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Abstract. In this paper, by using the matrix representation of generalized bicomplex
numbers, we have defined the homothetic motions on some hypersurfaces in four dimen-
sional generalized linear space R4

αβ . Also, for some special cases we have given some
examples of homothetic motions in R4 and R4

2 and obtained some rotational matrices,
too. Therefore, we have investigated some applications about kinematics of generalized
bicomplex numbers.
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1. Introduction

In the middle of the 1800s, several mathematicians discussed the problem of whether
a number system extended the field of complex numbers. In 1843, Sir William
Rowan Hamilton defined a number system which is called quaternions in four di-
mensional space. Although quaternions and complex numbers have a lot of similar
properties, quaternions are not commutative with respect to multiplication. So, in
1892, a new number system called bicomplex numbers was discovered by Corrado
Segre [13]. Unlike quaternions, bicomplex numbers are commutative four dimen-
sional real algebra.
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The set of bicomplex numbers denoted by C2 is defined as:

C2 =
{
x = x11 + x2i+ x3j + x4ij : i2 = −1, j2 = −1, ij = ji, xk ∈ R, 1 ≤ k ≤ 4

}
.

Any x bicomplex number can be rewritten as x = z1 + jz2, where z1 = x1 +
ix2 and z2 = x3 + ix4 are complex numbers and j is a different imaginer unit
from the imaginer unit i satisfied j2 = −1 and ij = ji. Hence, we can perceive a
bicomplex number as a complex number whose components are complex numbers.
There are some applications of bicomplex numbers on the algebra, geometry and
analysis. A first theory of differentiability in C2 was developed by Price in [12].
Özkaldı Karakuş and Kahraman Aksoyak defined generalized bicomplex numbers
and gave some algebraic properties. Also, they showed that some hypersurfaces
in four dimensional generalized linear space are Lie groups by using generalized
bicomplex number product and obtained Lie algebras of these Lie groups [10].

Kabadayı and Yaylı defined the homothetic motions with the help of bicomplex
numbers in R4 [5]. They showed that this homothetic motion under some conditions
holds all of the properties in [14], [15]. Alkaya studied the homothetic motion with
bicomplex numbers in R4 and R4

2 [1].

In this paper, by using the matrix representation of generalized bicomplex num-
bers, we shall define the homothetic motions on some hypersurfaces in four di-
mensional generalized linear space R4

αβ . Also, for some special cases we shall give

some examples of homothetic motions in R4 and R4
2 and obtain some rotational

matrices, too. Therefore, we shall investigate some applications about kinematics
of generalized bicomplex numbers.

2. Preliminaries

In this section we give some basic concepts about generalized bicomplex numbers
defined by Özkaldı Karakuş and Kahraman Aksoyak [10].

A generalized bicomplex number x is defined as follows:

x = x11 + x2i+ x3j + x4ij,

where xk for 1 ≤ k ≤ 4 are real numbers and the basis {1, i, j, ij} holds i2 = −α,
j2 = −β, (ij)

2
= αβ, ij = ji, α, β ∈ R. The set of generalized bicomplex numbers is

denoted by Cαβ . For any two generalized bicomplex numbers x = x1+x2i+x3j+x4ij
and y = y1 + y2i+ y3j + y4ij, addition and multiplication are as follows:

x+ y = (x1 + y1) + (x2 + y2) i+ (x3 + y3) j + (x4 + y4) ij,

x · y = (x1y1 − αx2y2 − βx3y3 + αβx4y4) + (x1y2 + x2y1 − βx3y4 − βx4y3) i

+ (x1y3 + x3y1 − αx2y4 − αx4y2) j + (x1y4 + x4y1 + x2y3 + x3y2) ij(2.1)

and the scalar multiplication of an element in Cαβ by a real number c is as:

cx = cx11 + cx2i+ cx3j + cx4ij.
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Hence, by means of these elementary arithmetic operations on Cαβ , we have two
important results. Cαβ is a four dimensional real vector space with respect to
addition and scalar multiplication and it is a commutative real algebra according
to generalized bicomplex number product.

Let us consider the following set of matrices

Qαβ =

Mx =


x1 −αx2 −βx3 αβx4
x2 x1 −βx4 −βx3
x3 −αx4 x1 −αx2
x4 x3 x2 x1

 : xi ∈ R, 1 ≤ i ≤ 4

 ,

where the set Qαβ is a vector space with matrix addition and scalar matrix product
and it is an algebra together with matrix product. The algebras Cαβ and Qαβ are
isomorphic. The isomorphism between two algebras is defined as:

h : Cαβ → Qαβ ,

h (x11 + x2i+ x3j + x4ij) =


x1 −αx2 −βx3 αβx4
x2 x1 −βx4 −βx3
x3 −αx4 x1 −αx2
x4 x3 x2 x1

 .

With the help of this isomorphism, any generalized bicomplex number in Cαβ can
be represent by a matrix in Qαβ . Moreover, it is possible to express the generalized
bicomplex number product which has been given by (2.1) by matrix product, that
is,

x · y =


x1 −αx2 −βx3 αβx4
x2 x1 −βx4 −βx3
x3 −αx4 x1 −αx2
x4 x3 x2 x1




y1
y2
y3
y4

 .

A generalized bicomplex number can be rewritten as x = (x1 + x2i) + (x3 + x4i) j.
There are three kinds of conjugations for generalized bicomplex numbers. They are
given as follows:

xt1 = [(x1 + x2i) + (x3 + x4i) j]
t1 = (x1 − x2i) + (x3 − x4i) j,

xt2 = [(x1 + x2i) + (x3 + x4i) j]
t2 = (x1 + x2i)− (x3 + x4i) j,

xt3 = [(x1 + x2i) + (x3 + x4i) j]
t3 = (x1 − x2i)− (x3 − x4i) j,

where xt1 , xt2 and xt3 denote the conjugations of x with respect to i, j and both i
and j, respectively. Also we can compute

x · xt1 =
(
x21 + αx22 − βx23 − αβx24

)
+ 2 (x1x3 + αx2x4) j,

x · xt2 =
(
x21 − αx22 + βx23 − αβx24

)
+ 2 (x1x2 + βx3x4) i,

x · xt3 =
(
x21 + αx22 + βx23 + αβx24

)
+ 2 (x1x4 − x2x3) ij.
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3. One Parameter Homothetic Motion

Let the fixed space and the moving space be R0 and R., respectively. The one-
parameter homothetic motion of R0 with respect to R is denoted by R0/R. This
motion is obtained by the following transformation[

X
1

]
=

[
hA C
0 1

] [
X0

1

]
,

or it can be expressed as

X = BX0 + C,(3.1)

in which X0 and X are the position vectors of the same point in R0 and R, re-
spectively and B = hA. Also, h, A and C are continuously differentiable functions
depend on the real parameter t, where h : I ⊂ R→ R, t→ h(t) is called homothetic
scale of the motion, A is a real quasi-orthogonal matrix that holds AT εA = ε (ε
is a signature matrix according to metric), C is the translation matrix. To avoid
the case of affine transformation we suppose that h is not constant and to avoid

the cases of pure translation and pure rotation we also assume that d(hA)
dt 6= 0 and

dC
dt 6= 0 [2].

4. Pole Points and Pole Curves of the Homothetic Motion

If we take the derivative of (3.1) with respect to t, we obtain the following equality

Ẋ = ḂX0 + Ċ +BẊ0,

where Ẋ is the absolute velocity, ḂX0 + Ċ is the sliding velocity and BẊ0 is the
relative velocity of the point X0. The points at which the sliding velocity of the
motion vanishes at all time t are called pole points of the motion in R0. In that
case, to determine the pole points of the motion, we solve the following equality

ḂX0 + Ċ = 0.(4.1)

For more details see[2].

5. Homothetic Motions on Some Hypersurfaces via Generalized
Bicomplex Numbers

In this section we have defined the homothetic motions on some hypersurfaces at
R4
αβ with the help of generalized bicomplex numbers and given some examples about

the homothetic motions.
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5.1. Homothetic Motion on Hypersurface M1

Let us consider the hypersurface M1 as follows:

M1 =
{
x = (x1, x2, x3, x4) ∈ R4

αβ : x1x3 + αx2x4 = 0, x 6= 0
}
.

By using generalized bicomplex numbers, M1 can be rewritten as:

M1 =
{
x = x11 + x2i+ x3j + x4ij ∈ R4

αβ : x1x3 + αx2x4 = 0, x 6= 0
}
,

or the hypersurface M1 can be expressed by using the matrix representiation of
generalized bicomplex numbers

M̃1 =

Mx =


x1 −αx2 −βx3 αβx4
x2 x1 −βx4 −βx3
x3 −αx4 x1 −αx2
x4 x3 x2 x1

 : x1x3 + αx2x4 = 0, x 6= 0

 ,

where Mx is the matrix representiation of generalized bicomplex number x. The
metric on hypersurfaceM1 is defined by g1(x, x) = x·xt1 = x21+αx22−βx23−αβx24 and
the norm of any element x on M1 is defined by ‖x‖ =

√
|g1(x, x)| =

√
|x · xt1 |. This

metric is Riemannian or pseudo-Riemannian metric on four dimensional generalized
linear space R4

αβ and for some special cases, it coincides with four dimensional

Euclidean space R4 or four dimensional pseudo-Euclidean space R4
2.

Proposition 5.1. There are following properties about the norm on the hypersur-
face M1.

i) For x, y ∈M1, ‖x · y‖ = ‖x‖ ‖y‖ ,
ii) ‖x‖4 = det (Mx).

Proof. These properties can be easily seen with direct calculations.

Corollary 5.1. A unit generalized bicomplex number on the hypersurface M1 de-
termines a rotation motion.

Proof. It is obvious from Proposition 5.1.

Theorem 5.1. M1 is a commutative Lie group.

Proof. The proof can be found in [10].

Let us denote the set of unit generalized bicomplex numbers on M1 by M∗1 . M
∗
1

is as:

M∗1 = {x ∈M1 : g1 (x, x) = 1}
=

{
x ∈M1 : x21 + αx22 − βx23 − αβx24 = 1

}
.
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Theorem 5.2. M∗1 is Lie subgroup of M1.

Proof. The proof can be found in [10].

Let γ be a curve on M1. In that case, it can be expressed as

γ : I ⊂ R→M1

t → γ(t) = γ1(t) + γ2(t)i+ γ3(t)j + γ4(t)ij, γ1(t)γ3(t) + αγ2(t)γ4(t) = 0.

Then the matrix B corresponding to the curve γ is obtained as follows:

B = Mγ(t) =


γ1(t) −αγ2(t) −βγ3(t) αβγ4(t)
γ2(t) γ1(t) −βγ4(t) −βγ3(t)
γ3(t) −αγ4(t) γ1(t) −αγ2(t)
γ4(t) γ3(t) γ2(t) γ1(t)

 .(5.1)

Now by using this matrix B, we can define the one parameter motion on M1 at
R4
αβ .

Definition 5.1. Let R0 and R be the fixed space and the motional space at R4
αβ .

In that case, the one-parameter motion of R0 with respect to R is denoted by R0/R.
Then the one-parameter motion on M1 is defined by[

X
1

]
=

[
B C
0 1

] [
X0

1

]
,

or it can be expressed as

(5.2) X = BX0 + C,

where B is the matrix associated with the curve γ(t) on the hypersurface M1, C
is the 4× 1 real matrix depends on a real parameter t, X and X0 are the position
vectors of any point at R4

αβ respectively in R and R0.

Theorem 5.3. The equation given by (5.2) determines a homothetic motion on
M1.

Proof. Since the curve γ lies on M1, it does not pass through the origin. So, the
matrix given by (5.1) can be expressed as:

B = Mγ(t) = h


γ1(t)
h

−αγ2(t)
h

−βγ3(t)
h

αβγ4(t)
h

γ2(t)
h

γ1(t)
h

−βγ4(t)
h

−βγ3(t)
h

γ3(t)
h

−αγ4(t)
h

γ1(t)
h

−αγ2(t)
h

γ4(t)
h

γ3(t)
h

γ2(t)
h

γ1(t)
h

 = hA,(5.3)

where h : I ⊂ R→ R, t → h (t) = ‖γ(t)‖ =
√
γ21 + αγ22 − βγ23 − αβγ24 . Because

of γ(t) ∈ M1, γ1(t)γ3(t) + αγ2(t)γ4(t) = 0. By using this equality, we obtain that
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the matrix A in (5.3) is a real quasi-orthogonal matrix. In that case it satisfies
AT εA = ε and detA = 1, where ε is the signature matrix corresponding to metric
g1 is as:

ε =


1 0 0 0
0 α 0 0
0 0 −β 0
0 0 0 −αβ

 .
Hence A, h and C are a real quasi-orthogonal matrix, the homothetic scale of
the motion and the translation vector, respectively. So the equation (5.2) is a
homothetic motion.

Remark 5.1. The norm of γ ∈ R4
αβ is found as ‖γ(t)‖ =

√
|γ2

1 + αγ2
2 − βγ2

3 − αβγ2
4 |.

We assume that γ2
1 + αγ2

2 − βγ2
3 − αβγ2

4 > 0 in this paper.

Corollary 5.2. Let γ(t) be a curve on M∗1 . Then one-parameter motion on M1

given by (5.2) is a general motion consists of a rotation and a translation.

Proof. We assume that γ(t) is a curve on M∗1 . Then γ21 + αγ22 − βγ23 − αβγ24 = 1.
In that case the matrix B given by (5.1) becomes a real-quasi orthogonal matrix,
that is, it satisfies BT εB = ε and detB = 1. This completes the proof.

Theorem 5.4. Let γ(t) be a unit velocity curve and its tangent vector γ̇(t) be on
M1. Then the derivative of the matrix B is a real quasi-orthogonal matrix.

Proof. We suppose that γ(t) be a unit velocity curve. Then γ̇21 + αγ̇22 − βγ̇23 −
αβγ̇24 = 1. Also, since the tangent vector of γ is on M1, it implies that γ̇1(t)γ̇3(t) +
αγ̇2(t)γ̇4(t) = 0. Thus ḂT εḂ = ε and det Ḃ = 1.

Theorem 5.5. Let γ(t) be a unit velocity curve and its tangent vector γ̇(t) be on
M1. Then the motion is a regular motion and it is independent of h.

Proof. From Theorem 5.4, det Ḃ = 1 and thus the value of det Ḃ is independent of
h.

Theorem 5.6. Let γ(t) be a unit velocity curve whose the position vector and
tangent vector are on M1. Then the pole points of the motion given by (5.2) are
X0 = −Ḃ−1Ċ.

Proof. Since the position vector of the curve γ is on M1, from Theorem 5.3, the
equation (5.2) becomes a homothetic motion. Also, because of γ(t) is a unit velocity
curve and γ̇(t) ∈M1, from Theorem 5.4 det Ḃ = 1 and it implies that there is only
one solution of the equation (4.1). Then the pole points of the motion given by
(5.2) are obtained as X0 = −Ḃ−1Ċ.



282 F. Kahraman Aksoyak, S. Özkaldı Karakuş

Corollary 5.3. Let γ(t) be a unit velocity curve whose the position vector and
tangent vector are on M1. The pole point associated with each t- instant in R0

is the rotation by the matrix Ḃ−1 of the speed vector of translation vector at the

opposite direction
(
−Ċ
)
.

Proof. From Theorem 5.4, the matrix Ḃ is a real quasi-orthogonal matrix. Then
the matrix Ḃ−1 is quasi-orthogonal matrix, too. This completes the proof.

Now we will give various examples of the homothetic motions on M1 according
to the situations of real numbers α and β.

Example 5.1. For α = β = 1, M1 becomes a hypersurface in R4
2. Let γ : I ⊂ R→M1 ⊂

R4
2 be a curve given by

γ (t) = h(t)

(
cosh (at) cos (bt) + cosh (at) sin (bt) i
− sinh (at) sin (bt) j + sinh (at) cos (bt) ij

)
,(5.4)

where a and b are real numbers. By using (5.1) and (5.4), the matrix B associated with
the curve γ becomes a homothetic matrix, where h : I ⊂ R→ R is a homothetic scale.
Also, if we take as h(t) = 1 in (5.4), then γ is a curve on M∗

1 and the matrix B determines
a rotation matrix in R4

2. In (5.4), if we choose as h(t) = 1, a = 0 and b = 1, then we get

γ (t) = cos t+ i sin t.(5.5)

By using (5.1) and (5.5), we get the matrix B as follows:

B =


cos t − sin t 0 0
sin t cos t 0 0

0 0 cos t − sin t
0 0 sin t cos t

 ,

where B is a rotational matrix in R4
2. Since this curve given by (5.5) is unit speed curve

and its tangent vector belongs to M1, the derivation of the above matrix Ḃ is a real quasi-
orthogonal matrix, too. Then it is a rotational matrix in R4

2. Similarly, in (5.4) if we take
as h(t) = 1, a = 1 and b = 0, then we get

γ (t) = cosh t+ ij sinh t.(5.6)

By using (5.1) and (5.6), we have the matrix B as follows:

B =


cosh t 0 0 sinh t

0 cosh t − sinh t 0
0 − sinh t cosh t 0

sinh t 0 0 cosh t

 .

where B is a rotational matrix in R4
2.

Example 5.2. For α = 1, β = −1, M1 is a hypersurface in R4. Let γ : I ⊂ R→M1 ⊂ R4

be a curve given by

γ (t) = h(t)

(
cos (at) cos (bt) + cos (at) sin (bt) i
− sin (at) sin (bt) j + sin (at) cos (bt) ij

)
,(5.7)
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where a and b are real numbers. By using (5.1) and (5.7), the matrix representation of
the curve γ is a homothetic matrix, in here h : I ⊂ R→ R is a homothetic scale. Also, for
h(t) = 1, γ becomes a spherical curve on M1, that is, γ (t) ∈M∗

1 = M1 ∩ S3. The matrix
representation of it is a rotation matrix in R4. Even, if we take as h(t) = 1, a = 0, b = 1,
then

γ (t) = cos t+ i sin t.(5.8)

From (5.1) and (5.8), by determining the matrix representation of the above curve, we
obtain

B =


cos t − sin t 0 0
sin t cos t 0 0

0 0 cos t − sin t
0 0 sin t cos t

 .

This matrix is a general rotational matrix in R4 which is defined by Moore [8]. Also, from
Theorem 5.4, Ḃ is a real orthogonal matrix, too.

Example 5.3. For α = β = −1, the hypersurface M1 lies in R4
2 and the following curve

lies on M1

γ (t) = h(t)

(
cosh (at) cosh (bt) + cosh (at) sinh (bt) i

+ sinh (at) sinh (bt) j + cosh (at) sinh (bt) ij

)
,(5.9)

in which a and b are real numbers. From (5.1) and (5.9), the matrix B according to the
curve γ is a homothetic matrix, where h : I ⊂ R→ R is a homothetic scale. Also, if we
take as h(t) = 1, then γ lies on M∗

1 and the matrix B gives a rotation matrix in R4
2.

5.2. Homothetic Motion on Hypersurface M2

Let us consider the hypersurface M2 as follows:

M2 =
{
x = (x1, x2, x3, x4) ∈ R4

αβ : x1x2 + βx3x4 = 0, x 6= 0
}
.

By using the generalized bicomplex numbers, M2 can be rewritten as:

M2 =
{
x = x11 + x2i+ x3j + x4ij ∈ R4

αβ : x1x2 + βx3x4 = 0, x 6= 0
}
,

or the hypersurface M2 can be expressed by using the matrix representiation of
generalized bicomplex numbers

M̃2 =

Mx =


x1 −αx2 −βx3 αβx4
x2 x1 −βx4 −βx3
x3 −αx4 x1 −αx2
x4 x3 x2 x1

 : x1x2 + βx3x4 = 0, x 6= 0

 ,

where Mx is the matrix representiation of the generalized bicomplex number x on
M2. The metric on hypersurface M2 is defined by g2(x, x) = x · xt2 = x21 − αx22 +
βx23 − αβx24 and the norm of any element x on M2 is given by ‖x‖ =

√
|g2(x, x)| =√

|x · xt2 |. This metric is Riemannian or pseudo-Riemannian metric on four dimen-
sional generalized linear space R4

αβ and for some special cases, it coincides with four

dimensional Euclidean space R4 or four dimensional pseudo-Euclidean space R4
2.
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Proposition 5.2. There are following properties about the norm on the hypersur-
face M2.

i) For x, y ∈M2, ‖x · y‖ = ‖x‖ ‖y‖ ,
ii) ‖x‖4 = det (Mx) .

Proof. These properties can be easily seen with directly calculations.

Corollary 5.4. A unit generalized bicomplex number on the hypersurface M2 de-
termines a rotation motion.

Proof. It is obvious from Proposition 5.2.

Theorem 5.7. M2 is a commutative Lie group.

Proof. The proof can be found in [10].

Let us denote the set of unit generalized bicomplex number on M2 by M∗2 . M
∗
2

is given as:

M∗2 = {x ∈M2 : g2 (x, x) = 1}
=

{
x ∈M2 : x21 − αx22 + βx23 − αβx24 = 1

}
.

Theorem 5.8. M∗2 is Lie subgroup of M2.

Proof. The proof can be found in [10].

Let γ be a curve on M2. In that case, it can be expressed as:

γ : I ⊂ R→M2

t → γ(t) = γ1(t) + γ2(t)i+ γ3(t)j + γ4(t)ij, γ1(t)γ2(t) + βγ3(t)γ4(t) = 0.

Then the matrix B corresponding to the curve γ is given as follows:

B = Mγ(t) =


γ1(t) −αγ2(t) −βγ3(t) αβγ4(t)
γ2(t) γ1(t) −βγ4(t) −βγ3(t)
γ3(t) −αγ4(t) γ1(t) −αγ2(t)
γ4(t) γ3(t) γ2(t) γ1(t)

 .(5.10)

Now by using this matrix B, we can define the one parameter motion on M2 at
R4
αβ .

Definition 5.2. Let R0 and R be the fixed space and the motional space at R4
αβ .

In that case, the one-parameter motion of R0 with respect to R is denoted by R0/R.
Then the one-parameter motion on M2 is given by[

X
1

]
=

[
B C
0 1

] [
X0

1

]
,
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or it can be expressed as

X = BX0 + C,(5.11)

where B is the matrix associated with the curve γ(t) on the hypersurface M2, C
is the 4× 1 real matrix depends on a real parameter t, X and X0 are the position
vectors of any point at R4

αβ respectively in R and R0.

Theorem 5.9. The equation given by (5.11) determines a homothetic motion on
M2.

Proof. Since the curve γ is on M2, it does not pass through the origin. So, the
matrix given by (5.10) can be expressed as:

B = Mγ(t) = h


γ1(t)
h

−αγ2(t)
h

−βγ3(t)
h

αβγ4(t)
h

γ2(t)
h

γ1(t)
h

−βγ4(t)
h

−βγ3(t)
h

γ3(t)
h

−αγ4(t)
h

γ1(t)
h

−αγ2(t)
h

γ4(t)
h

γ3(t)
h

γ2(t)
h

γ1(t)
h

 = hA,(5.12)

where h : I ⊂ R→ R, t → h (t) = ‖γ(t)‖ =
√
γ21 − αγ22 + βγ23 − αβγ24 . Since

γ(t) ∈ M2, γ1(t)γ2(t) + βγ3(t)γ4(t) = 0. By using this equality, we obtain that
the matrix A in (5.12) is a real quasi-orthogonal matrix. In that case it satisfies
AT εA = ε and detA = 1, where ε is the signature matrix corresponding to metric
g2 given by

ε =


1 0 0 0
0 −α 0 0
0 0 β 0
0 0 0 −αβ

 .
Hence A, h and C are a real quasi-orthogonal matrix, the homothetic scale of the
motion and the translation vector, respectively. So the equation (5.11) determines
a homothetic motion.

Remark 5.2. The norm of the curve γ ∈ R4
αβ is found as

‖γ(t)‖ =
√
|γ2

1 − αγ2
2 + βγ2

3 − αβγ2
4 |. We assume that γ2

1 − αγ2
2 + βγ2

3 − αβγ2
4 > 0 in this

paper.

Corollary 5.5. Let γ(t) be a curve on M∗2 . Then one-parameter motion on M2

given by (5.11) is a general motion consists of a rotation and a translation.

Proof. We assume that γ(t) is a curve on M∗2 . Then γ21 −αγ22 +βγ23 −αβγ24 = 1. In
that case the matrix B in (5.11) becomes a real-quasi orthogonal matrix, that is, it
satisfies BT εB = ε and detB = 1. This completes the proof.

Theorem 5.10. Let γ(t) be a unit velocity curve and its tangent vector γ̇(t) be on
M2. Then the derivative of the matrix B is a real quasi-orthogonal matrix.
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Proof. We suppose that γ(t) be a unit velocity curve then γ̇21 −αγ̇22 +βγ̇23 −αβγ̇24 =
1. Also since the tangent vector of the curve γ is on M2, we have γ̇1(t)γ̇2(t) +
βγ̇3(t)γ̇4(t) = 0. Thus ḂT εḂ = ε and det Ḃ = 1.

Theorem 5.11. Let γ(t) be a unit velocity curve and its tangent vector γ̇(t) be on
M2. Then the motion is a regular motion and it is independent of h.

Proof. From Theorem 5.10, det Ḃ = 1 and thus the value of det Ḃ is independent
of h.

Theorem 5.12. Let γ(t) be a unit velocity curve whose the position vector and
tangent vector are on M2. Then the pole points of the motion given by (5.11) are
X0 = −Ḃ−1Ċ.

Proof. Since the position vector of the curve γ is on M2, from Theorem 5.9, the
equation (5.11) becomes a homothetic motion. Also, because of γ(t) is a unit
velocity curve and γ̇(t) ∈ M2, from Theorem 5.10 det Ḃ = 1 and it implies that
there is only one solution of the equation (4.1). Then the pole points of the motion
given by (5.11) are found as X0 = −Ḃ−1Ċ.

Corollary 5.6. Let γ(t) be a unit velocity curve whose the position vector and
tangent vector are on M2. The pole point associated with each t- instant in R0

is the rotation by the matrix Ḃ−1 of the speed vector of translation vector at the

opposite direction
(
−Ċ
)
.

Proof. From Theorem 5.10, the matrix Ḃ is a real quasi-orthogonal matrix. Then
the matrix Ḃ−1 is quasi-orthogonal matrix, too. This completes the proof.

Now we will give various examples of the homothetic motions on M2 according
to the situations of real numbers α and β.

Example 5.4. For α = β = 1, M2 becomes a hypersurface in R4
2. Let γ : I ⊂ R→M2 ⊂

R4
2 be a curve as:

γ (t) = h(t)

(
cosh (at) cos (bt)− sinh (at) sin (bt) i

+ cosh (at) sin (bt) j + sinh (at) cos (bt) ij

)
,(5.13)

where a and b are real numbers. By using (5.10) and (5.13), the matrix B is a homothetic
matrix and h : I ⊂ R→ R is a homothetic scale. Also, for h(t) = 1, the matrix B becomes
a rotation matrix in R4

2.

Example 5.5. For α = −1, β = 1, M2 is a hypersurface in R4. Let us consider the curve
γ : I ⊂ R→M2 ⊂ R4 as follows:

γ (t) = h(t)

(
cos (at) cos (bt)− sin (at) sin (bt) i

+ cos (at) sin (bt) j + sin (at) cos (bt) ij

)
,(5.14)

where a and b are real numbers. From (5.10) and (5.14) we obtain the matrix representation
of the curve γ and it determines a homothetic matrix, in here h : I ⊂ R→ R is a homothetic
scale. Also, for h(t) = 1, γ becomes a spherical curve on M2, that is, γ (t) ∈M∗

2 = M2∩S3.
From Corollary 5.5, the matrix representation of it is a rotation matrix in R4.
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Example 5.6. For α = β = −1, the hypersurface M2 becomes a subset of R4
2 and the

following curve lies on M2

γ (t) = h(t)

(
cosh (at) cosh (bt) + sinh (at) sinh (bt) i

+ cosh (at) sinh (bt) j + sinh (at) cosh (bt) ij

)
,(5.15)

in which a and b are real numbers. From (5.10) and (5.15), the matrix B according to the
curve γ is a homothetic matrix, where h : I ⊂ R→ R is a homothetic scale. Also, if we
take as h(t) = 1, then γ lies on M∗

2 and the matrix B gives a rotation matrix in R4
2.

5.3. Homothetic Motion on Hypersurface M3

Let us consider the hypersurface M3 as follows:

M3 =
{
x = (x1, x2, x3, x4) ∈ R4

αβ : x1x4 − x2x3 = 0, x 6= 0
}
.

By using generalized bicomplex numbers, M3 can be rewritten as:

M3 =
{
x = x11 + x2i+ x3j + x4ij ∈ R4

αβ : x1x4 − x2x3 = 0, x 6= 0
}
,

or the hypersurface M3 can be expressed by using the matrix representiation of
generalized bicomplex numbers

M̃3 =

Mx =


x1 −αx2 −βx3 αβx4
x2 x1 −βx4 −βx3
x3 −αx4 x1 −αx2
x4 x3 x2 x1

 : x1x4 − x2x3 = 0, x 6= 0

 .

where Mx is the matrix representiation of generalized bicomplex number x on M3.
The metric on hypersurface M3 is defined by g3(x, x) = x · xt3 = x21 + αx22 + βx23 +
αβx24 and the norm of any element x on M3 is given by ‖x‖ =

√
|g3(x, x)| =√

|x · xt3 |. This metric is Riemannian or pseudo-Riemannian metric on four dimen-
sional generalized linear space R4

αβ and for some special cases, it coincides four

dimensional Euclidean space R4 or four dimensional pseudo-Euclidean space R4
2.

Proposition 5.3. There are following properties about the norms on the hyper-
surface M3.

i) For x, y ∈M3, ‖x · y‖ = ‖x‖ ‖y‖
ii) ‖x‖4 = det (Mx)

Proof. These properties can be easily seen with direct calculations.

Corollary 5.7. A unit generalized bicomplex number on the hypersurface M3 de-
termines a rotation motion.

Proof. It is obvious from Proposition 5.3.



288 F. Kahraman Aksoyak, S. Özkaldı Karakuş

Theorem 5.13. M3 is a commutative Lie group.

Proof. The proof can be found in [10].

Let us denote the set of unit generalized bicomplex number on M3 by M∗3 . M
∗
3

is given as:

M∗3 = {x ∈M3 : g3 (x, x) = 1}
=

{
x ∈M3 : x21 + αx22 + βx23 + αβx24 = 1

}
.

Theorem 5.14. M∗3 is Lie subgroup of M3.

Proof. The proof can be found in [10].

Let γ be a curve on M3. In that case, it can be expressed as

γ : I ⊂ R→M3

t → γ(t) = γ1(t) + γ2(t)i+ γ3(t)j + γ4(t)ij, γ1(t)γ4(t)− γ2(t)γ3(t) = 0.

Then the matrix B corresponding to the curve γ is given as follows:

B = Mγ(t) =


γ1(t) −αγ2(t) −βγ3(t) αβγ4(t)
γ2(t) γ1(t) −βγ4(t) −βγ3(t)
γ3(t) −αγ4(t) γ1(t) −αγ2(t)
γ4(t) γ3(t) γ2(t) γ1(t)

 .(5.16)

Now by using this matrix B, we can define the one parameter motion on M3 at
R4
αβ .

Definition 5.3. Let R0 and R be the fixed space and the motional space at R4
αβ .

In that case, the one-parameter motion of R0 with respect to R is denoted by R0/R.
Then the one-parameter motion on M3 is given by[

X
1

]
=

[
B C
0 1

] [
X0

1

]
,

or it can be expressed as

X = BX0 + C,(5.17)

where B is the matrix associated with the curve γ(t) on the hypersurface M3, C
is the 4× 1 real matrix depends on a real parameter t, X and X0 are the position
vectors of any point at R4

αβ respectively in R and R0, respectively.

Theorem 5.15. The equation given by (5.17) is a homothetic motion on M3.
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Proof. Since the curve γ is on M3, it does not pass through the origin. So, the
matrix given by (5.16) can be expressed as:

B = Mγ(t) = h


γ1(t)
h

−αγ2(t)
h

−βγ3(t)
h

αβγ4(t)
h

γ2(t)
h

γ1(t)
h

−βγ4(t)
h

−βγ3(t)
h

γ3(t)
h

−αγ4(t)
h

γ1(t)
h

−αγ2(t)
h

γ4(t)
h

γ3(t)
h

γ2(t)
h

γ1(t)
h

 = hA,(5.18)

where h : I ⊂ R→ R, t → h (t) = ‖γ(t)‖ =
√
γ21 + αγ22 + βγ23 + αβγ24 . Because of

γ(t) ∈ M3, we have γ1(t)γ4(t) − γ2(t)γ3(t) = 0. By using this equality, we obtain
that the matrix A in (5.18) is a real quasi-orthogonal matrix. In that case it satisfies
AT εA = ε and detA = 1, where ε is the signature matrix corresponding to metric
g3 given by

ε =


1 0 0 0
0 α 0 0
0 0 β 0
0 0 0 αβ

 .
Hence A, h and C are a real quasi-orthogonal matrix, the homothetic scale of the
motion and the translation vector, respectively. So the equation (5.17) determines
a homothetic motion.

Remark 5.3. The norm of the curve γ ∈ R4
αβ is found as

‖γ(t)‖ =
√
|γ2

1 + αγ2
2 + βγ2

3 + αβγ2
4 |. We assume that γ2

1 + αγ2
2 + βγ2

3 + αβγ2
4 > 0 in this

paper.

Corollary 5.8. Let γ(t) be a curve on M∗3 . Then one-parameter motion on M3

given by (5.17) is a general motion consists of a rotation and a translation.

Proof. We assume that γ(t) is a curve on M∗3 . Then γ21 + αγ22 + βγ23 + αβγ24 = 1.
In that case the matrix B given by (5.16) becomes a real-quasi orthogonal matrix,
that is, it satisfies BT εB = ε and detB = 1. This completes the proof.

Theorem 5.16. Let γ(t) be a unit velocity curve and its tangent vector γ̇(t) be on
M3. Then the derivative of the matrix B is a real quasi-orthogonal matrix.

Proof. We suppose that γ(t) be a unit velocity curve. Then γ̇21 +αγ̇22 +βγ̇23 +αβγ̇24 =
1. Also since the tangent vector of the curve γ is on M3, we have γ̇1(t)γ̇4(t) −
γ̇2(t)γ̇3(t) = 0. Thus ḂT εḂ = ε and det Ḃ = 1.

Theorem 5.17. Let γ(t) be a unit velocity curve and its tangent vector γ̇(t) be on
M3. Then the motion is a regular motion and it is independent of h.

Proof. From Theorem 5.16, det Ḃ = 1 and thus the value of det Ḃ is independent
of h.
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Theorem 5.18. Let γ(t) be a unit velocity curve whose the position vector and
tangent vector are on M3. Then the pole points of the motion given by (5.17) are
X0 = −Ḃ−1Ċ.

Proof. Since the position vector of the curve γ is on M3, from Theorem 5.15, the
equation (5.17) is a homothetic motion. Also, because of γ(t) is a unit velocity
curve and γ̇(t) ∈ M3, from Theorem 5.16 det Ḃ = 1. Thus the equation (4.1)
has only one solution. In that case the pole points of the motion are obtained as
X0 = −Ḃ−1Ċ.

Corollary 5.9. Let γ(t) be a unit velocity curve whose the position vector and
tangent vector are on M3. The pole point associated with each t- instant in R0

is the rotation by the matrix Ḃ−1 of the speed vector of translation vector at the

opposite direction
(
−Ċ
)
.

Proof. From Theorem 5.16, the matrix Ḃ is a real quasi-orthogonal matrix. Then
the matrix Ḃ−1 is quasi-orthogonal matrix, too. This completes the proof.

Now we will give various examples of the homothetic motions on M3 according
to the situations of real numbers α and β.

Example 5.7. For α = β = 1, M3 becomes a hypersurface in four dimensional Euclidean
space R4. Let γ : I ⊂ R→M3 ⊂ R4 be a curve as:

γ (t) = h(t)

(
cos (at) cos (bt) + cos (at) sin (bt) i

+ sin (at) cos (bt) j + sin (at) sin (bt) ij

)
,(5.19)

where a and b are real numbers. By using (5.16) and (5.19), the matrix B associated with
the curve γ is a homothetic matrix, where h : I ⊂ R→ R is a homothetic scale. Also, if
we take as h(t) = 1, then γ is a curve on M∗

3 . In that case it becomes a spherical curve
lies on M3 and the matrix B becomes a rotation matrix in R4.

Example 5.8. For α = 1, β = −1, M3 is a hypersurface in four dimensional Euclidean
space R4

2. Let γ : I ⊂ R→M3 ⊂ R4
2 be a curve given by

γ (t) = h(t)

(
cosh (at) cos (bt) + cosh (at) sin (bt) i

+ sinh (at) cos (bt) j + sinh (at) sin (bt) ij

)
,(5.20)

where a and b are real numbers. By using (5.16) and (5.20), the matrix representation
of the curve γ is a homothetic matrix, in here h : I ⊂ R→ R is a homothetic scale.
Also, for h(t) = 1, γ becomes a spherical curve on M3, that is, γ (t) ∈ M∗

3 . The matrix
representation of it is a rotation matrix in R4

2.

Example 5.9. For α = β = −1, the hypersurface M3 is in four dimensional pseudo-
Euclidean space R4

2 and the following curve lies on M3

γ (t) = h(t)

(
cosh (at) cosh (bt) + cosh (at) sinh (bt) i

+ sinh (at) cosh (bt) j + sinh (at) sinh (bt) ij

)
,(5.21)

in which a and b are real numbers. From (5.16) and (5.21), the matrix B according to the
curve γ is a homothetic matrix, where h : I ⊂ R→ R is a homothetic scale. Also, if we
take as h(t) = 1, then γ lies on M∗

3 and the matrix B gives a rotation matrix in R4
2.
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9. S. Özkaldi Karakuş and Y. Yayli : Bicomplex number and tensor product surfaces
in R4

2. Ukrainian Mathematical Journal, 64 (2012), 344-355.
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