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Abstract. In this paper, we introduce a new subclass of meromorphic functions, using
the exponent ¢-derivative operator. Afterwards, coefficient estimates, extreme points,
convex linear combination, radii of starlikeness and convexity and finally partial sum
property have been investigated.
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1. Introduction

Fractional calculus have started to appear more and more frequently for the
modelling of relevant systems in several fields of applied sciences. For more details,
one may refer to the books [6, 7, 9] and the recent papers on the subject. The theory
of g-analysis has attracted a considerable effort of researches due to its application
in many branches of mathematics and physics and g-theory has an important role
in various branches of mathematics and physics as for example, in the areas of spe-
cial functions, ordinary fractional calculus, optimal control problems, g-difference,
g-integral equations, g-transform analysis and in quantum physics (see for instance,
[1, 2, 3,4, 5, 8, 10, 16]).

The theory of univalent functions can be described by using the theory of the ¢-
calculus. Moreover, in recent years, such g-calculus as the ¢-integral and ¢-derivative
have been used to construct several subclasses of analytic functions (see, for exam-
ple, [12, 13, 14, 15, 17]).

Let ¥ denote the class of meromorphic functions of the form

1
(1.1) flz)=—+ > apt
k=1
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which are analytic in the punctured unit disk
A*={zeC: 0<|z| <1}

Gasper and Rahman [7] defined the ¢- derivative of a function f(z) of the form

equation 1.1 by
_ flez) = f(2)

where z € A* and 0 < ¢ < 1.

Therefore, the ¢- derivative of f(z) = z¢~1 is given by
k=1 _ k-1
D,F 1 = (Zq)( T = k=10
q—1)z

Our aim in this paper is to introduce a new operator and a new class of functions
given by equation 1.1. So we have

N D" [ T+ g+ @+ + ¢ K1 _ o
(1.3) Df(z)= (=" T € ) )+§ :Il[k—z]qakzk !
gin—t)zn k=1i=1

(ze A" ,neN={1,2,---})

where

14 JIa+q+@++d ) =0+a0+q+¢) - A+g+-+¢")
k=1

and
T | e e L I e

also [0 [k —i]q = [/, (k —4) as ¢ — 1. So we conclude

gngf(z):f(m(z) , zZENT,

see also [11].
ForneN,0<¢g<1,0<A<1,0<a<1landf >0, let Zq(n;/\,a,ﬁ) be the
subclass of 3 consisting of functions f of the form equation 1.1 and satisfying the
condition
(1.6)
C =DM (r+1)? _
_ Wnkzl(l'i'q'i'""i'qk 1)
q n—1
()" (L4 g+ + ¢ 1+ Na
(n+1) + (n+1)
q n—1 q n—1

S (D2 f(2) + 22 (DL f(2)

Azt (Dgf(z)) +

< B.

We also derive some results given various coefficient inequalities, Radii condition
and Hadamard product.
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2. Main Results

Unless otherwise mentioned, we suppose throughout this paper that n € N,
0<g¢g<1,0<A<1,0<a<1and > 0. First we state coefficient estimates on
the class Zq(n; A, B).

Theorem 2.1. Let f(z) € >_ , then f(z) € 3, (n; A, v, B) is and only if

(2.1)
+oo n
ST =il (k= n—1)* + A8) ax
k=11=1
BA+N((1)" ' L+ g+ -+ —a) '

: 5

Proof. Let f(z) € >, (n; A a, ), then equation 1.6 holds true. So by replacing
equation 1.3 in equation 1.6 we have

ior (ITa [k = dlg(k —n = 1)(k —n = 2) + T[, [k — il (k — n — 1))a=*)

%(—1)” o (T4 g+ -+ @)+ A0 T [k — ilqarz® + (2(27;\50‘
<8
or
Sory [y [k = dlg(k — n — 1)%a,.2*
%%§«4W1H£*“ﬂ+“*ﬂk”—®—A23HU4%—%%ﬁ
<8

Since Re(z) < |z| for all z, therefore

oo [T [k —ilg(k —n —1)2%a2"

Re k=1

: ("+1)) ((_1)7171 [l (T+g+-+g"1) = 0‘) - A ZLl i1 [k — iqa.zk
q n—1
<B.
By letting z — T through real values, we have

+oo n
S OTTE = ilg (k= n = 1)* + A8) ax
k=1i=1
_BOHN(ED)" T T (gt 4+ —a)

e
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Conversely, Let equation 2.1 holds true, by equation 1.6 it is enough to show that
X(f) =

Zn+3 (D;zf(z))” + Zn+2 (Dgf(z))/ i (_1)”(7’L + 1)2

oA +g+---+41)

Sty
q
i1 (Dn D" i (A tat-+dh) (A +Na
D) ¥ L7 e
<ﬁ7
or
X(f)=
2 (DEf(2)) + 22 (DEf(2)) — (-1 ﬁfl [Ma+q+- )
q k=1
g (o) ¢ CY im0 et dd T G tﬁ“?
q(nfl) q(nfl)
< 0.
But for 0 < |z| =7 < 1 we have
+oo n
X() = [STTk itk —n—1)%a"
k=11=1
- 4 11? D [0+ g+ @+ a7 —a)
+oco n =
- )\ZH[k—i]qakzk
k=11t=1
+oo n
< Y O TI0E =gtk = n = 1)%|aglr*
k=11i=1
BN T s A+ g+ ) —a)
¢t
400 n +oo n
+ )\ﬁZH[k—i]q|ak|rk < ZH[k —ilg((k—n— 1)? - /\B)|a;€|r’C
k=11i=1 k=1i=1
BA+N((D)" ! Tm A+ g+ 46" 1) —a))
(nE) '
q

Since the above inequality holds for all » (0 < r < 1), by letting » — 1 and using
equation 2.1 we obtain X (f) < 0, and this completes the proof. [
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Corollary 2.1. If function f(z) of the form equation 1.1 belongs to ) (n; A, v, )

then
AU N() T (gt 4 ") —a)

qC I [k = ilq ((k —n — 1) 4 A5)
This result is sharp for H(z) given by

He) =1y FA+N() " (A +at -+ ) —a) 4y

z gGI) T [k — il ((k — n — 1)2 + AB)

Next we obtain extreme points and convex linear combination property for f(z)
belongs to Eq(n; A, B).

Theorem 2.2. The function f(z) of the form equation 1.1 belongs to ) (n; A, v, )
if and only if it can be expressed by f(z) = > pe o orfe(2),06 > 0, pogor =1
1
where fo(z) = — and
2z
L B+ N i (At g+ + g ) —a) 5

z)=— n ¢ (k=1,2,...).
M= T [k = dlg (k= n = 1)2 + A8) ( :
Proof. Let
fz) = Y oufr(z)
k=0
= o00fo(2)
S ) BB PEAT
= U T, I — il ((k —n — )2+ AB)
= % + i AL+ /\n)+(1(_1)n71 1_[Zzl(1 +tq+-+ qkil) — a) okzk—l,

= BTk — ile((k —n—1)2 + AB)

Now by using Theorem 2.1 we conclude that f(2) € > (A, a, B).
Conversely, if f(z) given by equation 1.1 belongs to Eq(n; A, @, B), by letting

oo =1-— Z:;'Ol oy, where

n+1

dCI I [k — ]y ((k —n —1)? + AB)
BU+N ()" 'L (+¢+ @+ +d 1) —a)

O = Qg , (k}:1,2,)

we conclude the required result. O

1 0
Theorem 2.3. Let for n = 1,2,...,m, fu(2) = = 4+ S0 apn2""1 belongs
z

to 30,(ns A, B), then F(z) = 337" onfu(2) is also in the same class, where
Yome10n = 1. ((Hence 3_ (n; A\, v, B) is a convex set. )
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Proof. According to Theorem 2.1 for every n = 1,2,...,m we have

ZZ: [Tk = ilg (k= n = 1)* + X8) ak.n
=1

BA+N ()" ' T A+ g+ @+ +¢" 1) —a) .

< —
q(nfl)
But
F(Z) = Unfn(z)
n=1
S 1 — k—1
= Onl| — + CLan
ILACEDIINES
1 m oo m B
= grgan—i-;(;anakn)zk !
= -+ nG, . 12
()
Since :
+oo n m
k= ila (k=0 =12+ 28) (D onaen)
k=1i=1 el
m +oo n
:Zan(ZH[k—i]q((k—n—1)2+,\[3))ak’n
n=1 k=1:1=1
BN T A+ g+ @+ ) —a)
=2 G
_B 1+A>(<—1)"‘1H2_1<1(:§+q2+---+q’“—1) —) SN,
" n=1
BN T (At at @ 4+ ¢ —a)
- )
q

then by Theorem 2.1 the proof is complete. [

3. Radii condition and partial sum property

In this section we obtain radii of starlikeness and convexity and investigate about
partial sum property.
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Theorem 3.1. if the function f(z) defined by equation 1.1 is in the class Zq(n; A, ),
then f(z) is meromorphically univalent starlike of order v in disk |z| < Ry, and it

is meromorphically univalent convex of order ~ in disk |z| < Ry where
(3.1)

el

n+1

i inf qCI T b= ilo (k=0 — 12 +X8) (1 )
BN L A4 g+ P+ ) —a) (k1 +7)

(3.2)

Ry ing gGE) T [k — i)y ((k —n— 1)2 4+ AB8) (1 —7) ;
TN BE =D+ N () T A g+ P+ ) —a)(k+ 1+7)

Proof. For starlikeness it is enough to show that

2f(2) + f(2)
N TC I
but
Zf(Z)/+f(2)‘ - Citikaet | NS kaldt
f(z) T+ anek = 1= g2k ’
or
oS kak|2F < (1 =) — (1 =) 3055 awlz |,
or
—+o0
k+1—7~ &
(3.3) S Tz <1

By using equation 2.1 and equation 3.3 we obtain

k+1—7| * < B(l+/\)((—1)"*1HZ:1(1+q+q2+-~-+qk*1)—oz)'

= S QI Ik — 1]y (k —n — 12+ AB)

So, it is enough to suppose

< qCTI T [k — iy (k= n = 1)2 +38) (1 9)
T BN L (At g+ @+ gt ) —a) (k1 —9)

Hence we get the required result equation 3.1. For convexity, by using the Alexan-
der,s Theorem(If f be an analytic function in the unit disk and normalized by
f(0) = f(0) —1 = 0, then f(z) is convex if and only if zf'(z) is starlike.) and
applying an easy calculation we conclude the required result equation 3.2. So the
proof is complete. O
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Theorem 3.2. Let f(z) € Y, and define

z

(3.4) S1(z) = ! , S (2) = % + Z arz"t (m=2,3,...).
o

Also suppose Z:;'Ol rrar < 1, where

(3-5) Ty = q(ﬁi) [T, [k =]y ((k —n—1)2+ /\5)

. BA+N((=1)" '[is, A+ g+ ¢+ +¢ 1) —a)’
then
(3.6) Re (Sm(z)) >1—a , Re( 0 ) > o

Proof. Since 3425 xray, < 1, they by Theorem 2.1, f(2) € Do (A o, B).
Also by equation 1.4 and equation 1.5 we have
H?:l[k — i]q >1
(=) A4+ g+ @+ -+ ) —a —

)

o
g7 (k= n— 1)2 + AB)
o B+ N ’
and {x} is an increasing sequence, therefore we obtain
m—1 “+oo
(3.7) Zak—l—xm Zakgl.
k=1 k=m
Now by putting @
f(z 1
X = [ £k~ - 1)

and making use of equation 3.7 we obtain

Re X(z)—-1 X B
X(z)+1 —I— 1

By a simple calculation we get Re (X (z)) > 0, therefore Re (

1
Sf(?) ] -(1- —)} > 0, and this gives the first inequality in equation
(2 T,

3.6. For the second inequality we consider

Ty f(2 )_xm m(z)
xmf( )_xm m( )+2Sm(z)

X(=)

Tm

> > 0, or equiv-

alently Re [

Sm(2) T }

Y(Z)=(1+$m)[m— Tras )’

Y(2)—1
and by using equation 3.7 we have ‘%‘ < 1, and Hence Re (Y (z)) > 0,
Sm(z) Tm,

Y
therefore Re ( (2) > > 0, or equivalently Re { e “Tra.

> 0, and this
1+ 2,

shows the second inequality in equation 3.6. So the proof is complete. O
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4. Some properties of Zq(n; A, B)

Theorem 4.1. Let f(= ) g(z) € Z (n; A, o, B) and given by
flz)=- —i— S aph T, g(z) = - -|- S bp2*1. Then the function

i (b—n—1)*
h(z) = P =+ Zk:1(% + bk)z T s also in Zq(n;%a,ﬁ) where 7y < % - 28 . ’

Proof. Since f(z),g(2) € 3_,(n; A, o, 3) therefore we have

i [H[k —i]q((k—n— 1)? +)\5)rai

k=1 =1

< [+Ooﬁ[k—z]q((k—n—1) +28)ai]’
k=11i=1
< {ﬁ1+A>(<—1)”*1HZ:1<1+q+q2+---+q’“’1>‘“)]2
< e
and
io[ﬁ[k—i]q((k—n—l) +/\[3)]
k=1 11=1

IN
\gE
=
&
|
=
£}
—
=
|
S
|
N
+
>
=
N~—
S
L

[6(1 V(D" T (O +a+a+ -+ 07 - a)r‘
(%) '
q

The above inequalities yield us

i%[ﬂ ((k_n_1)2+w)]2(az+bz)

{B(l +N(()" o A+ g+ 2+ + 1) = Oé)r
NEH) '

IN

Now we must show

i[H Ja((k=n =17 +48)] (a2 + )

{ﬁ( + (=D 1l_IZ:l(lJqurq%r---+q’“‘1)—04)}2
() '
q

But above inequalities holds if



1470 M.H. Golmohammadi, Sh. Najafzadeh and M.R. Foroutan
[Tl = ila (k= n = 12 +98) < [T e —al (k=0 = 1) +A8)]
or equivalently
20k —n—1)2+298< (k—n—1)2+ A8

or

O
Theorem 4.2. The class Zq(n;)\,a,ﬁ) 18 a convex set.
Proof. Let
1 - k—1
z) = Z + Zakz ,
k=1
and
1 o0
z)=—+ Zbkzk_l,
z
k=1

be in the class Zq (n; A\, a, B). For t € (0,1), it is enough to show that the function
h(z) = (1 = 1) f(2) + tg(2) is in the class 3 (n; A, a, B). Since

+Z(1—tak+tbk) ,

k=1

NIP—‘

then

11+ (_n_lym)}((l_t)aﬁtbk)

Mg

k=1 =1
_BAEN(EDT L (a4 @+ +¢ ) —a)
: D

so h(z) € Zq(n; Na,B). O

1
Corollary 4.1. Let f;(2) (j =1,2,...,n), defined by fj(2) = =+ > po, ax ;2" "
z
be in the class 3 (n; A, a, B), then the function F(2) = 377, ¢;f;(2) is also in
(A, B) where 330 ¢j = 1.



New Subclass of Meromorphic Functions... 1471

5. Hadamard product

For the functions f(z),g(z) € ¥ is given by equation 1.1, we denote by (f * g)(2)
the Hadamard product (or convolution) of the functions f(z), g(z), that is

+oo
(Fr o)) = - + 3 axhsst" = (95 /().
k=1

Theorem 5.1. If f(z),g(z) defined by equation 1.1 is in the class ) (n; A, o, )
1
then (f x g)(z) = ~ + 300 apbrz*t in the class >oq (i, a, B) where

- dGI) T Tk — iy ((k —n — 1)2 + AB)° _(k—n-1?
TR+ N (D) o A+ g+ R+ + ) — @) B

Proof. Since f(z),g(z) € Zq(n; A, @, 8), so by equation 2.1

(5.1)
i )" 1% IO = R
B D s
and

oIk —ily (k= n—1)* +28) by

k=11i=1
(5.2) CBAN(E)" T R (O +a 4+ ) —a)

e

By using the equation 5.1, equation 5.2 and Cauchy-Schwarts inequality we have

S TIE = ilq ((k = n = 1)* + AB) Vaxbs

k=11i=1
CBOHN(E)" T T (A +a+- 4+ —a) '

(53) > n+1
q(nfl)

we must find the smallest v such that

S TIE = ilg ((k = n— 1) + 7B) axbs

k=1i=1
< B+ /\)((_1)”71 HZ:1(1 +q+---+ qkil) — a)
- /() '
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Now it is enough to show that

TTtk — il (G — n — 1% 4 98) ache

i=1

(5.5) < ﬁ[k—i]q ((k—n—1)>+X3) Varbi

or equivalently
(k—n—1)24+ X8

< .
axbr < (k—n—12+1p3

But from equation 5.3,

BA+N((1)" (T A+ g+ @+ +¢" ) —a)
Varbe <

gGID I [k = i]g (k= n — 1)2 + AB)

so it is enough that

BA+N((-1)" ' T A+ g+ @+ +¢" 1) —a)

gGID I, [k = ilg (k= n — 1)2 + AB)
(k—n—12+)3
T (k—-n—-12+1p

(5.6)

By using the equation 5.6 we have

G T [k — i, (k=0 — 1) +28)°

v < -
BA+N (D) s g+ + -+ g5 1) —a)
e 1)2
(5.7) g
(]
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