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Abstract. In this study, solutions of time-space fractional partial differential equations
(FPDEs) are obtained by utilizing the Laplace transform iterative method. The utility
of the technique is shown by getting numerical solutions of various FPDEs.
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1. Introduction

Mathematical models by fractional differential equations for various physical
phenomena play important roles in all applied sciences such as mathematics physics,
biology, dynamical systems, control systems, engineering and soon [1, 2, 3,4, 5,6, 7,
8,9, 10, 11, 12]. Also, there are various studies on fractional diffusion equations. Ex-
act analytical solutions of heat equations are obtained by using operational method
[13]. The existence, uniqueness and regularity of solution of impulsive sub-diffusion
equation are established by means of eigenfunction expansion [14]. The anoma-
lous diffusion models with non-singular power-law kernel have been investigated
and constructed [15]. Moreover, nonlinear fractional partial differential equations
(FPDEs) are employed in modeling various nonlinear phenomena, mainly dealing
with memory, and they present a crucial role in technology and science. Taking
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physical knowledge and physical properties of the nonlinear problem into account
the exact solution of nonlinear FPDEs can be obtained. This knowledge gives us
the idea about how numerical solutions of the nonlinear FPDEs can be constructed
by the combination of Daftardar-Jafari method (DJM) and Laplace transform. In
this study, Laplace Transform iterative method (LTIM) is extended to obtain so-
lutions for time-space FPDEs. The LTIM method is employed to solve a variety
of linear and nonlinear FPDEs. LTIM generally generates an accurate solution of
FPDEs, which can be represented in terms of the fractional trigonometric func-
tions or Mittag-Leffler functions. Moreover, it has been shown that semi-analytical
methods with Laplace transform need fewer CPU time to compute the solutions of
nonlinear fractional models, which are utilized in engineering and applied science.
LTIM is a robust method to obtain solutions for distinct types of nonlinear and
linear FPDEs. LTIM can decrease the time of calculation as well as error margin
of the approximate solution.

2. Preliminaries

In this section, preliminaries, notations and features of the fractional calculus
are given [1, 2]. Riemann-Liouville time-fractional integral of a real valued function
u (z,t) is defined as

1

(2.1) IMu(x,t) = W/o (t—s)*""u(x,s)ds

where a > 0 denotes the order of the integral.

o™ order the Liouville-Caputo time-fractional derivative operator of u(x,t) is
defined as

0%u(z,t) _ e {amu(x,t)}

ot otm

2.2 e
22 _{I‘mla)fot(t—y)m ladey, m—1<a<m,

Y 9Mu(x,t) .

otm a=m
Mittag-Leffler function with two parameters is defined as

23 Ea — —_— R > 0’ , (C
(2.3) 5 (2) Z T(ak + B) e(a) z,B €

k=0
where o and 8 are parameters.

The following set of functions has Laplace transformation

{f(t)EIM,Tl,TQ >0,|f (1) < Me'%-‘,z‘ft € (-1)7 x [0,00)}
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and it is defined as

(2.4) LIf ()] = F (p) = / T (o) de

which has the following property

(2.5) LtY] = /000 e Ptdt =T (a+1) (;)aﬂ , Re(a) >0

na+1
) is defined as

inverse Laplace inverse transform of (

3 =

no+1 no
(2.6) L! l(l) ] = ﬁ, Re(a) >0

where n > 0 [2].

For a'f order the Liouville-Caputo time-fractional derivative of f (z,t), the
Laplace transformation has the following form:

o n—1 k
L[af(x,t)] :paL[f(x,t)}ka:O [paklafa(tivo) ,n—1l<a<n nelN

3. Methodology

In this section, we take the general time and space FPDE

¢ o o _ o S
(3.1) &;:F(x’f’agj’”"axlf)’J_1<<< jyi—1<n< i, lj,ieN

along with the initial conditions

o™ f(x,0)

(32) atim:hm(x), k:O71,27,j—1,
i g oy : .
into account where F'(z, f, 5.4, .- ., 5.7 ) could be linear or nonlinear and the

function f = f(z,t) is unknown.
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Applying the Laplace transform to both sides of Eq. (3.1) and rearranging leads
to

e £ [0 7]

(3.3) m=0

¢+1 anf alnf
() elr(ergm )]

Employing the inverse Laplace transform of Eq. (3.3), we obtain

oo ]

m

() e (o B )]

Equation (3.4) can be rearranged as

Ul in
(3.5) f(a:,t)zg(a:,t)—l—G( f,a—f "’gxl£>
where
Jj—1 m+1 qm T
- [ 22e2]
(3.6) m=0

8’7f 8lnf B 1 ¢+1 anf alnf
o 3 =2 () o[ (o - )]

Here G is a nonlinear / linear operator and g is known function. The solution
of Eq. (3.5) can be obtained by the DJM introduced by Daftardar-Gejji and Jafari
[16]. The solution is represented as an infinite series:

(3.7) F="fu
n=0

where the terms f, are recursively computed. Decomposing the operator G
leads to
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>noJn) " (30 fn)
( 9" fo 6“’fo>

€, 07877)' 8x“7

(38) > 0 fn 8177 Z*O f”
+Z<G< Zf"’ el | s >>>

o0 O (2074 fa O (S0

Z(G( Zf"’ (axno ) (axlno ))>

AN a o fn M (Y02 f

D) e e, )]

1\ 0" o,

() L{F@fo’ °,~-,W:>H

0 - 1C+1 n fn oM Z: fn
e O (B .. )|
>~ 1 ¢+1 e on (22:10 f’n) o (Zfl_:% f'n)
e[ (e, s

Using Egs. (3.7), (3.9) in Eq. (3.5), we get

Sr-r S0
<;)<+1 L (s fo“),...g;;;o)u

o K;)H ( DI aZnOfn)’--waln(%;z;““)“
> [(;)CHL [F (Zf (k) | 2o fn))”_

The recurrence relation is defined by as follows:

=11

J

+L7t
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(3.10) )
o= [S]6)7 7|
e [ e (e 2]
(1) [ (30 2Bl Pt
i 1 [ -1 n (sl g (sl g

The r- term truncated solution of Egs. (3.1),(3.2) is constructed as f ~ fo +
fi+ ...+ fr—1. We lead the reader to [17] for the convergence of DJM.

4. TIllustrative Example

Let us consider time and space fractional equation below

8¢ o\’ o
(41) aTZ = (67;:) _f (a;‘£>7 t > Oa C777 € (07 1}7

along with the initial condition
5 n
(4.2) u(x,0) =3+ §En($ ).

Let us apply the Laplace transform on both sides of (4.1).

(5] =2 (5) (5]

By means of the property (2.7), we obtain

as atrtenn= (D) s (0 (£ (22) 5 (22)])

Applying the inverse Laplace transform to both sides of Eq. (4.3)
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f@;w::L—l[(;>f(a0ﬂ-+L‘l[(;)C+1<13[<g;:> ‘f(gl£)1>]

is obtained. Using the recurrence relation (3.10)

f(@.0) 3+§ﬂmﬂx
(e[G) - GR))] - s
% * ?Jﬁ) (e 2%“) )
)

fo = L7!

(
fi .L1<
(

1
p
(! ot . " fo _ 45X E, (a")
P Oz 2 (2¢+1)
PRt MG
5o 2T (3¢ +1) ’
fo= 405t B, (27)
v 2T (4C + 1)
As a result, the series solution of the problem (4.1)-(4.2) is obtained by

fl@t)y=fo+tfi+tfotfo+...=3+ BEg (3t<)} E,(2"),

which gives the same solution as in [18].

5. Conclusion

LTIM is developed by taking the combination of DJM [16] and Laplace transform.
This new approach is convenient for acquiring numerical solutions of time and space
FPDEs. Its appicability is illustrated by an example in this study. As a result, the
combination of DJM with Laplace transform provides a better and more effective
approach than combination of Laplace transformation and homotopy, Sumudu or
Adomian polynomials.

The results of this paper can be rewritten easily and trivially for any of the
many rather inconsequential parameter and/or variable changes in the integral in
Eq. (2.4) which defines the classical Laplace transform.
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