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Abstract. This paper deals with the Lagrange vertical structure on the vertical tangent
space TV (N) endowed with a non-zero (1,1) tensor field Fv satisfying (F 2

v − a2)(F 2
v +

a2)(F 2
v −b2)(F 2

v +b2) = 0. The similar structure on the horizontal subspace TH(N) and
on T (N) is investigated if the F (±a2,±b2)-structure on TV (N) is given. Furthermore,
we have proved some theorems and obtained conditions under which the distribution
P and Q are ∇-parallel, ∇̄ anti half parallel when ∇ = ∇̄. Finally, certain theorems on
geodesics on the Lagrange manifold are established.
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1. Introduction

Let M and N be two differentiable manifolds of dimension n and 2n respectively
and (N, π,M) be vector bundle with π(N) = M . The local coordinate systems
(x1, x2, ....., xn) about x in M and (y1, y2, ....., yn) about y in N . Let (xi, yα), 1 ≤
i ≤ n, 1 ≤ α ≤ n be system of local coordinates in the open set π−1(U) and
called induced coordinates in π−1(U), where U is a coordinate neighborhood in M .

Let Tp(N) be tangent space and
{

∂
∂xi ,

∂
∂yα

}
canonical basis for Tp(N) such that

p ∈ π−1(U) and it is also denoted by {∂i, ∂α} where ∂i = ∂
∂xi . If (xh, xα

1

) be
coordinates of a point in the interesting region π−1(U) ∩ π−1(U), then [2, 6]

xi
1

= xi
1

(xi),(1.1)
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yα
1

=
∂xα

1

∂xα
yα,(1.2)

and another canonical basis in the intersecting region are given by

∂i1 =
∂xi

∂xi1
∂i(1.3)

∂α1 =
∂yα

∂yα1 ∂α.(1.4)

The tangent space of N is denoted by T (N) and spanned by {∂i, ∂α} and its
subspaces by TV (N) and TH(N) spanned by {∂α} and {∂i} respectively [8]. Then
we have,

dimTV (N) = dimTH(N) = n.(1.5)

The Riemannian material structure on T (N) is given by

G = gij(x
i, yα)dxi ⊗ dxj + gab(x

i, yα)δyα ⊗ δyb,(1.6)

where gij(x
i, yα) = gij(x

i), gab = 1
2∂a∂bL(xi, yα) and L(xi, yα) denotes the La-

grange function. The manifold referred as Lagrangian manifold [2].

Let X be an element of T (N), then

X = X̄i∂i +Xα∂α.(1.7)

The automorphism J : χ(T (N))→ χ(T (N)) given as

JX = X̄i∂i +Xα∂α(1.8)

is a natural almost product structure on T (N) that is J2 = I, I denotes the identity
operator. The projection morphisms of T (N) onto TV (N) and TH(N) denoted by
v and h respectively, then we have

J0h = v0J.(1.9)

2. The F (±a2,±b2)-structure

Let TV (N) be the vertical space and Fv a non-zero tensor field of type (1,1) satisfying
[10]

(F 2
v − a2)(F 2

v + a2)(F 2
v − b2)(F 2

v + b2) = 0,(2.1)

where a, b are real or complex constants, then the vertical space TV (N) admits
F (±a2,±b2)-structure. The rank (Fv) = r and such structure is called Lagrange
vertical structure on TV (N).

Theorem 2.1. Let TV (N) be a vertical space ad Fv Lagrange vertical structure
on TV (N). Then the structure define on the subspace TH(N) with respect to almost
product strcture of T (N).
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Proof: Suppose that

Fh = JFvJ,(2.2)

then Fh is a tensor field of type (1,1) on TH(N), where J is an almost product
structure on T (N).

Apply Fh on both sides we get

F 2
h = (JFvJ)(JFvJ) = JF 2

v J,

F 3
h = JF 3

v J

and so on.

In the view of equation (2.1), we have

(F 2
h − a2)(F 2

h + a2)(F 2
h − b2)(F 2

h + b2)(2.3)

= J((F 2
v − a2)(F 2

v + a2)(F 2
v − b2)(F 2

v + b2))J

= 0,

Hence, Fh gives F (±a2,±b2)-structure on TH(N).

Theorem 2.2. Let TV (N) be a vertical space ad Fv Lagrange vertical structure on
TV (N). Then the similar structure define on the enveloping space T (N) by using
projection morphism of T (N).

Proof: In the view of Theorem (2.1), the projection morphisms of TV (N) and TH(N)
on T (N) denoted by v and h respectively then we have

F = Fvh+ Fvv(2.4)

As hv = vh = 0 and h2 = h, v2 = v, we obtain

F 2 = F 2
hh+ F 2

v v

Now,

(F 2 − a2)(F 2 + a2)(F 2 − b2)(F 2 + b2)

= (F 2
h − a2)(F 2

h + a2)(F 2
h − b2)(F 2

h + b2)h

+(F 2
v − a2)(F 2

v + a2)(F 2
v − b2)(F 2

v + b2)v(2.5)

By theorem 2.1, we have

(F 2 − a2)(F 2 + a2)(F 2 − b2)(F 2 + b2) = 0.

As rank(Fv) = rank(Fh) = r,

Hence, rank(F ) = 2r.
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Let us define tensor fields p and q of type (1,1) on T (N) with F (±a2,±b2)-
structure of rank 2r as follows

p =
(F 2 + a2)(F 2 − a2)

b4 − a4

q =
(F 2 + b2)(F 2 − b2)

a4 − b4
(2.6)

Then it is easy to show that

p2 = p, q2 = q, pq = qp = 0, p+ q = I.(2.7)

This implies that p and q are complementary projection operators [4, 5, 7].

3. Parallelism of distributions

Suppose that N be Lagrangian manifold with F (±a2,±b2)-structure on T (N)
and let P and Q complementary distributions corresponding to complementary
projection operators p and q respectively. The linear connection ∇̄ and ∇̃ are given
by [2]

∇̄XY = p∇X(pY ) + q∇X(qY )(3.1)

and
∇̃XY = p∇pX(pY ) + q∇qX(qY ) + p[qX, pY ] + q[pX, qY ].(3.2)

We have the following definitions [3, 6]:

∇-parallel: The distribution P is said ∇-parallel if ∀X ∈ P, Y ∈ T (N) implies
that ∇YX ∈ P.
∇-half parallel: The distribution P is said ∇-half parallel if ∀X ∈ P, Y ∈

T (N), (∆F )(X,Y ) ∈ P where

(∆F )(X,Y ) = F∇XY − F∇YX −∇FXY +∇Y (FX)(3.3)

∇-anti half parallel: The distribution P is said ∇-anti half parallel if for all
X ∈ P, Y ∈ T (N), (∆F )(X,Y ) ∈ Q .

Theorem 3.1. On the F (±a2,±b2)-structure manifold, the complementary dis-
tributions namely P and Q are ∇̄-parallel and ∇̃-parallel.

Proof: By using the equations (3.1), (3.2) and pq = qp = 0, q2 = q, we obtain

q∇̄XY = q∇X(qY )

If Y ∈ P, qY = 0 so q∇̄XY = 0→ ∇̄XY = 0, as qY = 0 because Y is an element of
P .

This implies that ∇̄XY ∈ P .

Thus, ∀Y ∈ P,∀X ∈ T (N) ⇒ ∇̄XY ∈ P .
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Hence P is ∇̄-parallel.

In a similar way ∀X ∈ T (N),∀Y ∈ P
∇̃XY = q∇qX(qY ) + q[pX, qY ] = 0 as qY = 0.

So ∇̃XY ∈ P .

Thus P is ∇̃-parallel.

In a similar way, it can be shown that distribution Q is ∇̄ as well as ∇̃ parallel.

Theorem 3.2. On the F (±a2,±b2)-structure manifold, the complementary dis-
tributions namely P and Q are ∇-parallel iff ∇̄ = ∇̃.

Proof: Let distributions P and Q are ∇-parallel. By definition of ∇-parallel, we
have

q∇X(pY ) = 0, p∇X(qY ) = 0.

where X and Y are elements of T (N).

Using equation (2.7), we get

∇X(pY ) = p∇X(pY )(3.4)

and
∇X(qY ) = q∇X(qY )(3.5)

Thus
∇XY = p∇X(pY ) + q∇X(qY ) = ∇̄XY.

This shows that ∇ = ∇̄.
The converse of the theorem showed easily.

Theorem 3.3. On the F (±a2,±b2)-structure manifold N , the complementary dis-
tribution M is ∇̄-anti half parallel if

q∇̄Y (FX) = q∇FXqY.

where X is an element of Q and Y element of T (N).

Proof: Let ∇̄ be linear connection on N . Then by using equations (3.3) and (2.7),
we obtain

q(∆F )(X,Y ) = q∇̄Y FX − q∇̄FXY, as qF = Fq = 0.(3.6)

Making use of the equation (3.1), the obtained equation is

∇̄FXY = p∇FX(pY ) + q∇FX(qY )

operating q on both sides of above equation and using pq = 0, q2 = q, we get

q∇̄FXY = q∇FX(qY )
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and
q(∆F )(X,Y ) = q∇̄Y FX − q∇̄FXY,

as (∆F )(X,Y ) ∈ P so q(∆F )(X,Y ) = 0.

Hence,
q∇̄Y (FX) = q∇FX(qY ),

This completes the proof.

3.1. Geodesics on the Lagrangian manifold
Let T be tangent to the curve γ in N . The curve γ is said the geodesic concernig
to the connection ∇ if ∇TT [6].

Theorem 3.4. A curve γ is said to be geodesic concerning to connection ∇̄ if the
vector fields ∇TT −∇T (qT ) ∈ Q and ∇T (qT ) ∈ P .

Proof: The curve γ is said to be geodesic concerning to the connection ∇̄, we have
∇̄TT = 0.

In the view of the equation (3.1), ∇̄TT = 0 becomes

p∇T (pT ) + q∇T (qT ) = 0,(3.7)

Using the equation (2.7), the equation (3.7) becomes

p∇T (I − q)T + q∇T (qT ) = 0

or
p∇TT − p∇T (qT ) + q∇T (qT ) = 0.

or
p(∇TT −∇T (qT )) and q∇T (qT ) = 0.

Hence, ∇TT −∇T (qT ) ∈ Q and ∇T (qT ) ∈ P .

This completes the proof.

Theorem 3.5. The tensor fields p and q of type (1,1) are always covariantly con-
stants concerning to connection ∇̄.

Proof: Let X and Y be elements of T (N), then

(∇̄Xp)(Y ) = ∇̄X(pY )− p∇̄XY.(3.8)

From equation (3.1), we have

(∇̄Xp)(Y ) = p∇X(p2Y ) + q∇X(qpY )− p {p∇XpY + q∇XqY )}

Using the properties p2 = p, q2 = q, pq = qp = 0, we have

(∇̄Xp)(Y ) = p∇X(pY )− p∇XpY = 0.

This shows that p is covariantly constant. In similar way, q is covariantly constant
can be proved easily.
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