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1Department of Mathematics, Çankaya University, 06790, Etimesgut, Ankara, Turkey
2Department of Mathematics, The University of Burdwan,

Purba Bardhaman-713104, West Bengal, India

Abstract. In this paper, we introduce a new sequential space as a generalization of
M−metric spaces and Mb−metric spaces. In this generalized space we define two
contractive mappings namely m−contraction and m−quasi-contraction and prove some
fixed point theorems for such type of mappings. Several illustrative examples have been
presented in strengthening the hypothesis of our theorems.
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1. Introduction and Preliminaries

The notion of metric has been generalized in several direction, see e.g. [1, 2, 6, 7,
8, 9]. Among all, we focus on partial metric and M−metric. The concept of partial
metric space was first introduced by S. Matthews [1] in 1994 as a generalization of
usual metric spaces. If (X, p) is a partial metric space then p(µ, µ), µ ∈ X need
not to be zero. Partial metric spaces have vast application potential, in particular,
it has been used in the construction of the topological structures in the study of
information science, computer science, etc. In 2014, Asadi et al. [2] have extended
the notion of the partial metric space: M−metric space. The authors [2] proved
the Banach contraction principle in the context of the complete M−metric space.
The definition of M−metric is given as follows:

Throughout the manuscript all considered sets are nonempty. Further, the no-
tation X2 denotes the cross-product of the set X, that is, X2 : X ×X .
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Definition 1.1. Let m : X2 → [0,∞) be a function over a set X. Then (X,m) is
said to be an M−metric space if m satisfies the following conditions:

(m1) m(p, p) = m(q, q) = m(p, q) if and only if p = q;

(m2) mpq ≤ m(p, q);

(m3) m(p, q) = m(q, p);

(m4) m(p, q)−mpq ≤ (m(p, r)−mpr) + (m(r, q)−mrq) for all p, q, r ∈ X,

where
mpq = min{m(p, p),m(q, q)},

and
Mpq = max{m(p, p),m(q, q)}.

It is seen that any partial metric space is an M−metric space. In [2] authors have
presented an example of M−metric that does not form a partial metric.

Example 1.1. Let X = {1, 2, 3} and m : X2 → [0,∞) be defined by m(1, 1) = 1,
m(2, 2) = 9, m(3, 3) = 5 and

In 2015, Jleli-Samet [5] introduce a new generalization of the notion of met-
ric spaces that involves b-metric and standard metric. Inspired by this work, we
characterize the M−metric space and observed a new metric space. We present an
example to indicate the novelty of this notion. Further, we observe some fixed point
results in the setting of this new M−metric space.

2. Main results

In this section we introduce a generalized M−metric space namely m∗−metric
space, as follows:

Let m : X2 → [0,∞) be a function such that mpq = min{m(p, p),m(q, q)} and
Mpq = max{m(p, p),m(q, q)}. Let us define the set

M(m, X, p) = {{pn} ⊂ X : lim
n→∞

(m(pn, p)−mpnp) = 0}(2.1)

for all p ∈ X.

Definition 2.1. A function m : X × X → [0,∞), over a set X, is called an
m∗−metric if the following conditions hold:

(m 1) m(p, p) = m(q, q) = m(p, q) if and only if p = q, p, q ∈ X;

(m 2) mpq ≤ m(p, q) for all p, q ∈ X;

(m 3) m(p, q) = m(q, p) for all p, q ∈ X;

(m 4) there exists some b > 0 such that for any (p, q) ∈ X2 and {pn} ∈
M(m, X, p) we have

m(p, q)−mpq ≤ b lim sup
n→∞

(m(pn, q)−mpnq).(2.2)

The pair (X,m) is called an m∗−metric space.
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In the following example we show that the newly defined m∗−metric space is
more stronger than M−metric space.

Example 2.1. Let X = N and we define m : X2 → R+ by m(n, n) = 1 for all n ∈ N,
m(1, 2) = m(2, 1) = 4, m(1, n) = m(n, 1) = 1 + 1

n
for all n ≥ 3, m(n, 2) = m(2, n) = 5

2

for all n ≥ 3 and m(n, k) = m(k, n) = 3 for any n, k /∈ {1, 2}. Here M(m, X, 1) =
{{1, 1, ...}, {3, 4, 5, ...}} and for any other x ∈ N, M(m, X, x) contains only the constant
sequence {x, x, ...}. Then one can easily check that (X,m) is an m∗−metric space.

Remark 2.1. In 2016, Mlaiki [10] defined Mb−metric space, by replacing the axiom
(m4) in Definition 1.1 by

(mb4) mb(p, q)−mbpq ≤ s[(mb(p, r)−mbpr ) + (mb(r, q)−mbrq )].

Now we show that (X,m) in Example 2.1 is not an Mb−metric space for any b > 0. Here
we see that m(n, k)−mnk = 2 for any n, k ≥ 3. But b[(m(n, 1)−mn1) + (m(1, k)−m1k)] =
b[ 1

n
+ 1

k
]→ 0 as n, k →∞ for any b > 0. This proves our assertion.

Remark 2.2. (1) Let (X,m) be an M−metric space (See Definition 1.1). Clearly m
satisfies the conditions (m 1), (m 2) and (m 3). Let (p, q) ∈ X2 and {pn} ⊂ X be such
that limn→∞(m(pn, p)−mpnp) = 0 then from condition (m4) we have

m(p, q)−mpq ≤ (m(p, pn)−mppn) + (m(pn, q)−mpnq)(2.3)

for all n ∈ N. Taking n→∞ we can easily see that m satisfies the condition (m 4). Hence
m satisfies all the conditions of m∗−metric and therefore (X,m) is an m∗−metric space.

(2) Let (X,mb) be an Mb−metric space with coefficient s ≥ 1. Then it is clear that
mb satisfies the conditions (m 1), (m 2) and (m 3). Let (p, q) ∈ X2 and {pn} ⊂ X be such
that limn→∞(mb(pn, p)−mbpnp) = 0 then from condition (mb4) we have

mb(p, q)−mbpq ≤ s[(mb(p, pn)−mbppn
) + (mb(pn, q)−mbpnq )](2.4)

for all n ∈ N. Taking n → ∞ it can be easily seen that mb satisfies the condition (m 4).
Hence mb satisfies all the conditions of m∗−metric and therefore (X,mb) is an m∗−metric
space.

Definition 2.2. Let (X,m) be an m∗−metric space.

(1) A sequence {pn} ⊂ X is said to be convergent to an element p ∈ X if
lim

n→∞
(m(pn, p)−mpnp) = 0 i.e. {pn} ∈M(m, X, p).

(2) A sequence {pn} ⊂ X is said to be Cauchy if lim
n,k→∞

(m(pn, pk)−mpnpk
) and

lim
n,k→∞

(Mpnpk
−mpnpk

) exist and finite.

(3) A sequence {pn} ⊂ X is said to be 0−Cauchy if lim
n,k→∞

(m(pn, pk)−mpnpk
) = 0

and lim
n,k→∞

(Mpnpk
−mpnpk

) = 0.

(4) An m∗−metric space (X,m) is said to be complete if every Cauchy sequence
{pn} ⊂ X is convergent to some point z ∈ X with lim

n→∞
(Mpnz −mpnz) = 0.
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Definition 2.3. Let (X,m) be an m∗−metric space and T : X → X be a mapping.
Then T is said to be continuous at ς ∈ X if {pn} ∈ M(m, X, ς) implies {Tpn} ∈
M(m, X, T ς).

Proposition 2.1. Let (X,m) be an m∗−metric space and p, q ∈ X. If {pn} ∈
M(m, X, p) ∩M(m, X, q) then m(p, q) = mpq. Moreover if m(p, p) = m(q, q) then
p = q.

Proof. Since {pn} ∈M(m, X, p) ∩M(m, X, q), we have

m(p, q)−mpq ≤ b lim sup
n→∞

(m(pn, q)−mpnq) = 0,(2.5)

implying that m(p, q) − mpq = 0 that is m(p, q) = mpq. If m(p, p) = m(q, q) also,
then clearly p = q.

Proposition 2.2. Let {pn} be a 0−Cauchy sequence in an m∗−metric space (X,m).
If {pn} has a convergent subsequence {pnk

} such that {pnk
} ∈M(m, X, z) then {pn}

is also convergent to z ∈ X.

Proof. Since {pn} is 0−Cauchy we have limn,k→∞(m(pn, pk)−mpnpk
) = 0 and

limn,k→∞(Mpnpk
−mpnpk

) = 0. Also it is given that limk→∞(m(pnk
, z)−mpnk

z) = 0.
Now,

m(pp, z)−mppz ≤ b lim sup
k→∞

(m(pp, pnk
)−mpppnk

)(2.6)

for all p ∈ N. Which implies that

lim
p→∞

[m(pp, z)−mppz] ≤ b lim
p→∞

lim sup
k→∞

(m(pp, pnk
)−mpppnk

) = 0.(2.7)

Therefore lim
p→∞

(m(pp, z)−mppz) = 0, implying that {pn} is convergent to z.

3. Topological m∗−metric space

Definition 3.1. Let (X,m) be an m∗−metric space. The open and closed ball of
center at p ∈ X and radius t > 0 in X are defined as follows:

Bm(p, t) = {q ∈ X : m(p, q) < mpq + t};
Bm[p, t] = {q ∈ X : m(p, q) ≤ mpq + t}.(3.1)

Remark 3.1. One can easily check that the collection

τm = Ø ∪ {U(6= Ø) ⊂ X : for any p ∈ U there exists t > 0 such that Bm(p, t) ⊂ U},

forms a topology on X.

Definition 3.2. Let (X,m) be an m∗−metric space and ∆ ⊂ X. Then ∆ is said
to be closed if there exists an open set U ⊂ X such that ∆ = U c.
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Proposition 3.1. Let (X,m) be an m∗−metric space and ∆ ⊂ X be closed. Let
{pn} ⊂ ∆ be such that {pn} ∈M(m, X, z), then z ∈ ∆.

Proof. If possible let z /∈ ∆. Then z ∈ ∆c = U, where U is open. So there exists t > 0
such that Bm(z, t) ⊂ U. Now limn→∞(m(pn, z)−mpnz) = 0 so for t > 0 there exists
N ∈ N such that m(pn, z)−mpnz < t whenever n ≥ N. Thus pn ∈ Bm(z, t) ⊂ U for
all n ≥ N, a contradiction. Hence z ∈ ∆.

Definition 3.3. Let (X,m) be an m∗−metric space and B ⊂ X. Then diam(B) =
sup{max{m(p, q)−mpq,Mpq −mpq} : p, q ∈ B}.

Definition 3.4. In an m∗−metric space (X,m), a sequence {∆n} of subsets of X
is said to be decreasing if ∆1 ⊃ ∆2 ⊃ ∆3 ⊃ ... .

Theorem 3.1. Let (X,m) be a complete m∗−metric space and {∆n} be a decreas-
ing sequence of nonempty closed subsets of X such that diam(∆n)→ 0 as n→∞.
Then the intersection ∩∞n=1∆n contains exactly one point.

Proof. Let pn ∈ ∆n be arbitrary for all n ∈ N. Since {∆n} is decreasing, we have
{pn, pn+1, ...} ⊂ ∆n for all n ∈ N.

Now for any n, p ∈ N with n, p ≥ k we have max{m(pn, pp) − mpnpp
,Mpnpp

−
mpnpp

} ≤ diam(∆k), k ≥ 1. Let ε > 0 be given. Then there exists some q ∈ N
such that diam(∆q) < ε since diam(∆n) → 0 as n → ∞. From this it follows that
max{m(pn, pp) − mpnpp ,Mpnpp − mpnpp} < ε whenever n, p ≥ q. Therefore {pn} is
Cauchy sequence, more specifically 0−Cauchy sequence in X. By the completeness
of X there exists z ∈ X such that {pn} ∈ M(m, X, z). Since {pn, pn+1, ...} ⊂ ∆n

and ∆n is closed for each n ∈ N, using Proposition 3.1 we have z ∈ ∩∞n=1∆n.

Next we prove the uniqueness of z. Let q ∈ ∩∞n=1∆n be another point, then
either m(z, q) > mzq or Mzq > mzq. That is max{m(z, q) − mzq,Mzq − mzq} > 0.
As diam(∆n)→ 0, there exists N0 ∈ N such that

diam(∆n) < max{m(z, q)−mzq,Mzq −mzq} ≤ diam(∆n)(3.2)

for all n ≥ N0, a contradiction. Hence ∩∞n=1∆n = {z} and this completes the proof
of our theorem.

4. Fixed point results on m∗−metric space

Definition 4.1. Let (X,m) be an m∗−metric space and T : X → X be a mapping.
Then T is said to be m−contraction if

m(Tp, Tq) ≤ k m(p, q)(4.1)

for all p, q ∈ X, where k ∈ (0, 1).
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Definition 4.2. Let (X,m) be an m∗−metric space and T : X → X be a mapping.
Then T is said to be m−quasi-contraction if

m(Tp, Tq) ≤ k max{m(p, q),m(p, Tp),m(q, T q),m(Tp, q),m(p, Tq)}(4.2)

for all p, q ∈ X and for some k ∈ (0, 1).

Now we come to our main fixed point theorems.

Theorem 4.1. Let (X,m) be a complete m∗−metric space and T : X → X be a
mapping such that it satisfies the following conditions:

(1) T is an m−contraction;

(2) there exists p0 ∈ X such that δ(m, T, p0) = sup{m(T ip0, T
jp0) : i, j ≥ 1} <

∞.
Then T has a unique fixed point in X.

Proof. Let us define δ(m, T p+1, p0) = sup{m(T p+ip0, T
p+jp0) : i, j ≥ 1} for any

p ≥ 0. Since T satisfies the contractive condition (4.1), we have

m(T p+ip0, T
p+jp0) ≤ k m(T p−1+ip0, T

p−1+jp0)

≤ k δ(m, T p, p0)(4.3)

for all i, j, p ≥ 1. From (4.3) it follows that

δ(m, T p+1, p0) ≤ k δ(m, T p, p0)

· · ·
≤ kp δ(m, T, p0)(4.4)

for all p ∈ N.As k ∈ (0, 1) we get lim
p→∞

δ(m, T p+1, p0) = 0. Therefore lim
n,k→∞

m(pn, pk) =

0 and lim
n→∞

m(pn, pn) = 0. Thus lim
n,k→∞

(m(pn, pk)−mpnpk
) = 0 and lim

n,k→∞
(Mpnpk

−

mpnpk
) = 0. So {pn} is Cauchy sequence in X. By the completeness of X we get

some z ∈ X such that {pn} ∈ M(m, X, z) with lim
n→∞

(Mpnz − mpnz) = 0. But

lim
n→∞

mpnz =

lim
n→∞

min{m(pn, pn),m(z, z)} = 0, follows that lim
n→∞

m(pn, z) = 0 = lim
n→∞

Mpnz.

Thus
m(pn+1, T z) = m(Tpn, T z) ≤ k m(pn, z)→ 0(4.5)

as n → ∞. Hence lim
n→∞

(m(pn+1, T z) − mpn+1Tz) = 0. Also m(z, z) = 0 and by the

contractive condition (4.1) we get m(Tz, Tz) = 0.

m(z, Tz)−mzTz = m(z, Tz) ≤ b lim sup
n→∞

(m(z, pn+1)−mzpn+1) = 0.(4.6)

Therefore it follows that z = Tz and z is a fixed point of T in X.
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If z and w are two fixed points of T , then we see that

m(z, w) = m(Tz, Tw) ≤ k m(z, w);

m(z, z) = m(Tz, Tz) ≤ k m(z, z);

m(w,w) = m(Tw, Tw) ≤ k m(w,w).

From which it follows that m(z, w) = m(z, z) = m(w,w) = 0 implies z = w i.e. T
has a unique fixed point in X.

Theorem 4.2. Let (X,m) be a complete m∗−metric space and T : X → X be a
mapping such that it satisfies the following conditions:

(1) T is an m−quasi-contraction with k ∈ (0, 1) ∩ (0, 1b );

(2) there exists p0 ∈ X such that δ(m, T, p0) = sup{m(T ip0, T
jp0) : i, j ≥ 1} <

∞.
Then the Picard iterating sequence {Tnx0} converges to some u ∈ X which is the
unique fixed point of T in X.

Proof. Similar as in Theorem 4.1 we define δ(m, T p+1, p0) = sup{m(T p+ip0, T
p+jp0) :

i, j ≥ 1} for any p ≥ 0. Since T satisfies the contractive condition (4.2), we have

m(T p+ip0, T
p+jp0) ≤ k max{m(T p−1+ip0, T

p−1+jp0),m(T p−1+ip0, T
p+ip0),

m(T p−1+jp0, T
p+jp0),m(T p−1+ip0, T

p+jp0),

m(T p−1+jp0, T
p+ip0)}

≤ k δ(m, T p, p0)(4.7)

for all i, j, p ≥ 1. By similar calculation as in Theorem 4.1 we deduce that the Picard
iterating sequence {pn} ∈M(m, X, u) for some u ∈ X with lim

n→∞
(Mpnu−mpnu) = 0.

Therefore we get lim
n→∞

m(pn, u) = 0 and m(u, u) = 0.

Now for any fixed n ∈ N we have,

m(u, Tnp0) = m(u, Tnp0)−muTnp0
≤ b lim sup

k→∞
(m(Tn+kp0, T

np0)−mTn+kp0Tnp0
)

= b lim sup
k→∞

m(Tn+kp0, T
np0)(4.8)

≤ b δ(m, Tn, p0) ≤ bkn−1δ(m, T, p0).

Now,

m(Tu, T 2p0) ≤ kmax{m(u, Tp0),m(u, Tu),m(Tp0, T
2p0),m(u, T 2p0),m(Tp0, Tu)}

≤ kmax{bδ(m, T, p0),m(u, Tu), δ(m, T, p0), bkδ(m, T, p0),m(Tp0, Tu)}(4.9)

= kmax{bδ(m, T, p0),m(u, Tu), δ(m, T, p0),m(Tp0, Tu)}.

Also,

m(Tu, T 3p0) ≤
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≤ kmax{m(u, T 2p0),m(u, Tu),m(T 2p0, T
3p0),m(u, T 3p0),m(T 2p0, Tu)}

≤ kmax{bkδ(m, T, p0),m(u, Tu), δ(m, T 2, p0), bk2δ(m, T, p0),m(T 2p0, Tu)}(4.10)

≤ kmax{bkδ(m, T, p0),m(u, Tu), kδ(m, T, p0),m(T 2p0, Tu)}
≤ kmax{bkδ(m, T, p0),m(u, Tu), kδ(m, T, p0), km(Tp0, Tu)}.

Proceeding in a similar way for every n ≥ 1 we get,

m(Tu, Tn+1p0) ≤(4.11)

≤ max{bknδ(m, T, p0), km(u, Tu), knδ(m, T, p0), knm(Tp0, Tu)}.

From (4.11) it follows that lim sup
n→∞

m(Tu, Tn+1p0) ≤ k m(u, Tu). Thus we have,

m(u, Tu) = m(u, Tu)−muTu ≤ b lim sup
n→∞

(m(Tn+1p0, Tu)−mTn+1p0Tu)

= b lim sup
n→∞

m(Tn+1p0, Tu)(4.12)

≤ bk m(u, Tu).

From the inequality (4.12) it clear that m(u, Tu) = 0. Since T satisfies the contrac-
tive condition (4.2), we get m(Tu, Tu) = 0. Therefore Tu = u and u is a fixed point
of T.

If w is a fixed point of T in X, then we get

m(u,w) = m(Tu, Tw) ≤ k max{m(u,w),m(u, u),m(w,w)};
m(u, u) = m(Tu, Tu) ≤ k m(u, u);

m(w,w) = m(Tw, Tw) ≤ k m(w,w).

From which it follows that m(u,w) = m(u, u) = m(w,w) = 0 implies u = w i.e.
u = w.

Example 4.1. Let X = {1, 2, 3} and we define m : X × X → [0,∞) as m(1, 1) = 1,
m(2, 2) = 2, m(3, 3) = 0 and

Example 4.2. Let X = {1, 2, 3} and we define m : X × X → [0,∞) as m(1, 1) = 2,
m(2, 2) = 1, m(3, 3) = 0 and

Corollary 4.1. The conclusion of Theorem 4.2 can be made also by using the
following contractive conditions instead of contractive condition (4.2):

(a) m(Tp, Tq) ≤ α[m(p, Tp) + m(q, T q)], α ∈ (0, 12 );

(b) m(Tp, Tq) ≤ β[m(p, Tq) + m(q, Tp)], β ∈ (0, 12 );

(c) m(Tp, Tq) ≤ ξ[m(p, q) + m(p, Tp) + m(q, T q)], ξ ∈ (0, 13 );

(d) m(Tp, Tq) ≤ ω[m(p, q) + m(p, Tq) + m(Tp, q)], ω ∈ (0, 13 );

(e) m(Tp, Tq) ≤ pm(p, q) + qm(p, Tp) + rm(q, T q) + sm(p, Tq) + tm(Tp, q),
p, q, r, s, t ∈ (0, 1) with p+ q + r + s+ t < 1;
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(f) m(Tp, Tq) ≤ γmax{m(p, q),m(p, Tp),m(q, T q)}, γ ∈ (0, 1);

(g) m(Tp, Tq) ≤ ηmax{m(p, q),m(p, Tq),m(Tp, q)}, η ∈ (0, 1);

(h) m(Tp, Tq) ≤ ζ max{m(p, q),m(p, Tp),m(q, T q),
m(p, Tq) + m(Tp, q)

2
}, ζ ∈

(0, 1).

5. Application to the stability of fixed point problem

In this section, we will discuss Hyers-Ulam stability of fixed points of mappings. For
more details on Hyers-Ulam stability of functional equations and its applications
on fixed point problems one can refer to [4], [11] and [12].

Let (X,m) be an m∗−metric space and T : X → X be a given mapping. Let us
consider the fixed point equation

Tp = p, m(p, p) = 0(5.1)

and the inequality

m(Tq, q)−mTq q < ε(5.2)

for any ε > 0.

Definition 5.1. The fixed point problem (5.1) is said to be Hyers-Ulam stable if
there exists an element c > 0 such that for each ε > 0 and an ε−solution (A solution
of (5.2)) v ∈ X there exists a solution u ∈ X of the fixed point equation (5.1) such
that m(u, v) < cε.

Theorem 5.1. Let (X,m) be a complete Mb−metric space with coefficient s ≥ 1
and T : X → X be a mapping such that T satisfies all the conditions of Theorem
4.1 with the Lipschitz constant k ∈ (0, 1s ). Then the fixed point equation of T is
Hyers-Ulam stable.

Proof. Since any Mb−metric space is m∗−metric space, from Theorem 4.1 we see
that T has a unique fixed point u in X with m(u, u) = 0 that is the fixed point
equation (5.1) of T has a unique solution. Let ε > 0 be arbitrary and v be an
ε-solution of T. Then

m(u, v) = m(u, v)−muv

≤ s[(m(u, Tv)−muTv) + (m(Tv, v)−mTv v)]

= s[m(Tu, Tv) + (m(Tv, v)−mTv v)]

≤ s[km(u, v) + (m(Tv, v)−mTv v)](5.3)

This implies m(u, v) ≤ s
1−sk (m(Tv, v) − mTv v) < s

1−sk ε. Therefore the fixed point
equation of T is Hyers-Ulam stable.
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