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A MIXED (NONLINEAR) INAR(1) MODEL
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Abstract. The paper introduces a new autoregressive model of order one for time se-
ries of counts. The model is comprised of a linear as well as nonlinear autoregressive
component. These two components are governed by random coefficients. The autore-
gression is achieved by using the negative binomial thinning operator. The method of
moments and the conditional maximum likelihood method are discussed for the param-
eter estimation. The practicality of the model is presented on a real data set.
Keywords: Time series of counts, Negative binomial thinning operator, Linear model,
Nonlinear model.

1. Introduction

In the past few decades, time series modeling has been drawing a lot of attention
to researchers as well as practitioners. Understanding the dependence and the evo-
lution of an observed series is an important task. A significant contribution in this
field is modeling time series of counts. Time series of counts arises in many real-life
situations. For example, number of infected persons, number of stock transactions,
number of spaces, number of committed crimes, etc. Studding of these types of
time series started after the introduction of the thinning operator in [15]. Some of
the first integer-valued autoregressive (INAR) models based on the thinning param-
eter are presented in [11], [1], [2]. These models experienced various modifications
regarding their structure, the definition of thinning operator and the dimensional-
ity. A comprehensive review of INAR models can be found in [16] and [14]. The
extension to bivariate INAR models can be found in [7], [9], [8].
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In general, the INAR models are composed of the survival and the innovation
process. The survival process is an autoregressive component, which is defined
through the thinning operator. Some of the most exploited thinning operators
are the binomial thinning operator introduced in [15], and the negative binomial
thinning operator introduced in [13]. The autoregressive component, usually named
the survival process, is of the form

X
aOX:ZWZ-,
i=1

where W; is a counting sequence. And the major drawback of the autoregressive
models is that they put too much or too little weight on thier previous value when
predicting the next one. Some of the solutions to this problem were given in [5]
where the thinning parameter « is governed by an external process. The gener-
alization of this model was discussed in [6] and [4]. Some other modifications of
the autoregressive dependence are based on introducing a bilinear autoregressive
component, [3]. Also, there are autoregressive INAR modes that are dealing with
the excess number of zeros and ones [12].

The aim of this paper is to introduce a model whose autoregressive part is
comprised of a linear as well as a nonlinear component. The nonlinear component
is defined through the current state of the innovation process. The idea for that
lies in the fact that the survival process might depend on the innovation process.
For example, if we have a lot of new specimens of some population, probably the
environment conditions are adequate for that species so the survival rate will be
higher. Random coefficients determine whether the autoregressive component is
linear or not. The linear, as well as the nonlinear component, are defined through
the negative binomial thinning operator. Even though the model has this com-
plex definition of the autoregressive component, the conditional expectation can
be determined. This fact increases the practical aspect of the model, since the
one-step-ahead prediction is possible. Also, the model is proved to be stationary.

The next section gives us the definition of the model. In Section 3. the main
properties of the model are derived. Section 4. proposes two methods for the pa-
rameter estimation, whose efficiency are tested in Section 5. Section 6. discusses the
practical aspect of the model. The concluding remarks are given in Section 7.

2. Model definition

In this section, we introduce the Mixed nonlinear INAR(1) model (MNLINAR(1) )
in a general form, without specifying a distribution of the innovation process. For
such a model, we prove the existence and the strict stationarity. Also, the main
properties of the model are derived.

Let {X:} be a non-negative integer-valued time series. Then, the MNLINAR(1)
model is defined as follows:

ax Xi_q + &y, wW.p. P
2.1 X =
1) ! {a*(Xt—lat)+5t7 wp. 1—p
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where the negative binomial thinning operator is defined as a * X = ZZX=1 Wi,
where {W;} is independent identically distributed random variables with geometric
marginal distribution Geom(a/(1+ «)), whose probability mass function is P(W; =

w) = {irayerr- The counting sequence {W;} are independent of {X;} and {e:}.
Further, the random variable ¢; is independent of X for s < t.

As we can see, the MNLINAR(1) model evolves as a linear model with prob-
ability p and as a nonlinear model with probability 1 — p. So, the model can be
expressed with random variables U; and V; where P(U; = o, V; =0)=1— P(U; =
0,V; = a) = p. Than the MNLINAR(1) model is defined as

(2.2) Xi=Upx Xoo1 + Ve x (Xim184) + &1

Theorem 2.1. There exist a unique strictly stationary bivariate time series {X;}
that satisfies equation (2.2), when a(p + (1 —p)A) < 1, o (p+ (1 —p)E(e?)) < 1
and E(g7) < oo, where X\ stands for E(g;).

Proof. Let us introduce a series {Xt(n)} in the following way:

07 n <0
Xt(") = &4 n=>0
U(t) * Xéﬁ;l) + ‘/(t) * (Xt(ﬁzl)ﬁt) +e4, >0

Here, notations U ;) and V(;) implies that the counting series that figure in U+ X (n)
are fixed at time t for all n. Now, we define the Hilbert space L?(Q,F,P) =
{X : E(X?) < oo}, where the measure between two random variables is defined as

E(XY). The idea is to prove that {Xt(")} is strictly stationary, and then to show
that {Xt(n)} is a Cauchy sequence that belongs to just defined L? space.

Using the same approach as in [3], it can be proved that the series {Xt(n)} is
strictly stationary, so we omit that proof here.

To show that Xt(n) belong to the above defined Hilbert space, we need to prove
that E(Xt(n))2 < 0o. For n <0 it obviously holds, thus let us focus on n > 0. We
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obtain the following equation:

B (XM)" = pB(as X7 2+ (1 - p)E(ax (X)) +2)
= pE((a X{"; )2 + 20+ X" Ve, + &)
+(1 = p)E((ax (X7 V) + 200 (X" Ver)es + 7)
=[BTV +a(l+ ) B(XTY)
+2aE(X"TV)E(e) + E(gf)]
+(1-p) [aB(XV2)? + ol + ) BX Vey)
+20B(X"Ve2) + E(gf)} _
—E (Xt(f;”)z (pa® + (1= p)a?B(ER) + B(X" 1))
Ja(l+a) (p+ (1 =p)E(er) + 2a (pE(er) + (1-p)E(7))] + E(e).

2
Since the series {X™} is strictly stationary, it follows that F (Xt(")> < oo if

1—a?(p+ (1 —p)E(e?)) > 0, which is satisfied by the condition of the theorem.
In the above derivation, we used some known properties of the negative binomial
thinning operator which can be found in [13].

Now, let us prove that {Xt(”)} is a Cauchy sequence. Notice that equation (2.3)

holds if and only if the sequence {Xt(n)} is non-decreasing.

n n—1 n—1 n—2 n—1 n—2
(23) X" X"V =U (X =X Vi« (X =X 7)en)

To show that the sequence is non-decreasing we use mathematical induction. Notice
that

xM = Uy * X9 + Viey * (Xe) +er > e = X0

Suppose that Xt(k) > Xt(k_l) for some k and let’s prove it for k + 1.

Xt(k) = Uy * Xt(ﬁIl) + Vi + (Xt(ﬁ;l)ﬁt) te, <
< Uy X, 4 Vi » (X)) 4 60 = X0,

So, {Xt(n)} is non-decreasing and equation (2.3) holds. Taking expectation of the
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both sides of equation (2.3) we obtain that
B - x{"™Y)
n—1 n—2 n—1 n—2
= paB(X{" Y = X{"7P) 4+ (1 - paB[(X"7V - X[ P)ey]
= paB(X{" [V = X["7P) + (1 - parB(X"7V - X" Y)
= (pa+ (1= p)aN BTV = x["7P) = .
= (po+ (1= p)an)" ' B(XY, - x{%)
+ (pa + (1 — p)ad)" E(?).
We can conclude that

B(X™ - x") 5 0« pa+(1-plar<1.

n—oo

Thus, {Xt(”)} is a Cauchy sequence in the above-defined Hilbert space which implies

that the Cauchy sequence converges, i.e. lim X\™ = X,. Since the series {X\™}
n—oo

is strictly stationary it follows that its limit is strictly stationary as well.

The uniqueness of the solution of equation (2.2) can be proved using the same
approach as [3], so we omit it here. [

3. Properties of the model

In this section, we derive the most important properties of the MNLINAR(1) model,
including the first and the second moments as well as the conditional expectation
and the conditional probability mass function.

From the model definition given by equation (2.1), and the properties of the
negative binomial thinning operator we obtain

E(X:) = apE(Xi—1) + a(l — p)E(X;—1)E(et) + E(&y).
Having in mind that {X;} is a strictly stationary process, and relying on the con-
ditions of Theorem 2.1, it follows that
E(et)
3.1 E(X;) = .
) X = T+ (- PEE)

For the derivation of the second moment we use the same extensive technique as in
Theorem (2.1), so we only notice that

E(X?) = E(X,-1)” (pa® + (1 - p)o*E(e})
FE(Xo-1) [a(1 4+ a)(p + (1 - p)E(e)) + 20(pE(er) + (1 - p)E(ED)] + B(2).
Under the conditions of Theorem (2.1), it follows that
E(X7) =
BE(Xa) [a(1+0)(p+(1—-p)E(er)) +20a(pE(er) + (1—p) E(e}))| + E(e7)
1—a?(p+(1-p)E(e}))

(3.2)
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Further, let us pay the attention on the expected value of the product X; X;_ k.
It is equal to
E(XtXt_k) = pE((a * Xt—l + 5t)Xt—k) + (1 — p)E((O& * (Xt—lgt) + Et)Xt_k)
= apBE(Xi1Xi—p) + (1 — p)E(Xe1 Xi—k)E(er) + E(ee) E(Xi—k)

= (ap+ a(l — p)E(e)) E(Xs1 Xo—p) + E(e)) E(Xo—p) = . ..

= (ap+a(l = p)E(e)*E(X] ) + E(Xi-1)E(er) Y (ap + a(l — p)E(er))’.
§=0

It can be notice that, under the conditions of Theorem 2.1,
E(Xi—r)E(et)
koo 1 —a(p+ (1 —p)E(e))
Substituting E(e;) by using equation (3.1), we obtain
E(X:Xi—k) m E(X)E(Xi—k).

E(X: Xi—k)

For further discussion, it will be particularly important the case when k =1, so

let us notice that
E(XiXi1) = (ap+a(l —p)E(e))E(X7 ) + E(Xe-1)E(er)
(3.3) — (ap+ a(l — ) B()) E(X?) + B(X,) E(=y).

But the autocorrelation structure of the series {X;} would be much easier to
observe through the autocovariance function directly. Namely, we obtain the fol-
lowing:

COU(Xt, thkr) = E(Xtthkr) - E(Xt)E(Xt,k>

= (ap + Oé(]. — p)E(Et))E(thlthk) + E(Et)E(Xt,k)

= (ap+ a(l —p)E(e))Cov(Xi—1, Xi—k)

+E(et) E(X—k) + (ap + a(l — p) E(e)) E(Xi—1) E(Xi—k) — E(X¢) E(Xi—k)

= (ap+ a(l —p)E(e))Cov(Xy—1, Xi—k) = ...

= (ap + a(1 = p)E(e))) Cov(Xi_, Xi—1) = (ap + (1 — p)E(ey))* Var(Xy).
The above equation follows from the property of the negative binomial thinning
operator, which can be found in Lemma 3 of [13]. Now, it can be easily concluded

that, under assumption of Theorem 2.1, the autocorrelation tends to zero when k
tends to infinity.

Regarding the practicality of the MNLINAR(1) model, the most important as-
pect of the model is the ability to predict forthcoming values of a modeled series.
Unlike some other nonlinear models ([3], [10]), for the MNLINAR(1) model the
conditional expectation can be derived as

E(XXi—1) =pE(a*xXi1+eXe1) + (L —p)E(a* (Xi—1er) + | Xe—1)
=plaXi—1+ E(er)) + (1 — p)(aB(Xi—16| Xi—1) + E(gr))
=a(p+ (1 —p)E(e:)) X1 + E(er).
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Finally, we focus on the conditional probability mass function, where we focus
on the one-step-ahead conditional probability.

P(Xy = 2| X1 = u) = pP(ax X1 +&r = 2| X1 = u)
+(1—p)Pa*(Xi—16¢)+er = 2| Xp1 = u)

=pY PlaxX_1=ilX;_y =u)P(e, =z — 1)
=0

+(1 —p) ZP(O( * (Xt—lgt) = i|Xt_1 = U, Et =T — Z)P(€t =T — ’L)
1=0
:pZP(a*u:i)P(Et =x—1)
i=0

+(1=p) Y Pla* (u(z — i) = i)P(e; = x — i)
=0

(3.4) +(1—p) Z P(M =i)P(e; = x — i),

where N and M are random variables with negative binomial distribution with
parameters (a,u) and (a, u(z — 1)), respectively.

3.1. Specification of the innovation process

So far, we have not specified the marginal distribution of the innovation process
{e:}. And as we could notice, that didn’t affect the derivation of the MNLINAR(1)
model properties. In order to complete the definition of the MNLINAR(1) model,
we introduce the assumption about the distribution of €;. In the succeeding sections,
we assume that &; follows the geometric distribution with parameter A/(14+ ). The
corresponding probability mass function is equal to P(e; = k) = ﬁ Notice
that this model can be easily adjusted for a different type of series by introducing
different distributions of the innovation process.

4. Parameter estimation

In this section, we propose two methods for the estimation of unknown parameters
of the MNLINAR(1) model. First, we discuss in detail the method of moments, and
then the conditional maximum likelihood method. At the end, we test the efficiency
of the presented methods on simulated data sets.
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4.1. Method of moments
Assume that we have a realization of the series given by the equation (2.1) of length

N. Then, for the given series { X1, X, ..., Xy}, first sample moment is denoted as
X n, the second sample moment as X2y and E(X;X%_1) as 7.

Since we have that F(e;) = A from equation (3.1) we obtain the estimate pa-
rameter \ as

Xn(1—ap)

Y " el Xy

Then, we can easily solve equation (3.3) for ), since it is a linear equation with
respect to A.

(4.2) A= A= opXiy
a(l-p) X2y + Xy

The left sides of equations (4.1) and (4.2) are equal, so it follows that

Xn(l—ap) v—apX2y

1+ a(l —p)YN a(l — p)ﬁN —i—YN ’

After some algebraic transformations, we can solve the above equation for «;, where
we obtain

_ 7= (Xn)*
T -p) (X)X n+p(X2n—(Xn))

(4.3) T (1-p)(X2N—7)Xn+pDy

(07

where C,, is the sample lag-one covariance, and D, is the sample variance. Further,
since the equation (3.2) is liner with respect to p, the estimate of parameter p we
obtain from equation (3.2) as

ﬁN—ORﬁNE(é“%) —Oé(l—FOé))\yN —Z(XYNE(&‘?) —E(e’:‘%)

(44) p= CﬂﬁN(l—E(E%))+C¥XN[(1+0‘)(1_E(gt)+2(E(€t)_E(E%)}

Note that under the assumption introduced in Subsection 3.1. we have E(g?) =
AN+ 1).

The system of equations (4.1), (4.3) and (4.4) cannot be solved analytically.
Thus, we apply the following numerical procedure. For a given pg, we can calculate
ap from equation (4.3), and then with these two values we get Ao from equation (4.1).
From equation (4.4) we obtain p;. We repeat the procedure until |pg41—pg|+|Aer1—
Ak| + |ag+1 — ag| < 8, where 4 is set to be a sufficiently small value.
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4.2. Conditional maximum likelihood

For the given series {Xi, Xa,..., XN}, we estimate the parameters of the MN-
LINAR(1) model using the conditional maximum likelihood method (CML). The
likelihood function that we maximize here, is actually the log-likelihood function
determined through equation (3.4). Let us denote the set of parameters of the
MNLINAR(1) model as vector 8 = (a,p, A). Then, the estimate of the vector 6 is
obtained as

(4.5) 6 = argmax L(6),
0

where

N
0) = ZIHP(X1 = .’[i‘Xi,1 = Sﬂifl)
N

Z PAT Z J+miiy — 1\ [a(l+ )\’
(I 4+ a)i-1(1+ N)zitl i —1 A1+ a)

. (1 —p)= Z J+wi(— ) — 1 al+2)
(14 @)®i-1%i(1 4 \)®itl xi—i(x; —j)—1 A1+ a)l—®i

Since this maximization procedure cannot be done analytically, some numerical ap-
proach must be applied. For that purpose, we use built-in functions of the program
language R.

5. Simulation

In this section, by using the Monte Carlo method, we generate time series according
to equation (2.1). We conduct this procedure using different sets of parameters that
figure in the MNLINAR(1) model. On these simulated series we test the efficiency
of the MM and CML methods described in the previous section. The efficiency
of the proposed methods is measured with respect to the bias and the standard
deviation of the obtained estimates.

We have chosen four sets of parameters, considering conditions of Theorem 2.1.
The following parameter were used for the simulation purpose: a) a = 0.7, p = 0.7,
A=1Db)a=03,p=03,A=2;¢)a=05p=09, A=3;d) a=0.1, p=0.9,
A = 7. The estimates obtained by the MM and CML methods are given in Table 8.1
(the table can be found in Appendix).

According to the results presented in Table 8.1, we can conclude that both
methods converge to the true value of parameters. Also, the standard error of
estimates is reducing with the increase of the sample size. It should be noticed
that the MM method is not very accurate estimates when the length of a sample is
100 and even 500. But for samples whose length is 1000 or 5000, the estimates are
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quite adequate. On the other side, CML demonstrates remarkable precision even
for samples of length 100.

The MM method is conducted through the iterative procedure described in Sub-
section 4.1. The maximal number of iterations was set to be 100, and the estimation
procedure is very fast. The method usually converges in less than 100 iterations.

The CML method is based on the numerical maximization of the function given
by equation (4.5). The numerical procedure is obtained using nlm function of the
programming language R. It doesn’t take too much of computation time except for
the samples of length 5000.

a p A

o

o

1.0

0.8
0.8
2.0

Do

- o

0.6

0.6

0.4

[T
1}

0.2
0.2
0.5

0.0
0.0
0.0

100 500 1000 5000 100 500 1000 5000 100 500 1000 5000

(a) The method of moments estimates.

[¢2 p A
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<+ I
° TB

0.6 0.7 0.8
0.7 0.8
1.0 12

HEE%

0.4
0.5

0.6

100 500 1000 5000 100 500 1000 5000 100 500 1000 5000

(b) The conditional maximum likelihood method estimates.

Fic. 5.1: The box plots of estimates for the set of parameters o = 0.7, p = 0.7,
A = 1, obtained by the method of moments (upper) and the conditional maximum
likelihood method (lower).

For the MM method, approximately, one of ten estimates is outside the feasible
range. On the other side, the CML method had only a few estimates outside the
feasible range, and only for the case when the length of the series was 100. The
distribution of the estimates for the parameter set a) is given in Figure 5.1. Also,
from Figure 5.1 we can notice the convergence of the estimates toward the true
values.
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FiG. 6.1: The partial autocorrelation function and the bar plot for DRUG series.

6. Real data example

In this section, we will demonstrate a practical aspect of the MNLINAR(1) model.
We test the ability of this model to capture and predict values of an observed time
series. Our goal is not to compare the MNLINAR(1) with all known models, but
to see what is the effect of having a model with the linear as well as the nonlinear
component, in comparison with the models that have only linear (named LINAR(1)
model which is actually the model presented in [13]) or only nonlinear component
(named NLINAR(1) model). The criteria for the goodness-of-fit are going to be the
root mean square error (RMS), the Akaike information criterion and the Bayesian
information criterion (BIC).

For this test, we use time series of criminal records, collected by the Pitts-
burgh police station number 2206. The data can be found on the link http:
//www.forecastingprinciples.com/. We focus on series of monthly drug offenses
(DRUG) that took place between January 1990 and December 2001. There are 144
observed values, whose mean value is 2.1 and the standard deviation 12.9. The bar
plot of the series is presented in Figure 6.1. In Figure 6.1 there is also the partial
autocorrelation diagram. Although the MNLINAR(1) model is not a standard au-
tocorrelated model, it has some properties of the autocorrelated model of order one.
Figure 6.1 shows that the observed series is autocorrelated on lag one.

The results obtained from the three tested models are presented in Table 6.1.
As we can see that by introducing the linear and the nonlinear component, we have
reduced the one-step ahead prediction error, while also reduced the values of AIC
and BIC measures. Having in mind that the MNLINAR(1) model has one more
parameter than the other two models, and considering values of AIC and BIC, we
can conclude that the best fit of the observed series is provided by the MNLINAR(1)
model.
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Table 6.1: Estimated parameters, standard errors of the estimates, the root mean
square error for one step ahead prediction, AIC and BIC values for MNLINAR(1)
, LINAR(1) and NLINAR(1) models.

Model Estimates RMS AIC BIC
& = 0.174 (0.068)

MNLINAR(1)  $=0.395 (0.204)  3.37  548.17  557.08
A =1.49 (0.211)

LINAR(1) a=0044(0.037) 559 56506 57397
A = 2.033 (0.343)

NLINAR(1) a=0.108 (0.075) 5,5 55115 560.06
X = 1.615 (0.192)

7. Conclusion

The model discussed in this paper is the INAR model of order one. Although
it is not a pure autoregressive model, it still preserves some of the autoregressive
properties. The survival component is composed of linear and nonlinear processes,
both defined through the negative binomial thinning operator, while the innovation
component is driven by the geometrical marginal distribution. The method of
moments and the conditional maximum likelihood method are presented for the
estimation of the model parameters. While the method of moments showed to
be unreliable for small samples, the conditional maximum likelihood provides very
accurate estimates for all testes samples. The practicality of the model was discussed
on a real data set, where the surplus of having both linear and nonlinear components
was demonstrated.

Some further modifications of the model can be based on choosing different
thinning operators or different marginal distribution of the innovation process. Both
components of the model can be adjusted in order to better model an observed series.
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8. Appendix

Table 8.1: The bias and the standard errors of the estimates obtained by the method
of moments and the conditional maximum likelihood method.

MM CML
N @ p A « p A
a) a=0.7,p=07, A=1
100 -0.039 -0.195 -0.168 | -0.007 -0.004 0.004
0.141  0.209 0.355 | 0.094 0.151  0.307
500 -0.069 -0.127 -0.156 | -0.002 0.018 0.017
0.127  0.157 0.312 | 0.035 0.084 0.125
1000 -0.057 -0.154 -0.10 | -0.003 0.007 0.012
0.121  0.183 0.187 | 0.026 0.062 0.094
5000 -0.034 -0.053 -0.07 | -0.001 -0.002 0.008

0.104 0.164 0.048 0.01 0.025 0.039

b)a=03,p=03 A=2

100 0.159 -0.134 -0.189 | 0.035 -0.021 -0.032
0.14 0.118 0.548 | 0.114 0.127  0.24
500 0.087 -0.088 -0.163 | 0.011  0.005 -0.007
0.112  0.075  0.218 0.05 0.05 0.091
1000 0.058 -0.07 -0.111 | 0.006  0.004 -0.005
0.103  0.087  0.202 0.03 0.032  0.061
5000 0.034 -0.045 -0.07 | 0.003 0.002 0.007

0.08  0.051 0.153 | 0.01 0.022  0.011

c)a=05p=09,A=3

100 0.027 -0.063 -0.634 | -0.002 0.023 -0.113
0.098 0.033 0973 | 0.048 0.238 1.279
500 0.032  -0.047 -0.533 | 0.001  0.002 -0.094
0.066  0.03  0.545 | 0.019 0.087 0.498
1000 0.017 -0.044 -0.366 | 0.001 -0.002 -0.081
0.05 0.023 0.289 | 0.013 0.055 0.324
5000 0.014 -0.031 -0.259 | -0.002 -0.007 0.005

0.04 0.02  0.265 | 0.02 0.021 0.019

d)a=01,p=09,A=7

100 -0.033 -0.063 0.185 | -0.003 0.001 -0.065
0.062 0.034  0.87 0.07  0.069  0.58
500 -0.023 -0.034 0.103 | 0.001  0.003 -0.026
0.048 0.033 0.477 | 0.029 0.025 0.241
1000 -0.013 -0.028 0.066 | -0.001 -0.001 -0.011
0.04 0.036 0.423 | 0.022 0.02 0.181
5000 -0.001  -0.008 -0.018 | -0.001 -0.001  0.007

0.02  0.025 0.231 | 0.019 0.011  0.059




