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ON AN INVARIANT SUBMANIFOLD
OF HYPERBOLIC SASAKIAN MANIFOLDS
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Abstract. The objective of the present paper is to study an invariant submanifold of hy-
perbolic Sasakian manifolds. In this paper, we consider semiparallel and 2-semiparallel
invariant submanifolds of hyperbolic Sasakian manifolds and shown that these subman-
ifolds are totally geodesic. It is also proved that on an invariant submanifold of hyper-

bolic Sasakian manifolds the condition I(X,Y).a =0, I(X,Y).Va=0, C(X,Y).a=0
and C(X,Y).Va = 0 holds if and only if it is totally geodesic.
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1. Introduction

In 1969, Blair and Ludden [3] studied the hypersurfaces in an almost contact man-
ifolds. Goldberg and Yano [11] studied the non-trivial hypersurfaces of almost
contact manifolds. Sinha and Sharma [23] studied the hypersurfaces of almost
paracontact metric manifold with para (f, g, u, v, A) structure.

Mishra studied the submanifold of a locally product Riemannian manifold and
an almost complex manifold and almost contact submanifolds in 1968 [15] and 1972
[16], respectively. In 1971, Goldberg [12] studied the invariant submanifolds of
codimension 2 of almost contact manifolds. The globally framed f-manifolds and
their metric submanifolds have been studied by Mishra and Rathore [17].

Nowadays, the geometry of submanifolds have become a subject of growing in-
terest for its significant application in applied mathematics and theoretical physics.
For instance, the method of invariant submanifolds is used in the study of non-linear
autonomous systems [13]. Also, the notion of geodesics plays an important role in
the theory of relativity [14]. For totally geodesic submanifolds, the geodesics of
ambient manifolds remain geodesics in the submanifolds. Hence, totally geodesic
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submanifolds have also importance in physical sciences. The study of geometry of
invariant submanifolds was initiated by A. Bejancu and N. Papaghuic [2]. Again,
N. Papaghuic [19] has worked on semi-invariant submanifolds. On the other hand, a
number of works on the geometry of submanifolds have been carried out by U.C. De
and collaborators ([6],[7],[8],[9]). A. Sarkar [20], A.Sarakar and M.Sen [21], S.Sular
and C. Ozgur [24] and many others have worked on geometry of submanifolds.

The present paper is organized as follows. In Section 2, we recall the notion of hy-
perbolic Sasakian manifolds and the results related to submanifold theory. Section
3 is devoted to the study of semiparallel and 2-semiparallel invariant submanifolds
of hyperbolic Sasakian manifolds. Section 4 contains the invariant submanifold of

hyperbolic Sasakian manifold satisfying I(X,Y).a =0 and I(X,Y).Va = 0, where
I is the concircular curvature tensor and « is the second fundamental form of the im-
mersion. The last section admits the invariant submanifold of hyperbolic Sasakian
manifold satisfying C'(X,Y).a = 0 and C(X,Y).Va = 0, where C is the conformal
curvature tensor.

2. Preliminaries

Let M be a complete real differentiable manifold of dimension (2n+1). Let there
exist a tensor field ¢ of type (1, 1), a vector field £ and a 1-form 7 satisfying

(2.1) ¢*X = X +n(X)E,

(2.2) n(¢X) =0,

for arbitrary vector fields X, Y € TM. Then M is called a hyperbolic contact
manifold ([23],[25]). From the above equation we can easily prove that

(2.3) P€ =0,

(2.4) n(e) = —1.

Let the hyperbolic contact manifold M be endowed with a pseudo-Riemannian met-
ric g such that

(2:5) D(X,Y) =g(¢X,Y),
(2.6) 9(X,0Y) = —g(X,Y) — n(X)n(Y),
(2.7) 9(X, &) = n(X).

A hyperbolic contact structure satisfying the equations (2.1) to (2.6) is said to be
a hyperbolic contact metric manifold [25].
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A hyperbolic contact metric manifold is said to be a hyperbolic cosymplectic metric
manifold if the structure tensor ¢ and the 1-form 7 are parallel with respect to a
symmetric affine connection V on M. Since ¢? = I +n ® ¢, the vector field £ is also
parallel with respect to &, i.e.

(2.8) (Vxo)(Y) =0,
(2.9) (Vxn)(Y) =0,
(2.10) V€& =0.

A hyperbolic contact metric manifold M in which
(2.11) —2® =dn

is satisfied is called an almost hyperbolic Sasakian manifold.
An almost hyperbolic Sasakian manifold M, for which ¢ is Killing vector, i.e.

(2.12) (Vxm)(Y) + (Vyn)(X) =0,

where V is the Riemannian connection, is called a hyperbolic K-contact Riemannian
manifold.
In a hyperbolic K-contact Riemannian manifold, the following relations hold

(2.13) (X, Y) = = (Vxn)(Y) = (Vyn)(X),

(2.14) Vxé=—¢X.

A hyperbolic K-contact Riemannian manifold M is called a hyperbolic Sasakian
manifold [23] if

(2.15) (Vxo)(Y) = g(X,Y)§ —n(Y)X.

In a hyperbolic Sasakian manifold M the following relations hold

(2.16) 'R(X,Y,Z,§) =n(R(X,Y)Z) = g(Y, Z)n(X) — g(X, Z)n(Y),
(2.17) (Vz2)(X,Y) = g(X, Z)n(Y) — g(Y, Z)n(X),

(2.18) (V2®)(X,Y) +®(X,Y, Z,) = 0,

(2.19) (Vx®)(Y, Z) + (Vy®)(Z, X) + (V2®)(X,Y) = 0.

Also, from equation (2.16), we have

(2.20) R(X,Y)§=n(Y)X —n(X)Y,
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(2.21) R(EY)E=n(Y)§+Y,
(2.22) S, 8) = (n = n(Y),
(2.23) Q¢ = (n—1)¢.

Let M be a submanifold immersed in a (2n+1)-dimensional Riemannian manifold
M. Using the same symbol g, we denote the induced metric on M. Let TM be a
set of all vector fields tangent to M, and TM is a set of all vector fields normal
to M. Then the Gauss and Weingarten formulas are given by [5]

(2.24) VxY = VxY +a(X,Y),

(2.25) VxN = —-AyX + V%N,

for all vector fields X, Y € TM and N € T+M , where V is the Riemannian con-
nection on M defined by the induced metric g, and V< is the normal connection
on T+ M of M; « is the second fundamental form of the immersion and Ay is the
shape operator with respect to a normal section N. The second fundamental form
o and Ay are related by

(2'26) g(a(X,Y),N) =g(ANX,Y),

for each X,Y € T]\7[~and N e YZLM. It is also noted that «a(X,Y) is bilinear in X
and Y [5] and since VyxY = fVxY, for a C*°-function f on a manifold we have

(2.27) a(fX,)Y) = fa(X,Y).
For the second fundamental form «, the covariant derivative of « is defined by
(2.28) (Vxa)(Y,Z) = Vx(a(Y,Z)) —a(VxY,Z) — a(Y,Vx Z)

for any vector fields X, Y, Z tangent to M. Then Ve is a normal bundle valued
tensor of type (0, 3) and is called the third fundamental form of M. V is called
the van der Waerden-Bortolotti connection of M, i.e. V is a connection in TM &
TLM built with V and V+. If Vo = 0, then M is said to have a parallel second
fundamental form [5]. From the Gauss and Weingarten formulas, we obtain

(2.29) R(X,Y)Z = R(X,Y)Z + Aa(x.2)Y — Aa(v,2)X.
An immersion is said to be semiparallel [10], if
(230) R(X, Y)a = (?va — vyvx — v[x)y]).a =0

holds for all Vector_ﬁelds X, Y tangent to M , where R denotes the curvature tensor
of the connection V.
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In [1], the authors have defined and studied submanifolds satisfying the condition
(2.31) R(X,Y).Va=0

for all vector fields X, Y € TM. Submanifolds satisfying the equation (2.31) are
called 2-semiparallel. Now, from the equation (2.30) we have
(2.32) ~ ~ ~

(R(Xv Y)OZ)(U, V) = RL (Xa Y)Q(Ua V) - OZ(R(X, Y)Uv V) - O[(U, R(Xa Y)V)a

for all vector fields X, Y, U and V tangent to M, where
RL(Xa Y)= Wﬁ'{aﬁy] vXY]

and R denotes the curvature tensor of V.
Similarly, we have

033 BEYITQWV.2) = B XYV 1,2) — (V) (R V)V V:2)
' — (Vo) (U, R(X,Y)V, Z) = (Va)(U,V, R(X,Y)Z),
for all vector fields tangent to M, where [1]

(Va)(U,V, Z) = (Vya)(V, Z).
Definition 2.1. Let M be a submanifold of a hyperbolic Sasakian manifold M.
The submanifold M of M is said to be invariant if the structure vector field £ is

tangent to M at every point of M and ¢X is tangent to M for any vector field X
tangent to M at every point of M, i.e. ¢TM C TM at every point of M.

Definition 2.2. A submanifold M of a hyperbolic Sasakian manifold M is called
totally geodesic if

(2.34) a(X,Y) =0 or equivalentally Axy =0

for all X, Y € TM and any N € T+MM.

3. Semiparallel and 2-Semiparallel Invariant Submanifolds of
Hyperbolic Sasakian Manifolds

Lemma 3.1. [22] For an invariant submanifold M of a hyperbolic Sasakian man-
ifold M, we have for the two differentiable tangent vectors X, Y of M

(3.1) a(X,§) =0,

(3.2) a(X,4Y) = pa(X,Y) = a($X,Y).
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Lemma 3.2. [22] If M is an invariant submanifold of a hyperbolic Sasakian man-
ifold M. Then the following holds on M

(3.3) Vxé = —¢X,

(3.4) R(X,Y)E=n(Y)X —n(X)Y,
(3.5) R(&, X)Y = g(X,Y)E = n(Y)X,
(3.6) QY = (n—1)Y, Q¢=(n—1),
(3.7) S(X,€) = (n = )n(X),

Proposition 3.1. [22] An invariant submanifold M of a hyperbolic Sasakian man-
ifold M is also hyperbolic Sasakian.

Theorem 3.1. Let M be an invariant submanifold of a hyperbolic Sasakian man-
ifold M. Then M is semiparallel if and only if it is totally geodesic.

Proof: Let M be an invariant submanifold of a hyperbolic Sasakian manifold and
let M be semiparallel, i.e. R.ae =0. Then from the equation (2.32), we have

(3.8) RY(X,Y)a(U,V) — a(R(X,Y)U,V) — a(U, R(X,Y)V) = 0.
Taking X =V = £ in the above equation, we get
(3.9) RE(&Y)o(U,€) = a(R(,Y)U,€) — a(U, R(E, Y)€) = 0.
In view of the equation (3.1), the above equation reduces to
(3.10) (U, R(€,Y)€) = 0.
By virtue of the equation (3.5), the above equation takes the form
a(U, (V) + U, Y) =0,
which, on using the equation (3.1), gives
a(U,Y) = 0.

This shows that M is totally geodesic. The converse of the statement is trivial.
This completes the proof.

Theorem 3.2. Let M be an invariant submanifold of a hyperbolic Sasakian man-
ifold M. Then M has a parallel second fundamental form if and only if M is totally
geodesic.
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Proof: Since M has a parallel second fundamental form, it follows from the equa-
tion (2.28), that
(B11)  (Vxa)(¥,2) = V4(a(, 2)) - a(Vx Y, Z) — a(Y,Vx Z) = 0.
Now, putting Z = £ in the above equation and using the equation (3.1), we get

—a(Y,Vx€) =0.

Thus in view of the equation (3.3), we have
(3.12) a(Y, $X) = 0.

Replacing X by ¢X in the above equation and using the equations (2.1) and (3.1),
we get
aY, X) =0,

, which shows that M is totally geodesic. The converse statement is trivial. This
completes the proof.

Theorem 3.3. An invariant submanifold M of a hyperbolic Sasakian manifold M
is 2-semiparallel if and only if M is totally geodesic.

Proof: Let M be a 2-semiparallel, i.e. R.Va = 0. Then, in view of the equation
(2.33), we have

(3.13) R*(X, Y)(va{(U, V,Z) - (Va)(R(X,Y)U,V, Z) — (Va)(U,R(X,Y)V, Z)
- (Va)(U,V,R(X,Y)Z) = 0.

Taking X =V = ¢ in the above equation, we get

(3.14) RL(? Y)(%)EU,@ Z) — (Va)(R(&,Y)U, &, Z) — (Va) (U, R(X,Y)V, Z)
—(Va)(U,&,R(&,Y)Z) =0.

By virtue of the equations (2.28), (2.32) and (3.1), we have the following equalities

(va)(Uvgv Z) = (vUO‘)(gv Z)

(3.15) = Vi(a(¢. 2)) - a(VuE, Z) - a(€, Vu 2)
= —a(Vyé, 2).
Now, using the equation (3.3) in the above equation, we get
(3.16) (Va)(U.€, Z) = (U, Z),
(3.17)
(Va)(R(& YU, Z) = (Ve yyy) (€ Z)
= Vier (@& 2)) = alV e yy0€ Z) = ale, Ve vy 2)
= —a(Vaeywé 2)
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In view of the equation (3.5), the above equation takes the form

(3.18) (Va)(R(£,Y)U,E, Z) = —n(U)a(eY, Z),

(319)  (Va)(U.R(§Y)E, 2)=Via(Y. Z)—a(Vu(n(Y)E+Y), Z2) —a(Y, Vu Z).
Now
(va)(Ua 57 R(f, Y)Z) = (vUOé)(f, R(f, Y)Z)
= Vi(a(¢ R(E,Y)Z)) -
(3.20) —a(§,VuR(,Y)Z)
= —a(Vy&, R(E,Y)Z)
= a(oU, R(£,Y)Z).

Using the equations (3.16), (3.18), (3.19) and (3.20) in equation (3.14), we get

a(Vué, R(€,Y)Z)

RH(£,Y)a(9U, Z) +(U)a(eY, Z) + Via(Y, Z)

3.21 N - N
520 +a(VumY)E+Y), Z) + a(Y,VuZ) — a(eU, R(§,Y)Z) = 0.

Taking Z = £ in the above equation and using the equation (3.1), we get
a(Y, ¢U) = 0.

Putting U = ¢U in the above equation and using the equations (2.1) and (3.1), we
get
a(Y,U) =0,

which shows that M is totally geodesic. The converse part is obvious. This com-
pletes the proof.

4. Invariant Submanifold of Hyperbolic Sasakian Manifolds Satisfying
I(X,Y)a=0and I(X,Y).Va=0.

The concircular curvature tensor I of an n-dimensional Riemannian manifold is
given by [26]

r

(4.1) I(X,Y)Z = R(X,Y)Z — T D)

[9(Y, 2)X — g(X, Z)Y],
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for all vector fields X, Y and Z on M, where r is the scalar curvature of M.
Putting X = £ in the above equation and using the equations (2.7) and (3.5), we
get

(12) He)Z = [t = LS loly. 2)€ ~ n(2)Y)
which gives
(13) H&Y)E =11 = sl )E + )

where T is the concircular curvature tensor of M. - - -
Similar to the equations (2.32) and (2.33) the tensors I(X,Y).a and I(X,Y).Va
are defined by [18]

(4.4) (I(X,Y).a)(U,V) = RYX,Y)(U, V) — o(I(X,Y)U,V) — a(U,I(X,Y)V)

and

45) (I(X,Y).Va)(U,V,Z) = R*(X,Y)(Va)(U,V, Z) — (Va)(I(X,Y)U,V, Z)
( ' —(?a)( ,f(X,Y)V,Z)—(?a)(U,V,f(X,Y)Z),
respectively.

Theorem 4.1. On an invariant submanifold M of a hyperbolic Sasakian manifold
M, the condition I(X,Y).c = 0 holds if and only if it is totally geodesic provided
that 7 # n(n — 1).

Proof: Suppose M satisfies the condition I(X,Y).a(U,V) = 0. Then from the
equation (4.4), we have

(4.6) RYX,Y)a(U,V) — a(I(X,Y)U,V) — (U, I(X,Y)V) = 0.
Putting X =V = £ in the above equation, we get

(4.7) RE(&Y)a(U,€) = a(I(€,Y)U,€) — a(U, 1(§,Y)€) = 0,
which, on using the equation (3.1), gives

(4.8) a(U,I(£,Y)E) =0.

Using the equation (4.3) in the above equation, we get

(4.9) n- Ja(Y,U) =0,

n(n—1)
which shows that «(U,Y) = 0, provided that 7 # n(n — 1). The converse part is
trivial. This completes the proof.

Theorem 4.2. On an invariant submanifold M of a hyperbolic Sasakian manifold
M, the condition I1(X,Y).Va = 0 holds if and only if it is totally geodesic provided
that 7 # n(n — 1).
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Proof: Suppose M satisfies the condition I(X,Y).(Va)(U,V,Z) = 0. Then in
view of the equation (4.5), we have

RY(X,Y)(Va)(U,V,Z) — (Va)(I(X,Y)U,V, Z)

(4.10)
— (Va)(U,I(X,Y)V, Z) = (Va)(U,V,1(X,Y)Z) = 0.

Taking X =V = ¢ in the above equation, we get

RHEY)(Va)(U,€, Z) — (Va)(I(&,Y)U,&, Z)

(4.11) > N Y
—(Ve)(U,1(§,Y)§,Z2) — (Va)(U,&,1(€,Y)Z) = 0.

Now, by virtue of the equations (2.28), (3.1), (4.2) and (4.3), we have the following
equalities

(4.12)
(?a)(f({,Y)U,{,Z) (V 5Y)Uo‘)(§ )
vj_(g y)U( (5 )) ( I)Y) U§ Z) (gvﬁf(g,Y)UZ)
= a( I, y)Ug Z)
= a(ep(I(, Y)U),2)
=-[1 e 1)]n(U)a(¢Y Z)
(Va)(U,I(£,Y)E, Z) = (Vua)(I(£,Y)E, 2)
= V(€ Y)E 2) — a(Vu(I(£,Y)E), Z)
—a(I(£,Y)E,VuZ)
(4.13) = V(1 pyes _}))a(Ya 7))
and
(Va)(U,&,1(¢,Y)Z) = (Vua) (&, 1(§,Y)Z)
= V(& 1Y) Z)) — a(Vu&, 1(¢,Y)Z)
(4.14) —a(¢, Vul(6,Y)2)
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Now substituting the equations (3.16), (4.12), (4.13) and (4.14) in the equation
(4.11), we get

(4.15)
R (£,Y)a(oU, Z) + [1L — m]ﬁ([])a(@f Z) - V(1 - P 1))04(3/7 7))
+ Of(@U((lj m)(n(l’)ﬁ +Y),Z)+ (1 - m)a(K VuvZ)
. ﬁ]n(Z)a(ch, Y) =o.

Now taking Z = £ in the above equation and using the equations (3.1) and (3.3),
we get
,F

1— ——la(Y, =
(1= e ev) = 0
which, by assuming 7 # n(n — 1), yields
(4.16) a(Y,¢U) = 0.

Analogous to the proof of the previous theorem, we have «(Y,U) = 0, which shows
that M is totally geodesic. The converse part is trivial. This completes the proof.

5. Invariant Submanifold of Hyperbolic Sasakian Manifolds Satisfying
C(X,Y).a=0and C(X,Y).Va=0.

The conformal curvature tensor C' of an n-dimensional Riemannian manifold is given
by [26]
(5.1)

1
C(X,Y)Z=R(X,Y)Z—- m—2)
n m[g(Y, Z)X —g(X, 2)Y],

[S(Y,2)X = 5(X,2)Y +9(Y, Z)QX —g(X, Z)QY]

for all vector fields X,Y and Z on M, where S and r are the Ricci tensor of type
(0, 2) and the scalar curvature respectively of M.

Putting X = £ in the above equation and using the equations (2.7), (3.5) and (3.7),
we get

F—(n-1)

(5.2) C(E,Y)Z = ORI

[9(Y, Z2)§=n(2)Y]— [S(Y, Z2)6-n(2)QY],

1
(n—2)
which, on putting Z = £ and by use of the equation (2.4), gives

(n—1)(n—-2)+r

(53) CEY) =y

m(Y)§ + Y],
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where C is the conformal curvature tensor of M. - - -
In view of the equations (2.32) and (2.33), the tensors C(X,Y).«c and C(X,Y).Va
are defined by [18]

(5.4) (C(X,Y).a)(U,V)=RYX,Y)a(U,V)—a(C(X,Y)U,V)—a(U,C(X,Y)V)

and

55) (C(X,Y).Va)(U,V,Z) = R*(X,Y)(Va)(U,V, Z) — (Va)(C(X,Y)U,V, Z)
' — (Va)(U,C(X,Y)V, Z) — (Va)(U,V,C(X,Y)Z)
respectively.

Theorem 5.1.  On an invariant submanifold M of a hyperbolic Sasakian manifold
M, the condition C(X,Y).a = 0 holds if and only if it is totally geodesic provided
that 7 £ —(n — 1)(n — 2).

Proof: Suppose M satisfies the condition (C(X,Y).a)(U,V) = 0. Then from the
equation (5.4), we have

(5.6) RYX,Y)a(U,V) — a(C(X,Y)U,V) — a(U,C(X,Y)V) = 0.

Putting X =V = £ in the above equation, we get

(5.7) RE(&Y)a(U,€) = a(C(§, YU, €) = a(U, C(€,Y)E) =0,

which, on using the equation (3.1), gives

(5:8) a(U,C(§,Y)§) =

Using the equation (5.3) in the above equation, we get

P+ (n—1)(n—2)

(59) -9

Ja(Y,U) =

which shows that «(U,Y) = 0, provided that 7 # —(n — 1)(n — 2). The converse
statement is trivial. This completes the proof.

Theorem 5.2. On an invariant submanifold M of a hyperbolic Sasakian manifold
M, the condition C(X,Y).Va = 0 holds if and only if it is totally geodesic provided
that 7 # (n — 1).

Proof: Suppose M satisfies the condition C(X,Y).(Va)(U,V,Z) = 0. Then in
view of the equation (5.5), we have
R*(X,Y)(Va )(UaV,Z)—(_a)(CN'(X Y)U,V, Z)

C

(5.10)
— (Va)(U,C(X,Y)V, Z) = (Va)(U,V,C(X,Y)Z) = 0.
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Putting X =V = £ in the above equation, we get

RH(&,Y)(Va)(U,€, Z) — (Va)(C(§,Y)U,E, Z)

(5.11) N . _ ~
- (VO()(U, C(gv Y)§7 Z) - (VO()(U, 57 C(ﬁ, Y)Z) =0.

Now, by virtue of the equations (2.28), (3.1), (5.2) and (5.3), we have the following
equations

(5.12) —a(§,

(5.13) = Vi ((

(T (A (Y€ +¥).2)
- (F ?—n(i I)a(i ;)2)) (Y,Vu 2)
and
(5.14)

~
—~

In view of the equations (3.16), (5.12), (5.13) and (5.14), the equation (5.11) takes

the form

(5.15) )

RHEY)alot,2) + [ = FnU)a(o. 2)

- (D0 v: 2)) + @ (CHE e+ 1), 2)
(0 D a9 2) - LU L @aey) =0,
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which, on taking Z = £ and by use of the equations (3.1) and (3.3), gives

(n=1)—7
5.16 ————a(Y,9U) = 0.
(5.16) CENCET et
Now putting U = ¢U in the above equation and using the equations (2.1) and (3.1),
we get
(n—1)—r
———a(Y,U)=0
D=9 =0
which yields by assuming 7 # (n — 1),
a(Y,U) =0.
This shows that M is totally geodesic. The converse part is trivial. This completes
the proof.
REFERENCES
1. K. ARSLAN, U. LumisTE, C. MURATHAN and C. OzGiR: 2-semiparallel surfaces

in space forms I. Two perticular cases, Proc. Estonian Acad. Sci. Phys. Math., 49(3)
(2000), 139-148.

A. BEJANCU and N. PAPAGHUIC: Semi-invariant submanifolds of a Sasakian manifold,
An Stiint. Univ. AL I CUZA” Tasi, 27 (1981), 163-170.

D. E. BLAIR and G. D. LUDDEN: Hypersurfaces in almost contact manifolds, Tohoku
Math. J., 22 (1969), 354-362.

D. E. BLAIR, Contact manifolds in Riemannian Geometry, Lecture notes in Maith.,
509, Springer Verlag, Verlin, 1976.

5. B. Y. CHEN: Goemetry of submanifolds, Marcel Dekker, New York, 1973.
6. U. C. DE and A. A. SHAIKH: Non-eristance of proper semi-invariant submanifold

10.

11.

12.

13.

of a Lorentzian para-Sasakian manifold, Bull. Malayasian Math.Soc.(Second series),
22(1999), 179-183.

U. C. DE and A. K. SENGUPTA: CR-Submanifolds of a Lorentzian para-Sasakian
manifold, Bull. Malayasian Math.Soc., 23 (2000), 99-106.

U. C. DE, A. AL- AQUEAL and A. A. SHAIKH: Submanifolds of Lorentzian para-
Sasakian manifold, Bull. Malayasian Math.Soc., 28 (2005), 223-227.

U. C. DE and A. SARKAR: On pseudo-slant submanifolds of trans-Sasakian mani-
folds, Proc. Estonian Acad. Sci., 60 (2011), 1-11.

J. DEPREZ: Semi-parallel surfaces in the Fuclidean space, Journal of Geometry, 25
(1985),192-200.

S. I. GOLDBERG and K. YANO: Non-invariant hypersurfaces of almost contact
manifolds, J. Math. Soc. of Japan, 22(1) (1970), 25-34.

S. I. GOLDBERG: Invariant submanifolds of co-dimension 2 of almost contact mani-
folds, Scuola Nomale Superiore, 25Fasc (3)(1971), 377-388.

Z. GUOJING and W. JIANGU:  [Invariant submanifolds and modes of non-linear
autonomous system, Applied Mathematics and Mechanics, 19 (1998), 687-693.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

On an Invariant Submanifold of Hyperbolic Sasakian Manifolds 367

K. Marsumoro, I. MIHAI and R. ROSACA: &-null geodesic vector fields on a
LP-Sasakian manifold, J.Korean Math.Soc.,32 (1995), 17-31.

R. S. MISHRA: Submanifolds of a locally product Riemannian manifold, Canad. Math.
Bull., 11 (1968), 423-435.

R. S. MisHRA:  Almost complex and almost contact submanifols, Tensor N.S., 25
(1972), 419-433.

R. S. MisHrRA and M. P. RATHORE: On framed mertic submanifolds, The Yokohama
Math. J., 24(1& 2) (1976), 13-20.

C. OzGiir and C. MURATHAN: On invariant submanifolds of Lorentzian para-
Sasakian manifolds, The Arabian Journal for Science and Engineering, 34(2A) (2008),
177-185.

N. PAPAGHUIC: Semi-invariant submanifolds in a Kenmotsu manifold, Rend. Mat.,
3 (1983), 607-622.

A. SARKAR: On submanifolds of Sasakian manifolds, Lobachevskii J.Math., 32
(2011), 87-93.

A. SARKAR and M. SEN: On invariant submanifolds of trans-Sasakian manifolds,
Proc. Estonian Acad. Sci., 61(1) (2012), 29-37.

R. N. SINGH, S. K. PANDEY and G. PANDEY:  On submanifolds of hyperbolic
Sasakian manifolds, (Communicated).

B. B. SINHA and R. SHARMA: Hypersurfaces in an almost paracontact manifold,
Indian J.Pure Appl.Math., 9 (1978), 1083-1090.

S. SuLAr and C. OzGUR: On submanifolds of Kenmotsu manifolds, Chaos, Solitons
and Fractals, 42 (2009), 1990-1995.

M. D. UrapHYAY and K. K. DUBEY: Almost hyperbolic contact (f,&,m,g) structure,
Acta Mathematica Academaiae Scientiarum Hungrical Tomus, 28 H-1053, 13-15.

K. YANO and M. KON: Structures on manifolds, Series in Pure Mathematics (World
Scientific, Singapore), 1984.

Shravan Kumar Pandey
Department of Mathematical Sciences
A P.S.University, Rewa (M.P.) India

shravan.math@gmail.com

Ram Nawal Singh
Department of Mathematical Sciences
A.P.S.University, Rewa (M.P.) India

rnsinghmp@rediffmail.com



