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Abstract. In this paper, we mainly study local structures and curvatures of the almost
α-para-Kenmotsu manifolds. In particular, locally symmetric almost α-para-Kenmotsu
manifolds satisfying certain nullity conditions are classified.
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1. Introduction

One of the recent topics in the theory of almost contact metric manifolds is the
study of the so-called nullity distributions. In [5], E. Boeckx studied the full classi-
fication of contact (κ, µ)-spaces, later in [11] and [12], P. Dacko and Z. Olszak gave
a systematic study of almost cosymplectic (κ, µ, ν)-spaces and almost cosymplectic
(−1, µ, 0)-spaces. G. Dileo and A. M. Pastore in [8] studied nullity distributions
on almost Kenmotsu manifolds. In recent years, many authors have turned to the
study of almost paracontact geometry due to an unexpected relationship between
contact (κ, µ)-spaces and paracontact geometry that was found in [3].

The study of almost paracontact geometry was introduced by Kaneyuki and
Williams in [14] and then it was continued by many other authors. A systematic
study of almost paracontact metric manifolds was carried out in [16] by Zamkovoy.
In fact, such manifolds were studied earlier in [17],[18],[6],[15] and in these papers
the authors called such structures almost para-cohermitian. The curvature identi-
ties for different classes of almost paracontact metric manifolds were obtained in
[13],[10],[16].

In [2], a complete study of paracontact metric manifolds satisfying a certain
nullity condition has been carried out, later, in [9], the authors gave a complete
study of almost α-cosymplectic manifolds, where α is a function, basic properties
of such manifolds are obtained and general curvature identities are proved. It is
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also showed that almost α-para-Kenmotsu (κ, µ, ν)-spaces have para-Kähler leaves.
Motivated by [7], [8] and [9], the aim of this paper is devoted to investigate local
symmetry and nullity distributions on almost α-para-Kenmotsu manifolds.

This paper is organized in the following way. In section 2, some preliminaries
and properties about almost α-para-Kenmotsu manifolds are given. In section 3,
we characterize almost paracontact metric manifolds which are CR-integrable al-
most α-para-Kenmotsu through the existence of a suitable linear connection, and in
section 4, we investigate almost α-para-Kenmotsu manifolds which are locally sym-
metric and give some properties. In section 5, we study almost α-para-Kenmotsu
manifolds satisfying some nullity distributions and give some properties and classi-
fication theorems of them.

2. Almost α-para-Kenmotsu manifolds

Now, we recall some basic notions of almost paracontact manifold (see [9] ). A 2n+1-
dimensional smooth manifold M is said to have an almost paracontact structure
if it admits a (1, 1)-tensor field ϕ, a vector field ξ and a 1-form η satisfying the
following conditions:

(i) ϕ2 = Id− η ⊗ ξ, η(ξ) = 1,

(ii) the tensor field ϕ induces to an almost paracomplex structure on each fibre
of D =Ker(η), i.e. the ±1−eigendistributions D± := Dϕ(±1) of ϕ have equal
dimension n.

From the definition, it follows that ϕ(ξ) = 0, η ◦ϕ = 0 and rank(ϕ) = 2n. When
the tensor field Nϕ := [ϕ, ϕ] − 2dη ⊗ ξ vanishes identically the almost paracontact
manifold is said to be normal. If an almost paracontact manifold admits a pseudo-
Riemannian metric g such that

(2.1) g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y )

for any vector fields X,Y ∈ Γ(TM), then we say that (M2n+1, ϕ, ξ, η, g) is an
almost paracontact metric manifold. Notice that any such a pseudo-Riemannian
metric is necessarily of signature (n, n + 1). For an almost paracontact metric
manifold, there always exists an orthogonal basis{ξ,X1, . . . , Xn, Y1, . . . , Yn} such
that g(Xi, Xj) = δij , g(Yi, Yj) = −δij and Yi = ϕXi, for any i, j ∈ {1, . . . , n}. Such
basis is called a ϕ−basis. Moreover,we can define a skew-symmetric tensor field
2-form Φ by Φ(X,Y ) := g(X,ϕY ),which is usually called the fundamental form.

Lemma 2.1. ([16]) For an almost paracontact structure (ϕ, ξ, η, g), the covariant
derivative ∇ϕ of ϕ with respect to the Levi-Civita connection ∇ is given by

2g((∇Xϕ)Y, Z) =− 3dΦ(X,ϕY, ϕZ)− 3dΦ(X,Y, Z)− g(N (1)(Y, Z), ϕX)

+N (2)(Y, Z)η(X) + 2dη(ϕY,X)η(Z)− 2dη(ϕZ,X)η(Y ).

Definition 2.1. Let (M2n+1, ϕ, ξ, η, g) be an almost paracontact metric manifold,
if it satisfies

dη = 0, dΦ = 2αη ∧ Φ,
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where α=const. 6= 0, then M2n+1 is called an almost α-para-Kenmotsu manifold.

Let M be an almost α-para-Kenmotsu manifold with structure (ϕ, ξ, η, g). Since the
1-form η is closed, then the distribution D = ker(η) is integrable, we have Lξη = 0,
and [X, ξ] ∈ D for any X ∈ D. Then, using Lemma 2.1, the Levi-Civita connection
is given by

(2.2) 2g((∇Xϕ)Y, Z) = −2αg(η(Y )ϕX + g(X,ϕY )ξ, Z)− g(N (Y, Z), ϕX)

for any vector fields X,Y, Z ∈ Γ(TM). If we replace X by ξ, it follows ∇ξϕ = 0,
which implies that ∇ξξ = 0 and ∇ξX ∈ D for any X ∈ D.

The tensor fields h = 1
2Lξϕ and h

′

= h ·ϕ are symmetric operators anticommut-

ing with ϕ and hξ = 0 = h
′

ξ, and we note that ∇ξh
′

= 0 if and only if ∇ξh = 0.
Let Y = ξ in (2.2) we obtain

(2.3) ∇Xξ = αϕ2X + ϕhX

Proposition 2.1. An almost α-para-Kenmotsu manifold (M2n+1, ϕ, ξ, η, g) has
para-Kähler leaves if and only if

(∇Xϕ)Y = g(αϕX + hX, Y )− η(Y )(αϕX + hX).

Theorem 2.1. ([9]) Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu mani-
fold with para-Kähler leaves. Then M2n+1 is para-Kenmotsu (α = 1) if and only if
∇Xξ = ϕ2X.

Proposition 2.2. ([9]) Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu man-
ifold. Then, for any X,Y, Z ∈ Γ(TM2n+1),

(2.4) R(ξ,X)ξ = α2ϕ2X + 2αϕhX − h2X + ϕ(∇ξh)X,

(2.5)
1

2
(R(ξ,X)ξ + ϕR(ξ, ϕX)ξ) = α2ϕ2X − h2X,

R(X,Y )ξ =αη(X)(αY + ϕhY )

− αη(Y )(αX + ϕhX) + (∇Xϕh)Y − (∇Y ϕh)X,
(2.6)

g(R(ξ,X)Y, Z) + g(R(ξ,X)ϕY, ϕZ)− g(R(ξ, ϕX)ϕY,Z)

− g(R(ξ, ϕX)Y, ϕZ) = 2(∇hXΦ)(Y, Z) + 2α2η(Y )g(X,Z)

− 2α2η(Z)g(X,Y )− 2αη(Z)g(ϕhX, Y ) + 2αη(Y )g(ϕhX,Z).

(2.7)

Proposition 2.3. Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu manifold.
Then, for any X,Y ∈ Γ(TM2n+1),

(2.8) g(N (ϕX, Y ), ξ) = 0.
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Proof. By direct computations one has

g(N (ϕX, Y ), ξ) = g([ϕX,ϕY ], ξ) = g((∇Xϕ)Y − (∇ϕY ϕ)ϕX, ξ),

which implies (2.8) by using (2.2) and [ξ,X ] = −2ϕhX .

Theorem 2.2. ([9]) Let M2n+1 be an almost α-para-Kenmotsu manifold with h =
0. Then, M2n+1 is locally a warped product M1 ×f2 M2, where M2 is an almost
para-Kähler manifold, M1 ia an open interval with coordinate t and f2 = we2αt for
some positive constant.

3. CR-integrability

For an almost α-para-Kenmotsu manifold we have [X,Y ] − [ϕX,ϕY ] ∈ D for any
X,Y ∈ D, since dη = 0 and thus D is integrable. Hence, the structure (ϕ, ξ, η, g) is
CR-integrable if and only if N (X,Y ) = [X,Y ]+[ϕX,ϕY ]−ϕ[ϕX, Y ]−ϕ[X,ϕY ] = 0
on D, that is to the request that the integral manifolds of D are para-Kähler.

Theorem 3.1. Let (M2n+1, ϕ, ξ, η, g) be an almost paracontact metric manifold.
Then, M2n+1 is a CR-integrable almost α-para-Kenmotsu manifold if and only if
there exists a linear connection ∇̃ such that

1) ∇̃ϕ = 0, ∇̃g = 0, ∇̃η = 0.

2) the torsion T̃ satisfies

a) T̃ (X,Y ) = 0 for any X,Y ∈ D,

b) T̃ (ξ,X) = X + h
′

X for any X ∈ D,

c) T̃ξ is selfadjoint.

Moreover, such a connection is uniquely determined by

(3.1) ∇̃XY = ∇XY + g(αX − h
′

X,Y )ξ − η(Y )(αX − h
′

X),

∇ being the Levi-Civita connection.

Proof. Let M2n+1 is a CR-integrable almost α-para-Kenmotsu manifold. We put
∇̃ = ∇+H , where the tensor field H of type (1,2) is defined by

H(X,Y ) = g(αX − h
′

X,Y )ξ − η(Y )(αX − h
′

X).

Since H(X,ϕY ) − ϕ(H(X,Y )) = −(g(αϕX + hX, Y ) − η(Y )(αϕX + hX)) =
−(∇Xϕ)Y , owing to Proposition 2.1. By direct calculations, we get g(H(X,Y ), Z)+
g(H(X,Z), Y ) = 0 and (∇Xη)Y − η(H(X,Y )) = 0, moreover, we get ∇̃ϕ = 0,
∇̃g = 0, ∇̃η = 0. Since T̃ (X,Y ) = η(X)(αY − h

′

Y )− η(Y )(αX − h
′

X) = 0 for any
X,Y ∈ D, and T̃ (ξ,X) = αX − h

′

X for any X ∈ D, hence T̃ξ is selfadjoint. As for
the uniqueness and the vice versa part, the proof is similar with Theorem 3.1 in [8].
✷
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Corollary 3.1. Let (M2n+1, ϕ, ξ, η, g) be a CR-integrable almost α-para-Kenmotsu
manifold. Then M2n+1 is a α-para-Kenmotsu manifold if and only if the linear con-
nection ∇̃ verifies T̃ξ ◦ ϕ = ϕ ◦ T̃ξ.

Proof. Since T̃ξϕX − ϕT̃ξX = T̃ (ξ, ϕX) − ϕT̃ (ξ,X) = −2hX for any X ∈ D,
hence, Corollary 3.1 is easily followed by Theorem 3.1. ✷

4. Almost α-para-Kenmotsu manifolds and local symmetrys

In this section, we investigate almost α-para-Kenmotsu manifolds which are lo-
cally symmetric, that is, almost α-para-Kenmotsu manifolds satisfying the condi-
tion ∇R = 0, which is a natural generalization of almost α-para-Kenmotsu manifold
of constant curvature.

By similar proof as that of proposition 6 in [7], we get the following lemma

Lemma 4.1. Let M2n+1 be a locally symmetric almost α-para-Kenmotsu mani-
fold. Then, ∇ξh = 0.

Theorem 4.1. Let (M2n+1, ϕ, ξ, η, g) be a locally symmetric almost α-para-Kenmotsu
manifold. Then, M2n+1 is an α-para-Kenmotsu manifold if and only if h = 0.
Moreover, if any of the above equivalent conditions holds, M2n+1 has constant sec-
tional curvature c = −α2.

Proof. First, assuming that M2n+1 is an α-para-Kenmotsu manifold, by Theorem
2.1. we have ∇Xξ = αϕ2X , comparing with (2.3) it follows that h = 0 and by
(2.6), we easily obtain R(X,Y )ξ = −α2(η(Y )X − η(X)Y ), let ∇Z acting on the
above equation and by the local symmetry, we have R(X,Y )Z = −α2(g(Y, Z)X −
g(X,Z)Y ), it follows then M is of constant sectional curvature c = −α2. Now,
supposing M ′ is the integral manifold of D and ∇′ is the corresponding connection
on M ′. Then ∇XY = ∇′

XY +h(X,Y ), then h(X,Y ) = g(∇XY, ξ)ξ = −αg(X,Y )ξ,
this implies H = −αξ thus h(X,Y ) = g(X,Y )H , and M ′ is a totally umbilical
submanifold of M2n+1. What is more, it is not difficult to see that R′(X,Y ) =
R(X,Y )+α2(g(Y, Z)X− g(X,Z)Y ) = 0, we know that M ′ is flat and the sectional
curvature of M ′ vanishes. This means that M ′ is a flat para-Kähler manifold. For
another part of the proof, noticing that ∇Zξ = αϕ2Z = αZ if and only if h = 0,
by Theorem 2.1 we prove that M2n+1 is an α-para-Kenmotsu manifold. At last,
it is obvious from the proof of the equivalence that if any of the above equivalent
conditions holds, M2n+1 has constant sectional curvature c = −α2. Thus, we
complete the proof. ✷

Theorem 4.2. An almost α-para-Kenmotsu manifold of constant curvature c is
an α-para-Kenmotsu manifold and c = −α2.

Proof. Supposing M2n+1 is an almost α-para-Kenmotsu manifold of constant
sectional curvature c, it is obvious that

(4.1) R(X,Y )Z = c(η(Y )X − η(X)Y ).
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∇W acting on (4.1) we get ∇WR = 0, thus, M2n+1 is locally symmetric, by Lemma
4.1, we get ∇ξh = 0. Comparing (2.6) with (4.1), we obtain

(c+α2)(η(Y )X−η(X)Y )+α(η(Y )ϕhX−η(X)ϕhY )− (∇Xϕh)Y +(∇Y ϕh)X = 0.

Choosing X = ξ and Y ∈ D and by Lemma 4.1, we get

(4.2) −(c+ α2)Y − 2αϕhY + h2X = 0.

Now, if Y is an eigenvector of h with eigenvalue λ, then (4.2) becomes −(c +
α2)Y − 2αλϕY +λ2X = 0. We get λ = 0 and c = −α2 since Y and ϕY are linearly
independent. Hence h = 0 and c = −α2, by Theorem 4.1, we know M2n+1 is an
α-para-Kenmotsu manifold of constant curvature c = −α2. Thus, we complete the
proof. ✷

5. Almost α-para-Kenmotsu manifolds and nullity distributions

In this section, we study almost α-para-Kenmotsu manifolds under the assumption
that ξ belongs to the (κ, µ)-nullity distribution and (κ, µ)

′

-nullity distribution.

First, we consider the (κ, µ)-nullity distribution. if ξ belongs to the (κ, µ)-
nullity distribution, (κ, µ) ∈ R2, denoted by N (κ, µ),which is given by putting for
each p ∈ M2n+1,

Np(κ, µ) = {Z ∈ Γ(TpM
2n+1)|R(X,Y )Z

= κ(g(Y, Z)X − g(X,Z)Y ) + µ(g(Y, Z)hX − g(X,Z)hY )}.

So, if ξ ∈ N (κ, µ), that is, for any X,Y∈ Γ(TM2n+1)

R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ).

Proposition 5.1. ([9]) Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu (κ, µ)-
space. Then the following identities hold:

(5.1) h2X = (κ+ α2)ϕ2X,

(5.2) R(ξ,X)Y = κ(g(X,Y )ξ − η(Y )X) + µ(g(X,hY )ξ − η(Y )hX),

(5.3) Qξ = −2nkξ,

(5.4) (∇Xϕ)Y = g(αϕX + hX, Y )− η(Y )(αϕX + hX).

Theorem 5.1. Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu manifold.
Let us suppose that ξ ∈ N (κ, µ). Then, κ = −1, h = 0 and M2n+1 is locally a
warped product of an almost paraKähler manifold and an open interval. Moreover,
assuming the local symmetry, M2n+1 is locally isometric to the hyperbolic space
H2n+1(−α2) of constant curvature −α2.



A Classification of Some Almost α-Para-Kenmotsu Manifolds 1333

Proof. ξ ∈ N (κ, µ) means that R(X, ξ)ξ = κX + µhX , for any unit vector field X

orthogonal to ξ. Combining with (2.5), it follows that h2X = (α2 + κ)X . Now, if
X is a unit eigenvector of h with eigenvalue λ, we get λ2 = α2 + κ ≥ 0. It follows
that κ ≥ −α2 and Spec(h) = {0, λ,−λ}. Computing R(X, ξ)ξ by means of (2.6),
we easily obtain

R(X, ξ)ξ = −α2X − 2αλϕX + λ2X − λϕ∇ξX + ϕh∇ξX,

thus we have

(κ+ λµ+ α2 − λ2)X + 2αλϕX + λϕ∇ξX − ϕh∇ξX = 0,

and taking the scalar product with ϕX , we obtain αλ = 0. Since α = const. 6= 0, it
follows that λ = 0, h = 0, κ = −α2 and thus K(X, ξ) = −α2.

Being h = 0, Theorem 2.2 ensures that M2n+1 is locally a warped product of an
almost para-Kähler manifold and an open interval. Furthermore, if M2n+1 is locally
symmetric, by Theorem 4.1, it is an α-para-Kenmotsu manifold locally isometric to
H2n+1(−α2). Thus, we complete the proof. ✷

From Theorem 5.1 we know for almost α-para-Kenmotsumanifold (M2n+1, ϕ, ξ, η, g),
if ξ ∈ N (κ, µ), then κ = −1, h = 0 and M2n+1 is locally a warped product of an
almost para-Kähler manifold and an open interval. Therefore, we consider the
(κ, µ)′-nullity distribution, (κ, µ)′ ∈ R2, as the distribution N (κ, µ)′ is given by
putting for each p ∈ M2n+1,

(5.5)
Np(κ, µ)

′ = {Z ∈ Γ(TpM
2n+1)|R(X,Y )Z

= κ(g(Y, Z)X − g(X,Z)Y ) + µ(g(Y, Z)h′X − g(X,Z)h′Y )}.

So, if ξ ∈ N (κ, µ)′, that is, for any X,Y∈ Γ(TM2n+1)

(5.6) R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )h′X − η(X)h′Y ).

Theorem 5.2. Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu manifold
such that ξ ∈ N (κ, µ)′ and h′ 6= 0. Then, κ < −α2, µ = 2α and Spec(h′) =
{0, λ,−λ}, with 0 as simple eigenvalue and λ =

√

−(α2 + κ). The distributions
[ξ]⊕ [λ]′ and [ξ]⊕ [−λ]′ are integrable with totally geodesic leaves. The distributions
[λ]′ and [−λ]′ are integrable with totally umbilical leaves.

Proof. Let X be a unit vector field orthogonal to ξ, we have R(X, ξ)ξ = kX+µh′X

and if we suppose X ∈ [λ]′, since h′2 = −h2, combing with (2.5), we get λ2 =
−(κ + α2) ≥ 0, then κ ≤ −α2. Spec(h′) = {0, λ,−λ}. Using (2.6) to compute
R(X, ξ)ξ, we have

(5.7) (κ+ λµ+ α2 − 2αλ+ λ2)X − λ∇ξX + h′∇ξX = 0.

let (5.7) take the scalar product with X and ϕX respectively, we get λ(µ− 2α) = 0
and λg(∇ξX,ϕX) = 0. If λ = 0, then h′ = 0 or equivalently h = 0, N(κ, µ) =
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N(κ, µ)′ and Theorem 5.1 applies. Therefore, assuming λ 6= 0, it follows that
κ < −α2 and µ = 2α, g(∇ξX,ϕX) = 0 for any unit X ∈ [λ]′. Let (5.7) take the
scalar product with any Y ∈ [−λ]′, we get g(∇ξX,Y ) = 0 and thus ∇ξX ∈ [λ]′.
Analogously ∇ξY ∈ [−λ]′ and we obtain ∇ξh

′ = 0. Comparing (5.6) with (2.6) for
any X,Y ∈ D, we have

(5.8) (∇Xh′)Y − (∇Y h
′)X = 0.

If X ∈ [λ]′, by (2.3) we have ∇Xξ = αX − h′X = (α − λ)X ∈ [λ]′, and since
∇ξh

′ = 0, we easily get ∇ξX ∈ [λ]′. By (5.8) we have

(5.9) 0 = (∇Xh′)Z − (∇Zh
′)X = −λ∇XZ − h′∇XZ − λ∇ZX + h′∇ZX.

let (5.9) take the scalar product with Y ∈ [−λ]′, we get g(∇ZX,Y ) = 0, therefore
∇ZX ∈ [λ]′ since g(∇XZ, ξ) = 0. For any X,W ∈ [λ]′, Y, Z ∈ [−λ]′ it follows that
∇XW ∈ [ξ]⊕ [λ]′ since g(∇XW, ξ) = (λ−α)g(X,W ). Hence, we get g([X,W ], ξ) =
g(∇XW−∇WX, ξ) = 0 and g([X,W ], Y ) = g(∇XW−∇WX,Y ) = 0, thus [X,W ] ∈
[λ]′. Similarly, it holds [Y, Z] ∈ [−λ]′. Therefore, the distributions [ξ] ⊕ [λ]′ ,[ξ] ⊕
[−λ]′, [λ]′ and [−λ]′ are integrable. It is easy to see that the distributions [ξ]⊕ [λ]′

and [ξ] ⊕ [−λ]′ are totally geodesic leaves. Now we prove the distribution [λ]′ is
totally umbilical, we choose a local orthonormal frame {ξ, ei, ϕei}, with ei ∈ [λ]′.
The second fundamental form h(ei, ej) = g(∇eiej , ξ)ξ = (λ − α)δijξ, so the mean
curvature vector field is H = (λ − α)ξ, hence h(X,W ) = g(X,W )H and thus [λ]′

is totally umbilical. Similarly, we can get [−λ]′ is also totally umbilical with the
mean curvature vector field is H ′ = (λ + α)ξ and h′(Y, Z) = g(Y, Z)H ′. Thus, we
complete the proof. ✷

Theorem 5.3. Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu manifold
such that ξ ∈ N (κ, µ)′ and h′ 6= 0. Then, the integral manifolds of D are para-
Kähler manifolds.

Proof. For any X,Y, Z ∈ D, if ξ ∈ N (κ, µ)′, then R(X,Y )ξ = 0, (2.7) in Proposi-
tion 2.2 gives that (∇hXΦ)(Y, Z) = 0. ReplacingX by hX , we get (∇h2XΦ)(Y, Z) =
0 or equivalently, −λ2(∇XΦ)(Y, Z) = 0 since h2X = −h′2X = −λ2X if X is a unit
eigenvector of h′ with eigenvalue λ. Being λ 6= 0, we get (∇XΦ)(Y, Z) = 0. Us-
ing (2.2) we obtain g(N(Y, Z), ϕX) = 0, which together with (2.8) in Proposition
2.3 gives N (Y, Z) = 0 for any Y, Z ∈ D, therefore the integral manifolds of D are
para-Kähler. Thus, we complete the proof. ✷

Corollary 5.1. Any almost α-para-Kenmotsu manifold such that ξ ∈ N (κ, µ)′,
κ < −α2, is a CR-manifold.

Theorem 5.4. Let (M2n+1, ϕ, ξ, η, g) be a locally symmetric almost α-para-Kenmotsu
manifold such that ξ ∈ N (κ, µ)′ and h′ 6= 0. Then, M2n+1 is locally isometric to
Hn+1(−(λ− α)2)×Rn.
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Proof. As proved in Theorem 5.2, the distributions [ξ] ⊕ [λ]′ and [ξ] ⊕ [−λ]′ are
integrable with totally geodesic leaves and the distributions [λ]′ and [−λ]′ are in-
tegrable with totally umbilical leaves. It follows that M2n+1 is locally isometric
to the product of an integral manifold Mn+1

1 of [ξ] ⊕ [λ]′ and an integral man-
ifold Mn

2 of [−λ]′. Therefore, we can choose coordinates (u0, . . . , u2n) such that
∂

∂u0 ∈ [ξ], ∂
∂u1 , . . . ,

∂
∂un ∈ [λ]′ and ∂

∂un+1 , . . . ,
∂

∂u2n ∈ [−λ]′. Now, we set Xi =
∂

∂ui

for any i ∈ {1, . . . , n}, so that the distribution [−λ]′ is spanned by the vector fields
ϕX1, . . . , ϕXn. it is easy to see that Xi ∈ [λ]′ is projectable and ϕXi ∈ [−λ]′ is
vertical, then [Xi, ϕXj ] is vertical by [1], hence [Xi, ϕXj ] ∈ [−λ]′. Taking the scalar
product with any Z ∈ [λ]′, since ∇Xi

ϕXj ∈ [−λ]′, we get g(∇ϕXj
Xi, Z) = 0 and

then ∇ϕXj
Xi = 0. Applying (∇ϕXϕ)ϕY − (∇Xϕ)Y = α(η(Y )ϕX +2g(X,ϕY )ξ) +

η(Y )hX (appeared in [9]), we have (∇Xi
ϕ)Xj + ϕ(∇ϕXi

ϕXj) = 0, which implies
(∇Xi

ϕ)Xj = 0, ∇ϕXi
ϕXj = 0, since the two part belong to [−λ]′ and [λ]′ re-

spectively. ∇ϕXi
ϕXj = 0 means that Mn

2 of [−λ]′ is flat. Now we compute the
curvature of Mn+1

1 . Applying ϕ to (∇Xi
ϕ)Xj = 0 gives

∇Xi
Xj − ϕ∇Xi

ϕXj = (λ− α)g(Xi, Xj)ξ.

Derivating with respect to Xk yields:

∇Xk
∇Xi

Xj − (∇Xk
ϕ)(∇Xi

ϕXj)− ϕ∇Xk
∇Xi

ϕXj

= (λ− α)Xk(g(Xi, Xj))ξ − (λ− α)2g(Xi, Xj)Xk.

taking the scalar product with Xl on both sides of the above equality and taking
into account g((∇Xk

ϕ)(∇Xi
ϕXj), Xl) = −g(∇Xi

ϕXj , (∇Xk
ϕ)Xl) = 0, we obtain

g(∇Xk
∇Xi

Xj , Xl) + g(∇Xk
∇Xi

ϕXj , ϕXl) = −(λ− α)2g(Xi, Xj)g(Xk, Xl).

Interchanging i and k, subtracting and being [Xi, Xk] = 0 we have

g(R(Xk, Xi)Xj , Xl) + g(R(Xk, Xi)ϕXj , ϕXl)

= −(λ− α)2g(Xi, Xj)g(Xk, Xl) + (λ− α)2g(Xk, Xj)g(Xi, Xl).

Since ∇ϕXi
ϕXj = 0 and [ϕXi, ϕXj ] = 0 , by a straightforward calculation we

obtain
g(R(Xk, Xi)ϕXj , ϕXl) = g(R(ϕXj , ϕXl)Xk, Xi) = 0,

and thus

g(R(Xk, Xi)Xj , Xl) = −(λ− α)2[g(Xi, Xj)g(Xk, Xl)− g(Xk, Xj)g(Xi, Xl)].

Moreover, since R(X,Y )ξ = 0 for any X,Y ∈ D, we get g(R(Xi, Xj)ξ,Xk) =
0. By (2.4) in Proposition 2.2, and ∇ξh = 0 because of the symmetry, we get
g(R(Xi, ξ)ξ,Xj) = −(λ − α)2g(Xi, Xj). Therefore, we conclude that the integral
manifold Mn+1

1 of [ξ] ⊕ [λ]′ is a space of constant curvature −(λ − α)2. Thus, we
complete the proof. ✷
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Lemma 5.1. Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu manifold such
that ξ ∈ N(κ, 2α)′ and h′ 6= 0. Then, for any X,Y ∈ Γ(TM2n+1),

(5.10) (∇Xh′)Y = g(h′2X − αh′X,Y )ξ + η(Y )(h′2X − αh′X).

Proof. We choose a local orthonormal frame {ξ, ei, ϕei} with ei ∈ [λ]′.

1) If X,Y ∈ [λ]′, we know that ∇XY ∈ [ξ] ⊕ [λ]′ from Theorem 5.2. It is easy
to get

∇XY = g(∇XY, ei)ei + g(∇XY, ξ)ξ = (λ− α)g(X,Y )ξ + g(∇XY, ei)ei,

and thus

(∇Xh′)Y = ∇Xh′Y − h′∇XY = λ∇XY − λg(∇XY, ei)ei = λ(λ − α)g(X,Y )ξ.

2) If X,Y ∈ [−λ]′, we know that ∇XY ∈ [ξ]⊕ [−λ]′ from Theorem 5.2. Similarly
we have

∇XY = g(∇XY, ϕei)ϕei + g(∇XY, ξ)ξ = −(λ+ α)g(X,Y )ξ + g(∇XY, ϕei)ϕei,

and

(∇Xh′)Y = λ(λ + α)g(X,Y )ξ.

3) If X ∈ [λ]′, Y ∈ [−λ]′, since g(∇XY, ξ) = (λ − α)g(X,Y ) = 0, and for any
Z ∈ [λ]′, g(∇XY, Z) = Xg(Y, Z) − g(Y,∇XZ) = 0, thus we get ∇XY ∈ [−λ]′

and (∇Xh′)Y = ∇Xh′Y − h′∇XY = 0, therefore we have (∇Y h
′)X = 0 since

(∇Xh′)Y − (∇Y h
′)X = 0.

Therefore, for any X ∈ Γ(TM2n+1), we write X = Xλ + X−λ + η(X)ξ, with
Xλ ∈ [λ]′ and X−λ ∈ [−λ]′, since ∇ξh

′ = 0, we get

(∇Xh′)Y = (∇Xλ
h′)Yλ + η(Y )(∇Xλ

h′)ξ + (∇X−λ
h′)Y−λ + η(Y )(∇X−λ

h′)ξ

= λ(λ − α)g(Xλ, Yλ)ξ + λ(λ − α)η(Y )Xλ + λ(λ+ α)g(X−λ, Y−λ)ξ

+λ(λ+ α)η(Y )X−λ

= −αλ{g(Xλ, Yλ)− g(X−λ, Y−λ)}ξ + λ2{g(Xλ, Yλ) + g(X−λ, Y−λ)}ξ

+η(Y )(−αλXλ + αλX−λ + λ2Xλ − λ2X−λ)

= g(h′2X − αh′X,Y )ξ + η(Y )(h′2X − αh′X).

Lemma 5.2. Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu manifold such
that ξ ∈ N (κ, 2α)′ and h′ 6= 0. Then, for any X,Y ∈ D,

R(X,Y )h′Z−h′R(X,Y )Z=(κ+2α2)[g(Y, Z)h′X−g(X,Z)h′Y−g(h′Y, Z)X+g(h′X,Z)Y ].
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Proof. We know from Lemma 5.1 that (∇Xh′)Y = g(h′2X − αh′X,Y )ξ for any
X,Y ∈ D, by direct calculation we obtain

R(X,Y )h′Z − h′R(X,Y )Z

= ∇X∇Y h
′Z −∇Y ∇Xh′Z −∇[X,Y ]h

′Z − h′R(X,Y )Z

= g((∇Xh′2)Y − (∇Y h
′2)X− α((∇Xh′)Y − (∇Y h

′)X), Z) + g(h′2Y −αh′Y, Z)∇Xξ

− g(h′2X− αh′X,Z)∇Y ξ −g(∇Y ξ, Z)(h′2X−αh′X) + g(∇Xξ, Z)(h′2Y −αh′Y ).

It follows that for any X,Y ∈ D, we know from h′2X = −h2X = −(κ + α2)X ,
and (∇Xh′2)Y = −(κ + α2)η(∇XY )ξ, hence, (∇Xh′2)Y − (∇Y h

′2)X = 0 since D
is integrable, and from Lemma 5.1, we get (∇Xh′)Y − (∇Y h

′)X = 0. Lemma 5.2 is
followed by direct computation. Thus, we complete the proof. ✷

Lemma 5.3. Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu manifold such
that ξ ∈ N (κ, 2α)′ and h′ 6= 0. Then, for any X,Y, Z ∈ D, we have

R(X,Y )ϕZ − ϕR(X,Y )Z

= g(αX − h′X,ϕZ)(αY − h′Y )− g(αX − h′X,Z)(αϕY − ϕh′Y )

+g(αY − h′Y, Z)(αϕX − ϕh′X)− g(αY − h′Y, ϕZ)(αX − h′X).

Proof. Since the Weingarten operator for an integral manifold M ′ of D is given
by

AX = −∇Xξ = −(αX − h′X),

by Theorem 2.3 in [4] we get the Guass equation

R(X,Y )Z = R′(X,Y )Z + g(αX−h′X,Z)(αY − h′Y )−g(αY − h′Y, Z)(αX− h′X).

By Theorem 5.3, the integral manifolds of D are para-Kähler manifolds, and from
Lemma 10.1 of [4], we know R′(X,Y )ϕZ − ϕR′(X,Y )Z = 0. Combining with the
above two equations, we get the required formula for R and ϕ. Thus, we complete
the proof. ✷

Proposition 5.2. Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu mani-
fold such that ξ ∈ N (κ, 2α)′ and h′ 6= 0. Then, for any Xλ, Yλ, Zλ ∈ [λ]′ and
X−λ, Y−λ, Z−λ ∈ [−λ]′, the curvature tensor R satisfies:

R(Xλ, Yλ)Z−λ = 0,

R(X−λ, Y−λ)Zλ = 0,

R(Xλ, Y−λ)Zλ = (κ+ 2α2)g(Xλ, Zλ)Y−λ,

R(Xλ, Y−λ)Z−λ = −(κ+ 2α2)g(Y−λ, Z−λ)Xλ,

R(Xλ, Yλ)Zλ = (κ+ 2αλ)[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = (κ− 2αλ)[g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ].
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Proof. For any X ∈ [λ]′, and Y, Z ∈ [−λ]′, by Lemma 5.2 we have

−λR(X,Y )Z − h′R(X,Y )Z = 2λ(κ+ 2α2)g(Y, Z)X.

Taking the scalar product with W ∈ [λ]′, we obtain

(5.11) g(R(X,Y )Z,W ) = −(κ+ 2α2)g(Y, Z)g(X,W ).

Lemma 5.2 implies that R(X,Y )Z ∈ [λ]′ for any X,Y, Z ∈ [λ]′ and R(X,Y )Z ∈
[−λ]′ for any X,Y, Z ∈ [−λ]′. Now, in order to compute R(Xλ, Yλ)Z−λ, we consider
a local orthonormal frame {ξ, ei, ϕei}, with ei ∈ [λ]′. Condition ξ ∈ N(κ, 2α)′ means
that g(R(Xλ, Yλ)Z−λ, ξ) = g(R(Xλ, Yλ)ξ, Z−λ) = 0, and since R(Xλ, Yλ)ei ∈ [λ]′,
thus g(R(Xλ, Yλ)Z−λ, ei) = 0. Using the first Bianchi identity and (5.11), we have

g(R(Xλ, Yλ)Z−λ, ϕei) = g(R(Yλ, Z−λ)ϕei, Xλ)− g(R(Xλ, Z−λ)ϕei, Yλ)

= −(κ+ 2α2)[g(Z−λ, ϕei)g(Xλ, Yλ)− g(Z−λ, ϕei)g(Xλ, Yλ)]

= 0,

so thatR(Xλ, Yλ)Z−λ=0.The termsR(X−λ, Y−λ)Zλ, R(Xλ, Y−λ)Zλ andR(Xλ, Y−λ)Z−λ

are computed in a similar manner. By Lemma 5.3, using R(Xλ, Yλ)Z−λ = 0, we
get

R(Xλ, Yλ)ϕZλ = −(α− λ)2[g(Yλ, ϕZ−λ)Xλ − g(Xλ, ϕZ−λ)Yλ]

Replacing Z−λ by ϕZλ ∈ [λ]′, and since −(α− λ)2 = κ+ 2αλ, we have

R(Xλ, Yλ)Zλ = R(Xλ, Yλ)ϕ(ϕZλ) = (κ+ 2αλ)[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ].

In the same manner, we obtain R(X−λ, Y−λ)Z−λ = (κ − 2αλ)[g(Y−λ, Z−λ)X−λ −
g(X−λ, Z−λ)Y−λ]. Thus, we complete the proof. ✷

Proposition 5.3. Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu manifold
such that ξ ∈ N (κ, 2α)′ and h′ 6= 0. Then,we have

1) K(X, ξ) = κ+ 2αλ, if X ∈ [λ]′;

K(X, ξ) = κ− 2αλ, if X ∈ [−λ]′;

2) K(X,Y ) = κ+ 2αλ, if X,Y ∈ [λ]′;

K(X,Y ) = κ− 2αλ, if X,Y ∈ [−λ]′;

K(X,Y ) = −(κ+ 2α2), ifX ∈ [λ]′, Y ∈ [−λ]′.

3) r = 8αλn− 4α2n2 − 2kn.

Proof. The proof for the sectional curvature is easily followed by Proposition 5.2.
In order to compute the scalar curvature, we choose a orthonormal frame {ξ, ei, ϕei}
with ei ∈ [λ]′, by direct calculations we have

Ric(ξ, ξ) =

n
∑

i=1

R(ξ, ei, ei, ξ)−
n
∑

i=1

R(ξ, ϕei, ϕei, ξ) = 4αλn,
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Ric(ei, ei) =

n
∑

i=1

R(ei, ξ, ξ, ei) +

n
∑

j 6=i=1

R(ei, ej , ej, ei)−
n
∑

j=1

R(ei, ϕej , ϕej , ei)

= n(κ+ 2αλ) + n(κ+ 2α2),

Ric(ϕei, ϕei) = (κ− 2αλ)(2 − n) + n(κ+ 2α2),

and it is easy to get the scalar curvature r = 8αλn− 4α2n2 − 2kn. ✷

Proposition 5.4. Let (M2n+1, ϕ, ξ, η, g) be an almost α-para-Kenmotsu manifold
such that ξ ∈ N (κ, 2α)′ and h′ 6= 0. Then, M2n+1 is locally isometric to the warped
products

Sn+1(κ+ 2αλ)×f Rn, or Bn+1(κ− 2αλ)×f ′ Rn,

where Sn+1(κ+2αλ) is a space of constant positive curvature κ+2αλ, Bn+1(κ−2αλ)
is a space of constant negative curvature κ − 2αλ, f = ce−(λ+α)t, f ′ = c′e(α−λ)t,

with c, c′ positive constants.

Proof. By Theorem 5.2, we get that the distributions [ξ]⊕ [λ]′ and [ξ]⊕ [−λ]′ are
integrable with totally geodesic leaves, the distributions [λ]′ and [−λ]′ are integrable
with totally umbilical leaves. First, we consider that M2n+1 is locally a warped
product S ×f F such that TS = [ξ] ⊕ [λ]′ and TF = [−λ]′. Now, we compute
the function f . We have denoted by ǧ and ĝ the pseudo-Riemannian metrics on S

and F , respectively, such that the warped metric is given by ǧ + f2ĝ. Then, the
projection π : S×f F → S is a submersion with horizontal distribution [ξ]⊕ [λ]′ and
vertical distribution [−λ]′. From Theorem 5.2 we know that the mean curvature
vector field for the immersed submanifold (F, ĝ) is H ′ = (λ + α)ξ. By Proposition

4.1 in [4], we get for any Y, Z ∈ [−λ]′, nor(∇Y Z) = h(Y, Z) = − g(Y,Z)
f

gradǧf .

And since h(Y, Z) = g(Y, Z)H ′, we get −(λ + α)fξ = gradǧf . We choose local
coordinates {t, x1, . . . , xn} on B such that ξ = ∂

∂t
and ∂

∂xi ∈ [λ]′ for any i =

1, . . . , n. After direct computation we get f = ce−(λ+α)t, c > 0. Since ξ ∈ N (κ, 2α)′,
we have R(X,Y )ξ = 0, and R(X, ξ)ξ = (κ + 2αλ)X , also by ξ ∈ N (κ, 2α)′, we
get R(ξ,X)Y = κ(g(X,Y )ξ − η(Y )X) + 2α(g(h′X,Y )ξ − η(Y )′hX), thus, we get
R(ξ,X)Y = (κ + 2αλ)g(X,Y )ξ. Applying Proposition 5.2, we get R(X,Y )Z =
(κ+ 2αλ)[g(Y, Z)X − g(X,Z)Y ], hence, we conclude that S is a space of constant
curvature κ+2αλ > 0. Next, we compute the curvature RF of (F, ĝ), by Proposition
4.2 in [4], for any U, V,W ∈ [−λ]′, it holds

RF (V,W )U = R(V,W )U −
g(gradf, gradf)

f2
{g(V, U)W − g(W,U)V }.

Since gradf = −(λ+α)fξ, we get that g(gradf, gradf) = (λ+α)2f2 = (2αλ−κ)f2,
and by Proposition 5.2, we get R(V,W )U = (2αλ − κ){g(V, U)W − g(W,U)V }.
Then, RF (V,W )U = 0, and thus the fibers of the warped product are flat spaces.

Similar discussions for horizontal distribution [ξ]⊕[−λ]′ and vertical distribution
[λ]′. In this case, the mean curvature vector field for the immersed submanifold
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(F, ĝ) is H ′ = (λ − α)ξ and computing the warping function, we obtain f ′ =
c′e(α−λ)t, c′ > 0. Moreover, we can also prove that the base manifold of the warped
product is a space of constant curvature κ− 2αλ < 0 and the fibers are flat spaces.
Thus, we complete the proof. ✷
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