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Abstract. In this paper, we study the class of mth root («, 3)-metrics which is a signif-
icant class mixed of two classes of metrics: m-th root metrics and (a, 8)-metrics. First,
we find the necessary and sufficient condition under which the quartic («, 8)-metrics
are conformally Berwald. Then, we find the necessary and sufficient condition under
which the cubic (a, 8)-metrics are conformally Berwald. Finally, we construct some
conformal Finslerian invariants.
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1. Introduction

The conformal transformations of the class of Riemannian metrics have been well
investigated and developed. The class of Finsler metrics are a natural generalization
of the class of Riemannian metrics. The conformal transformation of Finsler metrics
was initiated by Knebelman in [10] and studied by Hashiguchi in [4]. Let F and
F be two Finsler metrics on a manifold M. In [4], Hashiguchi proved that F is
conformal to F if and only if there exists a scalar function x = x(z) such that
F = e*F. The scalar function x is called the conformal factor. A Finsler metric
is called a conformally flat metric if it is locally conformal to a locally Minkowski
metric [26]. There are many efforts to find a conformally invariant curvature tensor
similar to the Weyl conformal curvature of a Riemannian metric and to establish
the condition for a Finsler metric to be conformally flat. In [20], Szilasi-Vincze
gave an intrinsic proof of the Weyl theorem, which states that the projective and
conformal properties of a Finsler metric determine its metric properties uniquely.
Therefore the conformal properties of Finsler metrics deserve extra attention.

A Berwald metric is much closer to a Riemannian metric than the other class of
Finsler metrics because any geodesic of a Berwald metric must be that of a Rieman-
nian metric [17]. A Finsler metric F' on a manifold M is said to be a Berwald metric
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if there exists a torsion-free affine connection V on M whose parallel transport pre-
serves F', namely, if ¢ = ¢(t) is a smooth path in M with the endpoints z1 and z2,
and P, : Ty, M — T, M is the V-parallel transport along ¢, then for all y € T, M,
Fy,(P.(y)) = F,(y) holds. Thus a Riemannian metric viewed as a special Berwald
metric, with the associated connection V the Levi-Civita connection.

A Finsler metric conformally related to a Berwald metric is called conformally
Berwald metric. In [6], Hashiguchi-Ichijyd proved that a Finsler metric F' = F(z,y)
on a manifold M is conformal to a Berwald metric if and only if it is a Wagner
metric (see also [28]). The Wagner metrics form an important class of the so-called
generalized Berwald metrics admitting Finsler connections whose horizontal part
depends only on the position - more precisely there exists a linear connection on
M such that the indicatrix hypersurfaces are invariant under the parallel transport.
Also, Berwald metrics in the classical sense are characterized by a similar property
of the canonical Berwald connection. If a Berwald metric has vanishing Riemannian
curvature, then it is called a locally Minkowski metric. In [8], Hashiguchi-Ichijyo
determined all conformally flat Randers surfaces. Then, Hashiguchi proved that a
conformally flat Randers metric is conformally Berwald metric and the associated
Riemannian metric is also conformally flat [5]. He also studied the converse problem.
In [1], Aikou obtained the conditions for a Finsler metric to be locally or globally
conformal to a Berwald metric. In [7], H5jo-Matsumoto-Okubo found the necessary
and sufficient conditions under which a Randers metric and Kropina metric be a
conformally Berwald metric. In [27], Vincze discussed the problem whether how we
can check the conformality of a Finsler metric to a Berwald metric. His method
is based on a differential 1-form constructing on the underlying manifold by the
help of integral formulas such that its exterior derivative is conformally invariant.
If the Finsler metric is conformal to a Berwald metric, then the exterior derivative
vanishes [27]. In [15], Matveev-Nikolayevsky obtained some results regarding locally
conformally Berwald closed metrics that are not globally conformally Berwald. In
[30], Xia-Zhong found some explicit examples of complex Berwald metrics which are
neither Hermitian metrics nor conformal changes of complex Minkowski metrics.

In order to find explicit examples of conformally Berwald metrics, one can
investigate the class of m-th root Finsler metrics. Let M be an n-dimensional
manifold, TM its tangent bundle and (2%, 3") the coordinates in a local chart
on TM. Let F : TM — R be a scalar function defined by F = 3%/A, where
A= a;, 4, (®)yhy®= ...y and a;, ,;, is symmetric in all its indices. Then F
is called an m-th root Finsler metric on M [19]. For more progress, see [21], [24]
and [25]. The fourth root metric is called a quartic metric [22][23]. The significant
quartic metric F' = {/y*y/y*y! is called Berwald-Modr metric which has important
role in the theory of space-time structure and gravitation as well as in unified gauge
field theories [2][3][16].

We show that every 4-th root metric F = {/a;jr(2)y*y?y*y! on a manifold M
of dimension n > 3 can be written in the following form

F = /10t 4 20232 + c38?,
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where v = /a;;(r)y'y? is a Riemannian and 8 = b;(z)y" is a 1-form on M. For n =
2, F' can be written as F = {/cia* + coa?32. Then, we characterize conformally
Berwald 4-th root («, 8)-metric as follows.

Theorem 1.1. Let F' = {/ciat + c20282 + 384 be a non-Riemanian quartic (o, 3)-
metric on an n-dimensional manifold M, where ¢; are nonzero constants. Then F
is a conformally Berwald metric if and only if B satisfies following

e 1 1
(1.1) Tij = n—1 (aij - b—Qbibj) T (biSj + bjsi),
1
(1.2) Sij = b—2(bi5j - bjSi)
and the conformal factor k = k(x) satisfies
1 1,
(1.3) Ki = —b—2(25i + m'f's i)v

where k; := 0r/0z" and b := ||B||o = \/a™b;b;.

Suppose that the quartic (o, B)-metric F = {/cia? + c2a232 + c34% is a Berwald
metric. Then by Lemma 2.3, /3 is parallel with respect to «. Therefore r;; = s5;; =0
and F satisfies (1.1) and (1.2). In this case, (1.3) implies that x = constant. Thus,
we conclude the following.

Corollary 1.1. Let F = {‘/clo/l + 0232 + 384 be a non-Riemannian Berwald
quartic («, B)-metric. Then F is a conformally Berwald metric if and only if the
conformal transformation is homothetic.

It is remarkable that, the Corollary 1.1 confirms the Vincze’s theorem in [27] that
say a conformal transformation between two non-Riemannian Berwald metrics must
be a homothety.

By the same argument used in proof of Theorem 1.1, one can get the following
result.

Corollary 1.2. Let F = {/c1a* + c2a?8? be a non-Riemanian quartic (o, 3)-
metric on an n-dimensional manifold M, where ¢; are nonzero constants. Then F
is a conformally Berwald metric if and only if B satisfies (1.1) and (1.2) and the
conformal factor k = k(x) satisfies (1.3).

The third root metric F' = {/a;;1(x)y'y’y* is called the cubic metric. In [29],
Wegener studied cubic Finsler metrics of dimensions two and three. Wegener’s paper
is only an abstract of his PhD thesis without all details and calculations. In [12],
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Matsumoto wrote an improved version of Wegener’s results. In [13], Matsumoto-
Numata proved that every cubic («, 8)-metric on a manifold M of dimension n > 3
can be written in the following form

F = Ycia?B + co33.

For n = 2, they showed that F' is given by F = {/a2. In this paper, we prove the
following.

Theorem 1.2. Let (M, F) be an n-dimensional Finsler manifold. Then the fol-
lowing hold:

(i) The cubic (o, f)-metric F' = {/c1020 + c283 is a conformally Berwald metric
if and only if B satisfies

1 _

(14) Tij = b—z(bj’l”i + bi’l”j) - beT(Claij + 302bibj) - aijbrkr,
1

(15) Sij = b_2(bi8j — bjSi)

and the conformal factor k = k(x) satisfies

2 _
(1.6) Kj = b—Q(rj —ubj;) — 2(2¢1 + 3cab?) f;,
where ¢1 and co are nonzero constants, Kk, = 0k/0x", [ := bmjaij, fi =
of/oxt, and

1

1 _ _
= =2c1fr — Kp)b", B
u 2( le R ) f] 3b2(61 —|—62b2)

(s +75).

(i1) The cubic («, B)-metric F = {/a?B is a conformally Berwald metric if and
only if B satisfies

1 . 1. 2h
(1.7) rij = 73 (bjri 4 birg) =V (kr + 2 fr)aij — 53 bibj,
1
(18) Sij = —(biSj — bjSi)

b2

and the conformal factor k = k(x) satisfies

2 4 _
(1.9) Kj = ﬁ(ﬁ' — hbj) — gfj,

where

1 S
h = 6(2]‘} =3k, f; = E(Sj +7j).
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2. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. First, we remark some
notions about an (o, 8)-metric. An (o, 8)-metric is a Finsler metric on a manifold
M defined by F := a¢(s), where s = B/a, ¢ = ¢(s) is a scalar function on an
open interval (—bg, bo), @ = \/a;;(z)y’y’ is a Riemannian metric and 8 = b;(z)y’
is a 1-form on M. The metric « is called the associated Riemannian metric of the
(c, B)-metric F. Throughout this paper, we assume that the associated Riemannian
metric of an (a, §)-metric is positive-definite.

For an («, 8)-metric F' := a¢(s), s = 8/a, one can define bwﬂj = db; — bﬂf,
where 6% := dz* and {#7 := ~J, (v)dz"*} denote the Levi-Civita connection forms of
the Riemannian metric a.. Let us put

. L(p s . L(p o _p..

Tij == 2(b1|J +b]\l)7 Sij = 2(b1|J bJ|1)’

rii=bry, 1= 0"Vry, sj = b's;j, ro = 15y7, S0 = sy,
i

e oim P . ,im
j.—a Smyj, Tsi=a Tmy.

Tio 1= iy, Too 1= TriY'y,  Sio 1= Siy?, S j

Then f3 is parallel with respect to « if and only if b;; = 0 or equivalently r;; =
Sij = 0.

Let F = a¢(s), s = B8/a, be an (a, §)-metric on a manifold M, where o« =
Vaij(x)y'ys is a Riemannian and 8 = b;(z)y’ is a 1-form on M. Assume that F is
conformally related to a Finsler metric F' on M, that is, there is a scalar function
k = k(x) on M such that F = e*(®)F. Tt is easy to see that F = a¢(3/a) is also
an (a, B)-metric, where @ = ¢*®qa and 3 = e*®3. Put a = \/a;;(z)y'y? and
B = b;(z)y’. Let us define

b= ||Balla = \/abibj, b:=]Bella = 1/@bib;.
Thus

(2.1) b=h.

Let (M, F) be a Finsler manifold. A global vector field G is induced by F on
T My, which in a standard coordinate (z%,y%) for TMy is given by G = v a?ci —

2G* 8?;“ where G = G%(z,y) are given by

Gt = = zl|:
49

O°F2 . OF®
arkaglY  aat I

The vector field G is called the associated spray to (M, F). F is called a Berwald
metric if G* = %F;k(x)yjyk is quadratic in y € T, M for any € M. Then (M, F)
is called a Berwald manifold. The important described characteristic of a Berwald
manifold is that all its tangent spaces are linearly isometric to a common Minkowski
space [18].

In order to prove Theorem 1.1, we need the following.
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Lemma 2.1. Let F = «a¢(s), s = B/a, be an («, 8)-metric on a manifold M,
where o = \/a;;(x)y'yl is a Riemannian and B = b;(z)y’ is a 1-form on M.
Suppose that F is conformally related to a Finsler metric F on M, i.e., F = e"®) F
where k = k(x) is scalar function on M. Then the following hold

K

@

(2.2) Tij = — (2ri + 2fai; — bik; — bik;j)

N>|mz‘\:’|

(23) Sij = (28@‘ - bjlii + biﬁj) ,

where k; := 0k/0x" and f := kbt

Proof. Let F = a¢(s), s = B/, be an («, f)-metric which is conformally related
to a Finsler metric ' on M, that is, there is a scalar function x = x(x) on M such
that F = e*(®) F. If we write & = /a;;(z)y'y? and B = b;(x)y’, then the following
hold

(24) Qij = ezﬁaij, Bi = e"b;.

Therefore, we get

a =e gV, bt = e b

Let G* and G* be the spray coefficients of F' and F, respectively. By using the
Rapcsik’s identity, the following relationship between G* and G? holds

_ . . F' ym . F' (- _
2.5 Gl:GZ—F mJ z+_—zl{F k—F},
(25) s V5 Fwayt — Fa
where “;” and “,” denote the horizontal and vertical derivation with respect to the

Berwald connection of F'. Since F.,,, = 0, then the following hold

(26)  Fun = kme"F, Foi=rme"Fi, gy =€*gij, g7 =e g,
By putting (2.6) in (2.5), we get
(2.7) G'=G" + koy' — %F%i,
where kg := k;y' and k' := ¢"™k,,. Let us put
G; = (Z—ZC;., G;k = Z—jﬂ
Then taking twice vertical derivation of (2.7) yields
(2.8) Gijk = Gijk + K65 + /@k5§ — gjkk".
By (2.4) and (2.8), we get the following
(2.9) bijl; = €"(bi; — bjki + faij),
where “|” and “||” denote the covariant derivatives with respect to o and &, respec-

tively. By (2.9), we get (2.2) and (2.3). O
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In order to prove Theorem 1.1, we need to the following.

Lemma 2.2. Let F = /i (z)yty?y*yt be a quartic metric on an n-dimensional
manifold M. Then the following hold:

(1) If n = 2, then by choosing suitable quadratic form o = y/a;;(x)y'y? and one
form B = bi(x)y®, F is always written in the form

_ 4 1 232
F = +/ca* 4+ caa?p?,
where ¢1 and ca are real constants and o may be degenerate.

(2) Ifn >3 and F is a function of a non-degenerate quadratic form oo = /a;;(x)yty?
and a one-form B = f3;(x)y’ which is homogeneous in « and 3 of degree one,
then it is written in the following form

F = /10t 4 20282 + c38?,
where ¢1, co and c3 are real constants.
Proof. The proof is very tedious, computational and straightforward. By the same

argument used by Matsumoto-Numata for the cubic Finsler metrics in [13], one can
get the proof. Here, we omit the process of proof. O

In [9], Kim-Park claimed that using the homogeneousness of a Finsler metric, one
can consider the general form of m-th root metric (m > 3) admitting («, §)-metric
and obtain the following

F =y 01042B+C253,
F = /er10t + 20282 + c3 8,

m
F= "{/ESCm—2ra2Tﬁm_2T= s < 57

where ¢; are constants. They studied quartic metric F' = {/cia? + c2a282 + c334
and proved the following.

Lemma 2.3. ([9]) Let F = {/c1a* + 2022 + c38* be a non-Riemannian quartic
metric on a manifold M, where o = \/a;j(x)y'y’ is a Riemannian metric, f =
bi(z)y® is a non-zero 1-form on M and ¢; (1 <i < 3) are non-zero constants. Then
F is a Berwald metric if and only if B is parallel with respect to .

Proof of Theorem 1.1: By Lemma 2.1, we have

(210) bZHJ = e“(bm — :‘ﬂ?ibj + G/ij:‘ﬂ?mbm),
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where “|” and “||” denote the covariant derivatives with respect to a and &, respec-
tively. By assumption, F' is a Berwald metric. Then by Lemma 2.3, (2.10) reduces
to following

(211) b"‘] — Iilb] + brlira/ij =0.

Multiplying (2.11) with b° and a¥ yield, respectively

(2.12) Vbij; = b*ki — b kybi,
r 1 1%l
(213) b K}T:—n_lajbilj.
Putting (2.13) in (2.12) yields
1 T s
(2.14) Ri= o (Vb — ——a bMsz]

It is remarkable that since k; is a gradient vector, then
Kilj = Kjli = 0.

(2.11) can be written as
1 T

(215) Tij = §(Hibj + Iijbi) —b Ry Qij,
1

(216) Sij = E(Hibj - Hjbi).

(2.15) and (2.16) give respectively

1
n—1

(2.17) b Ky = — a"’r,

(2.18) 55 = %(/@Tbrbj — bzﬂj).

Putting (2.17) and (2.18) in (2.15) and (2.16) yield, respectively

rs 1 1
(219) Tij = —n _1 (aij - b—2b1b3) - b—2(bZSJ + bjSi),
1
(220) Sij = b—2(bi8j — bjSi).
Now (2.14) can be written as
1 T 1 s
(2.21) Ki = s (b Tip =i — ——=a rTSbZ).

and (2.19) gives

(222) bTTiT = —8;.



On Conformally Berwald m-th Root (a, 8)-Metrics 971
By putting (2.22) in (2.21), we get

1 1,

This completes the proof. O

Let F := a¢(s), s = f/a, be an («, 8)-metric on a manifold M, where open
a = /a;;(z)y’y? is a Riemannian metric and 3 = b;(z)y’ is a 1-form on M. Then
B is called Killing with respect to « if and only if r;; = 0.

Corollary 2.1. Let F = {/cia* + caa2B2 + c3B* be a non-Riemanian quartic
(a, B)-metric on an n-dimensional manifold M, where ¢; are nonzero constants
and B is a Killing 1-form. Then F is a conformally Berwald metric if and only if
it is a Berwald metric.

Proof. By Theorem 1.1, 3 satisfies (1.1) and (1.2). Contracting (1.1) with b° implies
that
(2.24) ri+s; = 0.

Let 8 be a Killing 1-form with respect to «, i.e., 7;; = 0. Then (2.24) yields s; = 0.
Putting it in (1.2) implies that s;; = 0. Thus g is parallel with respect to a. By
Lemma 2.3, F reduces to a Berwald metric. In this case, by (1.3) one can verify
that the conformal change reduces to a homothetic change. O

3. Proof of Theorem 1.2

In this section, we are going to find the necessary and sufficient condition under
which a cubic («, 8)-metric is conformally Berwald. For this aim, we remark that
the (a, B)-metric F = o™T13~™ is called m-Kropina metric. In [13], Matsumoto-
Numata studied the class of cubic metrics and proved the following.

Lemma 3.1. (Matsumoto-Numata [13]) Let F' = {/a;x(x)y*y?y* be a cubic met-

ric on an n-dimensional manifold M. Then the following hold:

(i) If n = 2, then by choosing suitable quadratic form a = \/a;;(z)y’y’ and one
form B =bi(x)y’, F is a (—%)-Kropina metric

(3.1) F=3/a?3,
where o may be degenerate.

(i) Ifn > 3 and F is a function of a non-degenerate quadratic form o = \/a;;(x)y'y’
and a one-form 3 = b;(z)y" and it is homogeneous in o and B of degree one,
then it is written in the following form

(3.2) F = 3/c1a®B + 233,

where ¢1 and co are constants.
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Also, in [9], Kim-Park studied cubic (a, 8)-metrics and proved the following.

Lemma 3.2. (Kim-Park [9]) Let F = {/c1a28 + c283 be a cubic («, B)-metric on
a manifold M, where o = \/a;;(z)y'y’ is a Riemannian metric and 8 = b;(x)y" is
a 1-form on M. Then F is a Berwald metric if and only if there exists functions
fi = fi(x) on M satisfy following

(33) bi\j = 3(61 + Cgbz)bifj + (Cl + 3C2b2)bjfi — bkfk(claij + 3C2bibj),

where ¢y, co and c3 are constants and b?> = b;b'. In this case, f; are given by
following

1 0 | log(b?
(3.4 = o | 2O

6c1 02" | e1 + cob

Now, we can consider the case (i) in Theorem 1.2 and prove the following.

Lemma 3.3. Let (M, F) be an n-dimensional Finsler manifold. Then the cubic

(a, B)-metric F = {/c1a?B + 233 is conformally Berwald if and only if B satisfies
following

1
(3.5) Sij = b_2 (bisj - bjsi) )
1 _
(3'6) Tij = b_2 (bjri 4+ bir‘j) - (claij + 3Cgbibj)f7_br — aijk,_br,

and the conformal factor k = k(x) satisfies

—~

2 _
(37) Ry = ﬁ(Tj — ubj) - 2(2C1 + 3C2b2)fj,

where

_ 1 1 _
s T G C = = (2c1fr — ke )b"
I 3b2(c1 + c2b?) (sj +75), u 2( c1fr — ki)

Proof. Let F' = {/c1a? + c2/3% be a cubic metric on a manifold M which is con-

formally related to the Berwald metric F, namely, F = e*F, where k = k(z) is
a scalar function on M. Thus F = {/c1a2f3 + 233 is also a cubic (o, 3)-metric,
where @ = e"(®)a and B = @) 3. Put @ = \/a;;(z)y'y’ and B = b;(x)y’. Then by
Lemma 3.2, there exist functions f; = f;(z) on M such that 3 satisfies following

(3.8) BiHj = 3(01 + 0262)61‘]2‘ + (a1 + 30262)6jﬁ — Bmfm(cldij + 3026i6j),

where “||” denotes the covariant derivatives with respect to & and f; are given by
following

-1 0 | log®) | 1 0 | log(b?)

"7 ey 02t c1 +eb? | 601 020 | eq +eob? |
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Here, f™ := a™* f;. On the other hand, by Lemma 2.1 the following holds

(39) blHJ = e”‘(bi‘j — Iiibj =+ bmmmaij),

where “|” denotes the covariant derivatives with respect to a. By (2.1), (2.4), (3.8)
and (3.9), we get

bi\j - Iiibj + bmlimaij = 3(01 + Cgbz)bifj + (Cl + 302b2)bjfi
(3.10) —bmfm(claij + 302bibj).

(3.10) implies that
1 _ _ _
Tij = E(Hibj + Hjbi> + (201 + 302b2)(b1‘fj =+ bjfl) — bmfm(claij =+ 3C2bibj)
and
1 _ _

(312) Sij = 5 (Iiibj - Iijbi) + Cl(bifj — bjfl)
Multiplying (3.12) with b° yields

= Ky = Rg i
(313) Sj = (lej — ?J) b2 — bj (lei — 3) b .

By (3.12) and (3.13), we get

(3'14) Sij = b%(bisj - bjsi).

Let us put

T

U= %(Zle_r — /@T).

Then contracting (3.11) with b® gives
(3.15) rj = ub; + ((201 +3e2b?)f; + %)bz‘.

By (3.15), we obtain

T — ub; F
(316) Rj = 2 |:]b72j — (201 + 302b2)fj:|.
Considering (3.15), the relation (3.11) can be written as follows
1
b2
Comparing (3.13) and (3.15) yield

(317) Tij = (bj?"i + biTj) — brﬁ(claij + 362b1‘bj) - aijbrkr.

- 1
(3.18) fi= (e T b)) (Sj + Tj).
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_ Conversely, we make the conformally changed F from F by the conformal change
F = e®®) F. Suppose that the metric F satisfies (3.5) and (3.6), and the conformal
factor k satisfies (3.7). Then (3.5), (3.6) and (3.7) lead to

bijj; — kibj + 0" kmai; = 1ij + sij — Kibj + Kb ai;
(3.19) = 3dbifj + (c1 + 3cab®)bs fi — 0™ fn(crai; + 3eabidy),

where d := ¢1 + cob?. By (3.10) and (3.19), F is a Berwald metric. It follows that
F' is a conformally Berwald metric. O

In [11], Matsumoto studied Kropina metrics and characterized m-Kropina met-
rics of Berwald-type as follows.

Lemma 3.4. (Matsumoto [11]) Let F = o™T'3~™ be the m-Kropina metric on
a manifold M. Then F is a Berwald metric if and only if there exists a covariant
vector field f; = fi(x) such that the following holds

byj; = m(aijbrf* — bjfi) + bifj,

where f* = al*f;.

Using Lemma 3.4, we prove the following.

Lemma 3.5. Let (M, F) be an n-dimensional Finsler manifold M. Then the cubic
(a, B)-metric F = {/a?p is conformally Berwald if and only if 8 satisfies following

1
(320) Sij = b—2 (biSj — bjSi),
1 S 2h
(321) Tij = ﬁ(bﬂ”i + bi’l”j) - (b Ky + gb fr)aij — b—2bibj,
and the conformal factor k satisfies
2 4 -
(322) Iij = ﬁ(Tj — hbj) — gfj,

where

- - 1
h:= (2f,~ - 3I€T)br, fj = b—2(8j + ’f‘j).

| =

Proof. Let F = {/a28 be a cubic metric on a manifold M which is conformally
related to the Berwald metric F', namely, ' = e"F, where k = k() is a scalar

function on M. Thus F = {/a2p is also a cubic (a, §)-metric, where & = e*(®)q
and B = €@ 3. Put @ = \/a;;()y'ys and § = b;(z)y’. By Lemma 3.4, F = {/a23
is a Berwald metric if and only if there exists f; satisfying

_ S B
(3.23) bijjj = =5 aiibef" + 3bi fi + bifj,
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where “||” denotes the covariant derivatives with respect to @ and f* := a'* f;. By
Lemma 2.1, the following hold

(324) bz||] = e”(b”j — Kibj + brmaij), aijj = 62Naij, b; = e"b;.

where “|” denotes the covariant derivatives with respect to a. By (3.23) and (3.24),
we get

T
(3.25) bijj — kibj + b Krai; = _gaijbrfr + gbjfi +bif;

which is equivalent to
1 _ _ _
(326) Tij = 5 (Iiibj + Hjbi) — (aijfrbr — Z(bjfl + bzfg)) — aijlirbr,

(bif‘j—bjf}).

Wl = Wl =

1
(3.27) Sij = 5 (Hibj - Hjbi) +
Multiplying (3.27) with b¢ yields

(3.29) s=r(H o) (Lo,

Consequently, eliminating f; from (3.27) we obtain

1
(329) Sij = b—2(bi8j — bjSi).

Let us put
1, -
hi= (ZfT - 3nr>br.

Then multiplying (3.26) with b’ yields

b2/
(3.30) r; = hb; + 3 (4fj + 3I€j).
(3.30) implies that
2 4 -
(3.31) Kj = 33 (rj = hbj) = 2 fj.
By (3.30) and (3.28), we get
- 1
(3.32) fi=4 (Sj T Tj)-

Multiply (3.30) with b; and construct (b;r; + birj)/b*. By considering (3.26), we
get the following

1 ” 1.2 2h
(333) rij = b—2(bj7‘i + bﬂ”j) — (b Ky + gb fr>aij — b_Qbe]
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_ Conversely, we make the conformally changed F from F by the conformal change
F = e®®) F. Suppose that the metric F satisfies (3.20) and (3.21), and the confor-
mal factor k satisfies (3.22). Then (3.20), (3.21) and (3.22) lead to

bi|j - Hibj +bmﬂmaij = Tij + Sij — Hibj + bmnmaij
o S5 T S T T 2h 1 r 7
=i+ 3) (g + ) — 2t — ptits — g ey — iy
11
(334) = —gaijb fr + gbjfz + blfJ

By (3.25) and (3.34), F is a Berwald metric and then F is a conformally Berwald
metric. [

Proof of Theorem 1.2: By Lemmas 3.3 and 3.5, we get the proof. [J
4. Some Conformal Invariants

In the theory of conformal changes of Riemannian metrics, the Weyl invariant
tensor plays important roles. Let (M,g) be a Riemannian manifold of dimension
n > 4. In local coordinate system, the Weyl tensor is written as follows

1 S
Wignt = Riju———{ gu Ryn+gin Ru—giRin—gjRin | = —————{ gingin—gugin
jkl Gkl P Gil i+ kLt — ik 11— g1 ik n—1)n-2) 9ik9j1—9ilgjk

where R;j1; is the Riemann tensor of Riemannian metric g, R;; = Rkikj is the Ricci

tensor and S = g R;; = Rg is the scalar curvature of g. In dimensions 2 and 3, the
Weyl curvature tensor vanishes identically. If the Weyl tensor vanishes in dimension
4, then the metric is locally conformally flat: there exists a local coordinate system
in which the metric tensor is proportional to a constant tensor. This fact was a key
component of Nordstrom’s theory of gravitation, which was a precursor of general
relativity. The Weyl tensor is invariant under conformal changes: if g = ef(*)g for
some positive scalar function f = f(z) then W = W. For this reason, the Weyl
tensor is also called the conformal temsor. It follows that a necessary condition
for a Riemannian manifold to be conformally flat is that the Weyl tensor vanish.
The existence of this conformal invariant is quite remarkable since there is no known
generalization of the Weyl conformal curvature tensor to Finsler geometry [7]. Then
the following natural question arises:

Is there any conformal invariant in Finsler Geometry?

Let M be an n-dimensional C*° manifold and TM = (J,,,; 7= M the tangent
bundle. Let (M, F') be a Finsler manifold. The following quadratic form g, on T, M
is called fundamental tensor

62

g, (u,v) = 3 edi [FQ(y—i— su + tv)||s=t=0, u,v € T, M.
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Let FF = F ( ,y) be a Finsler metric on an n-dimensional manifold M. The dis-
tortion 7 = 7(x ,y) on TM associated with the Busemann-Hausdorff volume form
dVey = op(x)wl A - ™ is defined by

det (gij(:v, y))

7(z,y) =In e

Now, let F = ¢"F be two conformal Finsler metrics on an n-dimensional manifold
M, where k = k() is a scalar function on M. It is easy to verify that

gl] (xu y) = e2ﬁgij (JI, y)u det(gzy) 2nn det(gw) Op = enNUF'
Thus, we conclude the following.

Lemma 4.1. Let F = e*F be two conformal Finsler metrics on a manifold M.
Then T =T.

Let x € M and F, := F|7,p. To measure the non-Euclidean feature of F,
define C, : T, M x T, M x T, M — R by

1d
Cy (1,0,w0) = 5 = 8y (1, 0) o,

where u,v,w € TpM. The family C := {Cy},ecrnm, is called the Cartan torsion.
Thus C = 0 if and only if F' is Riemannian. Using the notion of Cartan torsion,
one can define I, : T,M — R by I,(u) = 31" | g% (y)Cy(u, d;,0;), where {9;} is a
basis for T, M at x € M. The family I := {I,},ernm, is called the mean Cartan
torsion. Thus, I, (u) := I;(y)u’, where I; := ¢’*Cjjp..

At any point € M, Shen defined the norms of C and I in [18] as follows

F(y)|Cy(u, u,u)| |Cy (u; u, u)|
4 Cll=su I - gy (ww)]F
(1.1 R AR YR
F(y)|L, (u)] Ly ()]
n Ill= su —2 9 2 = su — 3
(4.2) I y,ueTI:Mo gy (u, )2 W‘e}i M [gy (u, u)]?

where I, M is the indicatrix of ' at x € M.

For a vector y € T, My, define the Matsumoto torsion My, : T, M xT, M xT, M —
R by

{1, )y (0, 0) + T, () (1, 0) +T, ()l ()}

Then F' is said to be C-reducible if M, = 0.

My(“‘v v, w) = Cy(“" v, w) -

Lemma 4.2. (Matsumoto-Hojo Lemma) A Finsler metric F' on a manifold M of
dimension n > 3 is a Randers metric if and only if its Matsumoto torsion vanish.
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For a non-zero vector y € T;, My, define the torsion A, : T, M x T, M xT, M — R
by

Ay (,0,) = Cy a0, 0) = —— {1, () (0,0) + Ty (0)by () + T, )by ()}
(1.3) ~ T (L, (01, (w),

where P = P(z,y) and Q = Q(z,y) are scalar functions on TM and ||I||? = I'I;.
A Finsler metric F' on an n-dimensional manifold M is called semi-C-reducible if
A, = 0. In [14], Matsumoto-Shibata proved that every (o, ()-metric is semi-C-
reducible.

Theorem 4.1. ([14]) Let F' = a¢(s), s = 8/, be a non-Riemannian («a, §)-metric
on a manifold M of dimension n > 3. Then F' is semi-C-reducible.

Let us define

F(y)|M, (1, u,u) M, (u, 4, )
(4.4) M| = sup y Ul yhthu)]
petoany, (g wa)l]  ywehar [g,(uu)?
Fy)|A, (u,u,u)| A, ()]
(4.5) Al = sup yththu)l ity
et gy w]F  ywehar [g,(uw,u))?

Then, we get the following.

Theorem 4.2. Let (M, F) be an n-dimensional Finsler manifold. Then the fol-
lowing are conformally invariant:

(i) C = F?||C||*;

(ii) M = F?||M]|?;

(iii) A := F?||A|?.
Proof. We have Cyj, = €2*Cyji. Then CY* = e=4*C* which yields
(4.6) ICII* = e*|Cl*.

Then C = C(z,y) is a conformally invariant.

In local coordinates, the Matsumoto torsion is given by following
1
Miji := Ciji — n—H{Iihjk + Ljhi, + Ikhij}u
where h;; := F'Fi,; is the angular metric. Since

hij = e*hij, I =1,
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then
Mijp = € Myjp
which implies that
Nk — g—n g pidh
Then
[IM[* = e[| M]|%.
Thus M = M(z,y) is a conformally invariant.

Finally, in local coordinates A, is written as follows

Q

P
Aijk = Cijk — —{hijlk + hjil; + hkilj} - W

LI,
1+n itk

We get A;ji = e**A;jr.. Then ||A[2 = e27||A||>. Then, A = A(z,y) is a confor-
mally invariant. O
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