
Abstract. In this paper we investigate Chebyshev’s type inequalities for h-convex
functions. These inequalities are obtained by imposing some convenient conditions on
h-convex functions. Furthermore, the associated Chebyshev’s functional are estimated
via mean value theorems.
Keywords: h-convex functions, Chebyshev’s type inequalities.

1. Introduction

The well known Chebyshev’s inequality was established in (1882-1883) by Cheby-
shev. Since then it has been studied with enormous interest by various authors (see
[2, 3, 5, 4, 7, 11, 10, 12, 16, 17, 20]). Chebyshev’s inequality has great importance
because it can be applied to any probability distribution in which the mean and
variance are defined [13]. Our objective in this paper is to produce its new version
and related inequalities for h-convex functions, also we provide estimations of these
inequalities (corresponding Chebyshev’s functionals) by mean value theorems. The
results of this paper will hold for convex functions. Also provide motivation to ob-
tain further Chebyshev’s inequalities for other type of convex and related functions.

Theorem 1.1. Let f, φ : [a, b] → R be two integrable functions. If f and φ are
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monotonic in the same direction on [a, b]. Then

1

b− a

∫ b

a

f(x)φ(x)dx ≥ 1

b− a

∫ b

a

f(x)dx
1

b− a

∫ b

a

φ(x)dx.(1.1)

The weighted version of Chebyshev’s inequality (see [8, 15]) is stated as follows:

Theorem 1.2. Let f, φ : [a, b] → R and p : [a, b] → R+ be integrable functions. If
f and φ are monotonic in the same direction on [a, b]. Then∫ b

a

p(x)dx

∫ b

a

p(x)f(x)φ(x)dx ≥
∫ b

a

p(x)f(x)dx

∫ b

a

p(x)φ(x)dx.(1.2)

Definition 1.1. A function f : [a, b] → R is said to be convex, if for every x, y ∈
[a, b] and t ∈ [0, 1] we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Lemma 1.1. [19] A function f : I → R is convex iff for every c ∈ I the function

f(x)− f(c)

x− c

is increasing on I (x ̸= c).

A modified Chebyshev’s inequality was given by Levin and Steckin under the con-
dition that one function is increasing on half domain and symmetric while other is
continuous convex (see [12]). It is restated in the following theorem:

Theorem 1.3. Let f be defined on [0, 1] and satisfying the conditions:

(i) f is decreasing on [0, 12 ].

(ii) f(x) = f(1− x) for x ∈ [0, 1].

Then for every continuous convex function φ, one has the following inequality:∫ 1

0

f(x)φ(x)dx ≥
∫ 1

0

f(x)dx

∫ 1

0

φ(x)dx.(1.3)

If f is decreasing on [0, 12 ], then inequality (1.3) is reversed.

In 1984 Toader [25] gave the definition of m-convex functions as follows:

Definition 1.2. The function f : [0, b] → R is said to be m-convex, where m ∈
[0, 1], if for every x, y ∈ [0, b] and t ∈ [0, 1] we have

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y)

.
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Lemma 1.2. [14] A function f : [0, b] → R is m-convex iff for every a ∈ [0, b] the
function

f(x)−mf(a)

x−ma

is increasing on [0,ma) and (ma, b].

Rehman et. al [21] noted that Levin and Steckin inequality is also valid when
one function is decreasing on half domain and symmetric while other is decreasing
m-convex and they proved the following result:

Theorem 1.4. Let 0 ≤ a < b, m ∈ (0, 1] and f : [a, bm ] → R be integrable function
and satisfy the conditions:

(i) f is decreasing on [a, ma+b2m ]

(ii) f is symmetric about ma+b
2m .

Then for every decreasing m-convex function φ, one has the following inequality:∫ b
m

a

f(x)φ(x)dx ≥ m

b−ma

∫ b
m

a

f(x)dx

∫ b
m

a

φ(x)dx.(1.4)

A generalization of convex functions namely h-convex functions was introduced
by Varošanec [26]. Our aim is to extrapolate Theorem 1.3 for the case when one
function is h-convex while other is decreasing on half domain. Furthermore general
versions of Chebyshev’s type inequality are obtained for h-convex functions. These
inequalities are estimated by mean value theorems.

Definition 1.3. Let h : [0, b] → R be a non-negative function and (0, 1) ⊆ [0, b]. A
function f : [a, b] → R is said to be h-convex, if f is non-negative for all x, y ∈ [a, b]
and λ ∈ (0, 1), one has

f(λx+ (1− λ)y) ≤ h(λ)f(x) + h(1− λ)f(y).(1.5)

Remark 1.1. Particular value of h in inequality (1.5) gives us the following functions:

1. h(λ) = λ gives the convex functions.

2. h(λ) = 1 gives the P -functions.

3. h(λ) = λs and λ ∈ (0, 1) gives the s-convex functions of second sense.

4. h(λ) = 1
λ
and λ ∈ (0, 1) gives the Godunova-Levin functions.

5. h(λ) = 1
λs and λ ∈ (0, 1) gives the s-Godunova-Levin functions of second sense.

Definition 1.4. [26] A function h : J → R is said to be super-multiplicative
function if

h(xy) ≥ h(x)h(y)(1.6)

for all x, y ∈ J, when xy ∈ J.
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For some recent results by different authors due to h-convex functions we refer the
reader to (see [1, 9, 18, 24, 23, 26, 28, 27]). The results of this paper are described
in three sections. In Section 2 first we will construct some h-convex and monotone
functions which are further utilized to obtain Chebyshev’s type inequalities. In
Section 3 the error estimations of Chebyshev’s type inequalities are analyzed by
using mean value theorems. In Section 4 we will discuss special cases of results
given in Sections 2 and 3.

2. Main Results

The following Lemmas for h-convex functions are similar to [6, Lemma 2.1, 2.2].
They are used to prove Chebyshev’s type inequalities for h-convex functions.

Lemma 2.1. Let h : [0, b] → R, (0, 1) ⊆ [0, b] be non negative function such that
h(λ)+h(1−λ) ≤ 1 for all λ ∈ (0, 1). Also let 0 ≤ a < 2bh

(
1
2

)
and f : [a, 2bh( 12 )] → R

be h-convex function. Then

F (x) := f(x) + f

(
a+ 2bh

(
1

2

)
− x

)
(2.1)

satisfies the following two conditions:

(i) F is h-convex function on [a, 2bh( 12 )].

(ii) For all x, y ∈ [a, b],

F

(
a+ 2bh

(
1
2

)
2

)
≤ F (x) ≤ F (a) = F

(
2bh

(
1

2

))
.(2.2)

Proof. (i) Suppose x, y ∈ [a, b] and λ ∈ (0, 1). Then using the h-convexity of f , one
has

F (λx+ (1− λ)y) = f(λx+ (1− λ)y)

+ f

(
a+ 2bh

(
1

2

)
− λx− (1− λ)y

)
≤ h(λ)f(x) + h(1− λ)f(y) + h(λ)f

(
a+ abh

(
1

2

)
− x

)
+ h(1− λ)f

(
a+ 2bh

(
1

2

)
− y

)
= h(λ)F (x) + h(1− λ)F (y).

Hence F is an h-convex function.
(ii). With the assumption h(λ) + h(1− λ) ≤ 1, let us consider

F

(
a+ 2bh

(
1
2

)
2

)
= F

(
1

2

(
a+ 2bh

(
1

2

)
− x

)
+

1

2
x

)
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≤ h

(
1

2

)
F (x) + h

(
1

2

)
F

(
a+ 2bh

(
1

2

)
− x

)
≤ h

(
1

2

)
F (x) +

(
1− h

(
1

2

))
F

(
a+ 2bh

(
1

2

)
− x

)
= F (x)

and

F (x) = F

(
(x− a)

2bh
(
1
2

)
− a

· 2bh
(
1

2

)
+

(
2bh

(
1
2

)
− x

2bh
(
1
2

)
− a

)
· a

)

≤ h

(
(x− a)

2bh
(
1
2

)
− a

)
F

(
2bh

(
1

2

))
+ h

(
2bh

(
1
2

)
− x

2bh
(
1
2

)
− a

)
F (a)

≤ h

(
x− a

2bh
(
1
2

)
− a

)
F

(
2bh

(
1

2

))
+

(
1− h

(
x− a

2bh
(
1
2

)
− a

))
F (a)

= F (a) = F

(
2bh

(
1

2

))
.

Remark 2.1. In the above lemma we use λ = 1
2
to overcome ambiguity in a case of

using variable from interval (0, 1).

Lemma 2.2. Let h : [0, b] → R, (0, 1) ⊆ [0, b] be non negative function such
that h(λ) + h(1 − λ) ≤ 1 for all λ ∈ (0, 1). Also let 0 ≤ a < 2bh

(
1
2

)
and

f : [a, 2bh
(
1
2

)
] → R be h-convex function. Then F which is defined in (2.1) is

decreasing on

[
a,

a+2bh( 1
2 )

2

]
and increasing on

[
a+2bh( 1

2 )
2 , 2bh

(
1
2

)]
.

Proof. Suppose that f is the h-convex function and x, y ∈
[
a,

a+2bh( 1
2 )

2

]
such that

x ≤ y, then there exists λ ∈ (0, 1) such that y = λx+ (1− λ)
a+2bh( 1

2 )
2 . By Lemma

2.1, F is h-convex function, so

F (y) = F

(
λx+ (1− λ)

a+ 2bh
(
1
2

)
2

)

≤ h(λ)F (x) + h(1− λ)F

(
a+ 2bh

(
1
2

)
2

)

= F (x) + h(1− λ)F

(
a+ 2bh

(
1
2

)
2

)
− (1− h(λ))F (x).

As h(λ) + h(1− λ) ≤ 1, so

F (y) ≤ F (x) + h(1− λ)

(
F

(
a+ 2bh

(
1
2

)
2

)
− F (x)

)
.
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Now, by using the expression (2.2) of Lemma 2.1(ii), one has F (y) ≤ F (x). Then

F is decreasing on the interval

[
a,

a+2bh( 1
2 )

2

]
. Now let x, y ∈

[
a+2bh( 1

2 )
2 , 2bh

(
1
2

)]
such that x ≤ y, then there exists λ ∈ (0, 1) such that x = λy + (1 − λ)

a+2bh( 1
2 )

2 .
By Lemma 2.1, F is h-convex function, so

F (x) = F

(
λy + (1− λ)

a+ 2bh
(
1
2

)
2

)

≤ h(λ)F (y) + h(1− λ)F

(
a+ 2bh

(
1
2

)
2

)

= F (y) + h(1− λ)F

(
a+ 2bh

(
1
2

)
2

)
− (1− h(λ))F (y).

As h(λ) + h(1− λ) ≤ 1, so

F (x) ≤ F (y) + h(1− λ)

(
F

(
a+ 2bh

(
1
2

)
2

)
− F (y)

)
.

Again by using Lemma 2.1(ii), one can deduce that F (x) ≤ F (y). Then F is

increasing on the interval

[
a+2bh( 1

2 )
2 , 2bh

(
1
2

)]
.

Theorem 2.1. Let h : [0, b] → R, (0, 1) ⊆ [0, b] be non negative function. Also
let 0 ≤ a < 2bh

(
1
2

)
and f :

[
a, 2bh

(
1
2

)]
→ R be integrable function such that f(x)

is decreasing for x ∈
[
a,

a+2bh( 1
2 )

2

]
and f is symmetric about

a+2bh( 1
2 )

2 . Then for

every h-convex function φ, one has∫ 2bh( 1
2 )

a

f(x)φ(x)dx ≥ 1

2bh
(
1
2

)
− a

∫ 2bh( 1
2 )

a

f(x)dx

∫ 2bh( 1
2 )

a

φ(x)dx.

Proof. Let us consider

ϕ(x) := φ(x) + φ

(
a+ 2bh

(
1

2

)
− x

)
.(2.3)

Since Lemma 2.1(i) leads us to the fact that ϕ is h-convex on [a, 2bh( 12 )], so ϕ is

decreasing on
[
a,

a+2bh( 1
2 )

2

]
by Lemma 2.2. Now using this fact along with given

condition that f is decreasing on
[
a,

a+2bh( 1
2 )

2

]
, one has the following result due to

Chebyshev’s inequality given in (1.1):

1
a+2bh( 1

2 )
2 − a

∫ a+2bh( 1
2 )

2

a

f(x)

(
φ(x) + φ

(
a+ 2bh

(
1

2

)
− x

))
dx
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≥ 1
a+2bh( 1

2 )
2 − a

∫ a+2bh( 1
2 )

2

a

f(x)dx


× 1

a+2bh( 1
2 )

2 − a

∫ a+2bh( 1
2 )

2

a

φ(x)dx+

∫ a+2bh( 1
2 )

2

a

φ

(
(a+ 2bh

(
1

2

)
− x

)
dx

 .

Now by using the symmetry of f about
a+2bh( 1

2 )

2 , one has

1
a+2bh( 1

2 )
2 − a

∫ a+2bh( 1
2 )

2

a

f

(
a+ 2bh

(
1

2

)
− x

)(
φ(x) + φ

(
a+ 2bh

(
1

2

)
− x

))
dx

≥ 1
a+2bh( 1

2 )
2 − a

∫ a+2bh( 1
2 )

2

a

f

(
a+ 2bh

(
1

2

)
− x

)
dx


× 1

a+2bh( 1
2 )

2 − a

∫ a+2bh( 1
2 )

2

a

φ(x)dx+

∫ a+2bh( 1
2 )

2

a

φ

(
(a+ 2bh

(
1

2

)
− x

)
dx

 .

This implies

∫ a+2bh( 1
2 )

2

a

f

(
a+ 2bh

(
1

2

)
− x

)
φ(x)dx

+

∫ a+2bh( 1
2 )

2

a

f

(
a+ 2bh

(
1

2

)
− x

)
φ

(
a+ 2bh

(
1

2

)
− x

)
dx

≥ 2

2bh
(
1
2

)
− a

∫ a+2bh( 1
2 )

2

a

f

(
a+ 2bh

(
1

2

)
− x

)
dx

×

∫ a+2bh( 1
2 )

2

a

φ(x)dx+

∫ a+2bh( 1
2 )

2

a

φ

(
a+ 2bh

(
1

2

)
− x

)
dx

 .(2.4)

By using the identities

∫ a+2bh( 1
2 )

2

a

f(x)dx =
1

2

∫ 2bh( 1
2 )

a

f(x)dx,(2.5)

∫ a+2bh( 1
2 )

2

a

φ(x)dx =

∫ 2bh( 1
2 )

a+2bh( 1
2 )

2

φ

(
a+ 2bh

(
1

2

)
− x

)
dx,(2.6)
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and

∫ a+2bh( 1
2 )

2

a

f

(
a+ 2bh

(
1

2

)
− x

)
φ

(
a+ 2bh

(
1

2

)
− x

)
dx

=

∫ 2bh( 1
2 )

a+2bh( 1
2 )

2

f(x)φ(x)dx,(2.7)

in inequality (2.4), one can deduce that

∫ a+2bh( 1
2 )

2

a

f(x)φ(x)dx+

∫ 2bh( 1
2 )

a+2bh( 1
2 )

2

f(x)φ(x)dx

≥ 2

2bh
(
1
2

)
− a

(
1

2

∫ 2bh( 1
2 )

a

f(x)dx

)∫ a+2bh( 1
2 )

2

a

φ(x)dx+

∫ 2bh( 1
2 )

a+2bh( 1
2 )

2

φ(x)dx

 .

After simplification, our required result is obtained.

The following theorem presents the weighted version of Chebyshev’s type inequality
for h-convex functions.

Theorem 2.2. Under the assumptions of Theorem 2.1 and in addition if p :[
a, 2bh

(
1
2

)]
→ R+ be an integrable symmetric function about

a+2bh( 1
2 )

2 , then one
has the inequality ∫ 2bh( 1

2 )

a

p(x)dx

∫ 2bh( 1
2 )

a

p(x)f(x)φ(x)dx

≥
∫ 2bh( 1

2 )

a

p(x)f(x)dx

∫ 2bh( 1
2 )

a

p(x)φ(x)dx.(2.8)

Proof. Its proof is similar to the proof of the previous one by using weighted Cheby-
shev’s inequality given in (1.2).

Theorem 2.3. Let h : [0, b] → R, (0, 1) ⊆ [0, b] be a non negative function. Also
let 0 ≤ a < 2bh

(
1
2

)
and f, φ :

[
a, 2bh

(
1
2

)]
→ R be h-convex functions and p :[

a, 2bh
(
1
2

)]
→ R+ be an integrable symmetric function about

a+2bh( 1
2 )

2 . Then∫ 2bh( 1
2 )

a

p(x)f(x)φ(x)dx+

∫ 2bh( 1
2 )

a

p(x)f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx

≥ 2∫ 2bh( 1
2 )

a
p(x)dx

∫ 2bh( 1
2 )

a

p(x)f(x)dx

∫ 2bh( 1
2 )

a

p(x)φ(x)dx.(2.9)
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Proof. Let us assume F and ϕ which are define in (2.1) and (2.3). Since f and φ are
h-convex functions, by using Lemma 2.2 one can deduce that F and ϕ have same

monotonicity on interval

[
a,

a+2bh( 1
2 )

2

]
. By applying Chebyshev’s inequality,

∫ a+2bh( 1
2 )

2

a

p(x)F (x)ϕ(x)dx

≥ 1∫ a+2bh( 1
2 )

2

a
p(x)dx

∫ a+2bh( 1
2 )

2

a

p(x)F (x)dx

∫ a+2bh( 1
2 )

2

a

p(x)ϕ(x)dx.

This leads to∫ a+2bh( 1
2 )

2

a

p(x)f(x)φ(x)dx

+

∫ a+2bh( 1
2 )

2

a

p(x)f

(
a+ 2bh

(
1

2

)
− x

)
φ

(
a+ 2bh

(
1

2

)
− x

)
dx

+

∫ a+2bh( 1
2 )

2

a

p(x)f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx

+

∫ a+2bh( 1
2 )

2

a

p(x)f

(
a+ 2bh

(
1

2

)
− x

)
φ(x)dx

≥ 1∫ a+2bh( 1
2 )

2

a
p(x)dx

∫ a+2bh( 1
2 )

2

a

p(x)

(
f(x) + f

(
a+ 2bh

(
1

2

)
− x

))
dx

∫ a+2bh( 1
2 )

2

a

p(x)

(
φ(x) + φ

(
a+ 2bh

(
1

2

)
− x

))
dx

 .(2.10)

Since ∫ a+2bh( 1
2 )

2

a

p(x)dx =
1

2

∫ 2bh( 1
2 )

a

p(x)dx.(2.11)

∫ a+2bh( 1
2 )

2

a

f(x)dx =

∫ 2bh( 1
2 )

a+2bh( 1
2 )

2

f

(
a+ 2bh

(
1

2

)
− x

)
dx.(2.12)

∫ a+2bh( 1
2 )

2

a

f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx
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=

∫ 2bh( 1
2 )

a+2bh( 1
2 )

2

f

(
a+ 2bh

(
1

2

)
− x

)
φ(x)dx.(2.13)

By using the identities (2.11), (2.12) and (2.13) in inequality (2.10), one has

∫ a+2bh( 1
2 )

2

a

p(x)f(x)φ(x)dx+

∫ 2bh( 1
2 )

a+2bh( 1
2 )

2

p(x)f(x)φ(x)dx

+

∫ a+2bh( 1
2 )

2

a

p(x)f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx

+

∫ 2bh( 1
2 )

a+2bh( 1
2 )

2

p(x)f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx

≥ 1∫ 2bh( 1
2 )

a
p(x)dx

∫ a+2bh( 1
2 )

2

a

p(x)f(x)dx+

∫ 2bh( 1
2 )

a+2bh( 1
2 )

2

p(x)f(x)dx


∫ a+2bh( 1

2 )
2

a

p(x)φ(x)dx+

∫ 2bh( 1
2 )

a+2bh( 1
2 )

2

p(x)φ(x)dx

 .

It follows that (2.9) holds and the proof of Theorem 2.3 is completed.

The following result is given in [Theorem 1.1, [11]].

Corollary 2.1. Let f, φ : [a, b] → R be convex functions and p : [a, b] → R+ be
integrable symmetric function about a+b

2 . Then∫ b

a

p(x)f(x)φ(x)dx+

∫ b

a

p(x)f(x)φ(a+ b− x)dx

≥ 2∫ b
a
p(x)dx

∫ b

a

p(x)f(x)dx

∫ b

a

p(x)φ(x)dx.(2.14)

Proof. By putting h
(
1
2

)
= 1

2 in (2.9), above result can be obtained.

Remark 2.2. One can note that inequality (2.8) is valid, when the function f is decreas-
ing, symmetric and φ is h-convex. Imposing the condition of symmetry on φ along with
that f and φ are h-convex functions, one can get inequality (2.8) of Theorem 2.3.

Generalizations of Chebyshev’s type inequality are valid for similar ordered func-
tions. The first result of this kind was given by Hardy, Littlwood and Polya (see
[8], p. 168).
For h-convex function, the following lemma is very helpful to establish a refinement
of Chebyshev’s type inequality for similar ordered functions as well as oppositely
ordered functions.
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Lemma 2.3. Let f, φ :
[
a, 2bh

(
1
2

)]
→ R be two integrable functions. If f and φ

are similarly ordered, then

∫ 2bh( 1
2 )

a

f(x)φ(x)dx ≥
∫ 2bh( 1

2 )

a

f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx.(2.15)

If f and φ are oppositely ordered, then above inequality is reversed.

Proof. Since f and φ are similarly ordered, then for all x ∈
[
a, 2bh

(
1
2

)]
(
f(x)− f

(
a+ 2bh

(
1

2

)
− x

))(
φ(x)− φ

(
a+ 2bh

(
1

2

)
− x

))
≥ 0,

which implies that

f(x)φ(x) + f

(
a+ 2bh

(
1

2

)
− x

)
φ

(
a+ 2bh

(
1

2

)
− x

)
≥ f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
+ f

(
a+ 2bh

(
1

2

)
− x

)
φ(x).

By integrating both sides over
[
a, 2bh

(
1
2

)]
, the above inequality (2.15) can be ob-

tained which is our required result.

Theorem 2.4. Let h : [0, b] → R, (0, 1) ⊆ [0, b] be a non negative function. Also
let 0 ≤ a < 2bh

(
1
2

)
and f, φ :

[
a, 2bh

(
1
2

)]
→ R be h-convex functions.

(i) If f and φ are similarly ordered, then

∫ 2bh( 1
2 )

a

f(x)φ(x)dx

≥ 1

2

(∫ 2bh( 1
2 )

a

f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx+

∫ 2bh( 1
2 )

a

f(x)φ(x)dx

)

≥ 1

2bh
(
1
2

)
− a

∫ 2bh( 1
2 )

a

f(x)dx

∫ 2bh( 1
2 )

a

φ(x)dx.(2.16)

(ii) If f and φ are oppositely ordered, then

∫ 2bh( 1
2 )

a

f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx

≥ 1

2bh
(
1
2

)
− a

∫ 2bh( 1
2 )

a

f(x)dx

∫ 2bh( 1
2 )

a

φ(x)dx

≥
∫ 2bh( 1

2 )

a

f(x)φ(x)dx.(2.17)
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Proof. (i) Since f and φ are h-convex functions and similarly ordered, then by using
Lemma 2.3 one has∫ 2bh( 1

2 )

a

f(x)φ(x)dx ≥
∫ 2bh( 1

2 )

a

f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx,

which can be written as

2

∫ 2bh( 1
2 )

a

f(x)φ(x)dx

≥
∫ 2bh( 1

2 )

a

f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx+

∫ 2bh( 1
2 )

a

f(x)φ(x)dx.(2.18)

By using Theorem 2.3 and (2.18), one can obtain (2.16).
(ii) Since f and φ are h-convex functions, then by Theorem 2.3∫ 2bh( 1

2 )

a

f(x)φ

(
a+ 2bh

(
1

2

)
− x

)
dx

− 1

2bh
(
1
2

)
− a

∫ 2bh( 1
2 )

a

f(x)dx

∫ 2bh( 1
2 )

a

φ(x)dx

≥ 1

2bh
(
1
2

)
− a

∫ 2bh( 1
2 )

a

f(x)dx

∫ 2bh( 1
2 )

a

φ(x)dx−
∫ 2bh( 1

2 )

a

f(x)φ(x)dx.(2.19)

On the other hand, one has

1

2bh
(
1
2

)
− a

∫ 2bh( 1
2 )

a

f(x)dx

∫ 2bh( 1
2 )

a

φ(x)dx ≥
∫ 2bh( 1

2 )

a

f(x)φ(x)dx,(2.20)

because f and φ are oppositely ordered. By (2.19) and (2.20), one can obtain
(2.17).

The following result is given in [ Theorem 1.2, [11]].

Corollary 2.2. Let f, φ : [a, b] → R be convex functions.

(i) If f and φ are similarly ordered, then

∫ b

a

f(x)φ(x)dx ≥ 1

2

(∫ b

a

f(x)φ(x)dx+

∫ b

a

f(x)φ(a+ b− x)dx

)

≥ 1

b− a

∫ b

a

f(x)dx

∫ b

a

φ(x)dx.

(ii) If f and φ are oppositely ordered, then
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∫ b

a

f(x)φ(a+ b− x)dx ≥ 1

b− a

∫ b

a

f(x)dx

∫ b

a

φ(x)dx

≥
∫ b

a

f(x)φ(x)dx.

Proof. By putting h
(
1
2

)
= 1

2 in (2.16) and (2.17), the above results can be ob-
tained.

Theorem 2.5. Let h : [0, b] → R, (0, 1) ⊆ [0, b] be a non negative function. Also
let 0 ≤ a < 2bh

(
1
2

)
and f, φ :

[
a, 2bh

(
1
2

)]
→ R, where f is h-convex function

and φ is decreasing on the interval

[
a,

a+2bh( 1
2 )

2

]
and increasing on the interval[

a+2bh( 1
2 )

2 , 2bh
(
1
2

)]
. Then the inequality (2.9) holds.

Proof. Let us assume F and ϕ which are define in (2.1) and (2.3). Since f is h-

convex function then by Lemma 2.2, F is decreasing on the interval

[
a,

a+2bh( 1
2 )

2

]
and increasing on the interval

[
a+2bh( 1

2 )
2 , 2bh

(
1
2

)]
. In order to prove that inequality

(2.9), we need to prove ϕ is decreasing on the interval

[
a,

a+2bh( 1
2 )

2

]
and increasing

on the interval

[
a+2bh( 1

2 )
2 , 2bh

(
1
2

)]
.

Let x, y ∈
[
a,

a+2bh( 1
2 )

2

]
and set x∗ = a + 2bh

(
1
2

)
− x and y∗ = a + 2bh

(
1
2

)
−

y, where x∗, y∗ ∈
[
a+2bh( 1

2 )
2 , 2bh

(
1
2

)]
. It is clear that if x ≤ y, then x∗ ≥ y∗.

Since φ is decreasing on the interval

[
a,

a+2bh( 1
2 )

2

]
and increasing on the interval[

a+2bh( 1
2 )

2 , 2bh
(
1
2

)]
, then one has

φ(x) ≥ φ(y) and φ(x∗) ≥ φ(y∗).

Then
ϕ(x) = φ(x) + φ(x∗) ≥ φ(y) + φ(y∗) = ϕ(y)

which implies that ϕ is decreasing on the interval

[
a,

a+2bh( 1
2 )

2

]
. By the same

method one can prove that ϕ is increasing on the interval

[
a+2bh( 1

2 )
2 , 2bh

(
1
2

)]
.

Then F and ϕ have same monotonicity and by applying Chebyshev’s inequality with
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p : [a, 2bh
(
1
2

)
→ R+] is integrable symmetric function about

a+2bh( 1
2 )

2 inequality
(2.9) can be obtained.

The following result is given in [[11], Theorem 1.3].

Corollary 2.3. Let f, φ : [a, b] → R where f is convex function and φ is decreasing
on [a, a+b2 ] and increasing on [a+b2 , b]. Then (2.14) hold.

Proof. By putting h
(
1
2

)
= 1

2 in (2.9), the required inequality (2.14) can be ob-
tained.

3. Mean value theorems

Lemma 3.1. [22] Let h : [0, b] → R+ be supermultiplicative such that h(λ)+h(1−
λ) ≤ 1 for all λ ∈ (0, 1). If f : [0, b] → R is h-convex, then f(x)−f(a)

h(x−a) is increasing

for x > a.

Proof. Suppose f is an h-convex function and

Ph(x) =
f(x)− f(a)

h(x− a)
.

We take y > x > a and x = λy + (1− λ)a, then

Ph(x) =
f(λy + (1− λ)a)− f(a)

h(λy + (1− λ)a− a)

≤ h(λ)f(y) + [h(1− λ)− 1]f(a)

h(λ(y − a))
.

Using the fact that h is supermultiplicative, one has

Ph(x) ≤
h(λ)f(y) + [h(1− λ)− 1]f(a)

h(λ)h(y − a)
.

Since h(1− λ)− 1 ≤ − ≤ h(λ), this implies

Ph(x) ≤
f(y)

h(y − a)
− f(a)

h(y − a)
= Ph(y).

Hence we have have proved that if f is h-convex then f(x)−f(a)
h(x−a) is increasing for

x > a.

The following Lemma is very helpful in proving mean value theorem related to the
non negative functional of Chebyshev’s type inequality for h-convex functions.
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Lemma 3.2. Let h : [0, b] → R, (0, 1) ⊆ [0, b] be a non negative differentiable
function. Also let ϕ : [a, b] → R be a differentiable function, where 0 ≤ a < 2bh

(
1
2

)
such that

m1 ≤ h(x− a)ϕ′(x)− (ϕ(x)− ϕ(a))h′(x− a)

h2(x− a)
≤M1,

for all x, a ∈ [a, b]. Then the functions

ψ1(x) =M1xh(x− a)− ϕ(x), ψ2(x) = ϕ(x)−m1xh(x− a)

are h-convex in [a, b].

Proof. Suppose

Ph,ψ1(x) =
ψ1(x)− ψ1(a)

h(x− a)
=
M1xh(x− a)

h(x− a)
− ϕ(x)− ϕ(a)

h(x− a)
.

So we have

P ′
h,ψ1

(x) =M1 −
h(x− a)ϕ′(x)− (ϕ(x)− ϕ(a))h′(x− a)

h2(x− a)
.

By the given condition, one has

P ′
h,ψ1

(x) ≥ 0 for all x ∈ [a, b].

Similarly one can show that

P ′
h,ψ2

(x) ≥ 0 for all x ∈ [a, b].

This gives us Ph,ψ1 and Ph,ψ2 are increasing on x ∈ [a, b]. Hence by Lemma 3.1 ψ1

and ψ2 are h-convex in [a, b].

Theorem 3.1. Let h : [0, b] → R, (0, 1) ⊆ [0, b] be a non negative differentiable
function. Also let 0 ≤ a < 2bh

(
1
2

)
and f : [a, 2bh( 12 )] → R be an integrable function

such that the following two conditions hold:

(i) f is decreasing on [a,
a+2bh( 1

2 )

2 ].

(ii) f is symmetric about
a+2bh( 1

2 )

2 .

If ϕ, h ∈ C1[a, 2bh( 12 )] then there exists ξ ∈ (a, 2bh( 12 )) such that

Th(f, ϕ) =
h(ξ − a)ϕ′(ξ)− (ϕ(ξ)− ϕ(a))h′(ξ − a)

h2(ξ − a)
Th(f, γ),

provided that Th(f, γ) is non-zero, where γ(x) = x2.
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Proof. As ϕ, h ∈ C1[a, 2bh( 12 )], so there exist real numbers m1 and M1 such that

m1 ≤ h(x− a)ϕ′(x)− (ϕ(x)− ϕ(a))h′(x− a)

h2(x− a)
≤M1,

for each x ∈ [a, 2bh( 12 )].
Now let us consider the function ψ1 and ψ2 defined in Lemma 3.2. As ψ1 is h-convex
in [a, 2bh( 12 )],

Th(f, ψ1) ≥ 0,

that is
Th(f,M1xh(x− a)− ϕ(x)) ≥ 0,

which gives

M1Th(f, γ) ≥ Th(f, ϕ).(3.1)

Similarly ψ2 is h-convex in [a, 2bh( 12 )], therefore one has

m1Th(f, γ) ≤ Th(f, ϕ).(3.2)

By the assumption Th(f, γ) ̸= 0, combining (3.1) and (3.2) one has

m1 ≤ Th(f, ϕ)

Th(f, γ)
≤M1.

Hence, there exist ξ ∈ [a, 2bh( 12 )] such that

Th(f, ϕ)

Th(f, γ)
=
h(ξ − a)ϕ′(ξ)− (ϕ(ξ)− ϕ(a))h′(ξ − a)

h2(ξ − a)
.(3.3)

Hence proved required result.

Corollary 3.1. Let f : [a, b] → R be an integrable function such that the following
two conditions hold:

(i) f is decreasing on [a, a+b2 ].

(ii) f is symmetric about a+b
2 .

If ϕ ∈ C1[a, b], then there exists ξ ∈ (a, b) such that

T (f, ϕ) =
(ξ − a)ϕ′(ξ)− ϕ(ξ) + ϕ(a)

(ξ − a)2
T (f, γ),

provided that T (f, γ) is non zero, where γ(x) = x2.

Proof. By putting h(ξ − a) = ξ − a in (3.3), above result can be obtained.
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Theorem 3.2. Let h : [0, b] → R, (0, 1) ⊆ [0, b] be a non negative differentiable
function. Also let 0 ≤ a < 2bh

(
1
2

)
and f : [a, 2bh( 12 )] → R be an integrable function

such that the following two conditions hold:

(i) f is decreasing on [a,
a+2bh( 1

2 )

2 ].

(ii) f is symmetric about
a+2bh( 1

2 )

2 .

If ϕ1, ϕ2, h ∈ C1[a, 2bh( 12 )], then there exist ξ ∈ (a, 2bh( 12 )) such that

Th(f, ϕ1)

Th(f, ϕ2)
=
h(ξ − a)ϕ′1(ξ)− (ϕ1(ξ)− ϕ1(a))h

′(ξ − a)

h(ξ − a)ϕ′2(ξ)− (ϕ2(ξ)− ϕ2(a))h′(ξ − a)
,(3.4)

provided that the denominators are non zero, where γ(x) = x2.

Proof. Suppose that a function p ∈ C1[a, 2bh( 12 )] be defined as:

p = c1ϕ1 − c2ϕ2,

where
c1 = Th(f, ϕ2), c2 = Th(f, ϕ1).

Then using Theorem 3.1 with ϕ = p, one has

h(ξ − a)(c1ϕ1 − c2ϕ2)
′(ξ)− ((c1ϕ1 − c2ϕ2)(ξ)− (c1ϕ1 − c2ϕ2)(a))h

′(ξ − a) = 0,

that is

h(ξ − a)(c1ϕ
′
1(ξ)− c2ϕ

′
2(ξ))− (c1ϕ1(ξ)− c2ϕ2(ξ)− c1ϕ1(a) + c2ϕ2(a))h

′(ξ − a) = 0,

which gives

c1(h(ξ−a)ϕ′1(ξ)−(ϕ1(ξ)−ϕ1(a))h′(ξ−a)−c2(h(ξ−a)ϕ′2(ξ)−(ϕ2(ξ)−ϕ2(a))h′(ξ−a) = 0,

which implies

c1(h(ξ−a)ϕ′1(ξ)−(ϕ1(ξ)−ϕ1(a))h′(ξ−a) = c2(h(ξ−a)ϕ′2(ξ)−(ϕ2(ξ)−ϕ2(a))h′(ξ−a)

and
c2
c1

=
h(ξ − a)ϕ′1(ξ)− (ϕ1(ξ)− ϕ1(a))h

′(ξ − a)

h(ξ − a)ϕ′2(ξ)− (ϕ2(ξ)− ϕ2(a))h′(ξ − a)
.

After putting value of c1 and c2, we get (3.4).

Corollary 3.2. Let f : [a, b] → R be an integrable function such that the following
two conditions hold:

(i) f is decreasing on [a, a+b2 ].
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(ii) f is symmetric about a+b
2 .

If ϕ1, ϕ2, h ∈ C1[a, b], then there exist ξ ∈ (a, b) such that

T (f, ϕ1)

T (f, ϕ2)
=

(ξ − a)ϕ′1(ξ)− ϕ1(ξ) + ϕ1(a)

(ξ − a)ϕ′2(ξ)− ϕ2(ξ) + ϕ2(a)
,

provided that the denominators are non zero, where γ(x) = x2.

Proof. Above result can be obtained by taking h(ξ − a) = ξ − a in (3.4).

4. Results for s-convex function

The following results hold for s-convex functions:

Theorem 4.1. Let s be a real number, s ∈ (0, 1] and α, β ≥ 0. Also let 0 ≤ a <
bα1−s and f : [a, bα1−s] → R be an integrable function such that f is decreasing

for x ∈
[
a, a+bα

1−s

2

]
and f is symmetric about a+bα1−s

2 . Then for every s-convex

function in first sense φ, one has∫ bα1−s

a

f(x)φ(x)dx ≥ 1

bα1−s − a

∫ bα1−s

a

f(x)dx

∫ bα1−s

a

φ(x)dx.

Proof. The proof of above theorem is similar to the proof of Theorem 2.1 by taking
h(α) = αs.

Theorem 4.2. Under the assumptions of Theorem 4.1 and in addition if p :[
a, bα1−s] → R+ be integrable symmetric function about a+bα1−s

2 , then one has
the inequality ∫ bα1−s

a

p(x)dx

∫ bα1−s

a

p(x)f(x)φ(x)dx

≥
∫ bα1−s

a

p(x)f(x)dx

∫ bα1−s

a

p(x)φ(x)dx.(4.1)

Proof. The proof of above theorem is similar to the proof of Theorem 2.2 by taking
h(α) = αs.

Theorem 4.3. Let s be a real number, s ∈ (0, 1]. Also let 0 ≤ a < bα1−s and
f, φ :

[
a, bα1−s] → R be s-convex functions in first sense and p :

[
a, bα1−s] → R+

be an integrable symmetric function about a+bα1−s

2 . Then∫ bα1−s

a

p(x)f(x)φ(x)dx+

∫ bα1−s

a

p(x)f(x)φ
(
a+ bα1−s − x

)
dx

≥ 2∫ bα1−s

a
p(x)dx

∫ bα1−s

a

p(x)f(x)dx

∫ bα1−s

a

p(x)φ(x)dx.(4.2)
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Proof. The proof of the above theorem is similar to the proof of Theorem 2.3 by
taking h(α) = αs.

Theorem 4.4. Let s be a real number, s ∈ (0, 1]. Also let 0 ≤ a < bα1−s and
f, φ :

[
a, bα1−s]→ R be s-convex functions in first sense.

(i) If f and φ are similarly ordered, then

∫ bα1−s

a

f(x)φ(x)dx

≥ 1

2

(∫ bα1−s

a

f(x)φ
(
a+ bα1−s − x

)
dx+

∫ bα1−s

a

f(x)φ(x)dx

)

≥ 1

bα1−s − a

∫ bα1−s

a

f(x)dx

∫ bα1−s

a

φ(x)dx.

(ii) If f and φ are oppositely ordered, then

∫ bα1−s

a

f(x)φ
(
a+ bα1−s − x

)
dx

≥ 1

bα1−s − a

∫ bα1−s

a

f(x)dx

∫ bα1−s

a

φ(x)dx

≥
∫ bα1−s

a

f(x)φ(x)dx.

Proof. The proof of the above theorem is similar to the proof of Theorem 2.4 by
taking h(α) = αs.

Theorem 4.5. Let s be a real number, s ∈ (0, 1] and α, β ≥ 0. Also let 0 ≤
a < bα1−s and f, φ :

[
a, bα1−s] → R, where f is s-convex function in first sense

and φ is decreasing on the interval
[
a, a+bα

1−s

2

]
and increasing on the interval[

a+bα1−s

2 , bα1−s
]
. Then the inequality (4.2) holds.

Proof. The proof of the above theorem is similar to the proof of Theorem 2.5 by
taking h(α) = αs.

Theorem 4.6. Let s be a real number, s ∈ (0, 1] and α, β ≥ 0. Also let 0 ≤ a <
bα1−s and f : [a, bα1−s] → R be integrable function such that the following two
conditions hold:

(i) f is decreasing for [a, a+bα
1−s

2 ].
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(ii) f is symmetric about a+bα1−s

2 .

If ϕ ∈ C1[a, bα1−s] then there exist ξ ∈ (a, bα1−s) such that

Ts(f, ϕ) =
(ξ − a)sϕ′(ξ)− s(ϕ(ξ)− ϕ(a))(ξ − a)s−1

(ξ − a)2s
Ts(f, γ),

provided that Th(f, γ) is non-zero, where γ(x) = x2.

Proof. The proof of the above theorem is similar to the proof of Theorem 3.1 by
taking h(α) = αs.

Theorem 4.7. Let s be a real number, s ∈ (0, 1] and α, β ≥ 0. Also let 0 ≤ a <
bα1−s and f : [a, bα1−s] → R be integrable function such that the following two
conditions hold:

(i) f is decreasing on [a, a+bα
1−s

2 ].

(ii) f is symmetric about a+bα1−s

2 .

If ϕ1, ϕ2 ∈ C1[a, bα1−s], then there exist ξ ∈ (a, bα1−s) such that

Ts(f, ϕ1)

Ts(f, ϕ2)
=

(ξ − a)sϕ′1(ξ)− s(ϕ1(ξ)− ϕ1(a))(ξ − a)s−1

(ξ − a)sϕ′2(ξ)− s(ϕ2(ξ)− ϕ2(a))(ξ − a)s−1
,

provided that the denominators are non zero, where γ(x) = x2.

Proof. The proof of the above theorem is similar to the proof of Theorem 3.2 by
taking h(α) = αs.

5. Concluding remarks

This research article have been prepared to extrapolate Chebyshev’s type inequal-
ities. By using h-convex functions, Chebyshev’s type inequality, weighted version
of Chebyshev’s type inequality and a refinement of Chebyshev’s type inequality for
similar ordered functions as well as oppositely ordered functions have been estab-
lished. Furthermore, the associated Chebyshev’s functional are estimated via mean
value theorems. Also we discussed several results for s-convex functions which are
special cases of proved results.
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