg(M)|+ 3Ng|G|

(2|G|)2
=

1

4
(Prg(G) +

3Ng

|G|
).

Proposition 2.2. Let M = M(D2n, 2), n ≥ 3 is a positive integer. Then,

Prg(M) =


3
8n (Ng + 1), n is even,

3
16n (2Ng + 1), n is odd,

where, Ng is the number of elements y ∈ G such that y−2 = g.

Proof. By using Proposition 2.1 and Theorems 2.2 and 2.3 we get

Prg(M) =
1

4
(Prg(G) +

3Ng

|G|
) =


1
4 ( 3

2n +
3Ng

2n ) = 3
8n (Ng + 1), n is even,

1
4 ( 3

4n +
3Ng

2n ) = 3
16n (2Ng + 1), n is odd,

Corollary 2.4. Let M = M(D2n, 2), n ≥ 3 is a positive integer. Then,

Prg(M) ≤ 15

48
.
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Proposition 2.3. Let M = M(Q2n , 2), n ≥ is an integer . Then

Prg(M) =
3

2n+2
(Ng + 1),

where, Ng is the number of elements y ∈ G such that y−2 = g.

Proof. The proofs follows by considering the Proposition 2.1:

Prg(M) =
1

4
(

3

2n
+

3Ng

2n
) =

3

2n+2
(Ng + 1).

Corollary 2.5. Let M = M(Q2n , 2), n ≥ 3 is an integer . Then

Prg(M) ≤ 3

16
.
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