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Abstract. In this work, we will study the numerical range W (T ) of EP matrices or
operators having a canonical form T = U(A ⊕ 0)U∗ in the case when 0 /∈ W (A). As a
result, we will define a kind of distance d(W (A,T )) between the sets W (A) and W (T )
and investigate their connenctions, giving also upper and lower bounds for the distance
d(W (A−1, T †)). Finally we will present the form of their angular numerical range F (T )
and its connection with F (T †).
Keywords: Numerical Range, Angular numerical range, EP matrices, Moore-Penrose
inverse.

1. Introduction- Preliminaries and notation

For the sake of simplicity, we will use the following notation for the unit ball of
Cn : N1 = {x ∈ Cn, ‖x‖ = 1} . All the definitions presented below can be found
in [5, 7].
The numerical range of a square matrix T ∈ Cn×n is the subset of the complex
plane C defined as:

W (T ) = {〈Tx, x〉 : x ∈ N1 ⊂ Cn} .

The numerical radius r(T ) is defined as:

r(T ) = sup{|λ|, λ ∈ W (T )}.

Another tool used in this work is, in the case of EP matrices T = U(A⊕ 0)U∗,
the distance between the origin and the set W (A), called the inner numerical radius,
r̂(T ) defined as:

r̂(T ) = inf{|λ|, λ ∈ ∂W (T )}
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Finally, the field angle Θ(W (T )) is the angle formed by the two support lines of
W (T ) coming from the origin. If 0 ∈ W (T ) then Θ(W (T )) = 2π. If 0 is on
the boundary of W (T ) and there is a unique tangent to the boundary at 0 then
Θ(W (T )) = π. For more on the field angle see [7] .
When T is symmetric, it holds that r(T ) = ρ(T ) = ‖T ‖, where ρ(T ) is the spectral
radius of T . For more details, see e.g. [10].
In addition, by taking into account that when T is not invertible then N(T ) the null
space of T is non zero and for any vector u ∈ N(T ) we have 〈Tu, u〉 = 0. Therefore,
we conclude that 0 ∈ W (T ) in the case of singular matrices.
The following result is well known and can be used for calculations and/or algorith-
mic purposes:

Proposition 1.1. For any given x ∈ Cn, the numerical range W (T ) is equal to:

W (T ) = {λ = 〈Tx, x〉 : x ∈ N1 ⊂ Cn} =

{

λ =
1

‖ x ‖2
〈Tx, x〉 : x ∈ Cn

}

Since for any x ∈ Cn we have

{

〈Tx, x〉 =‖ x ‖2 〈T (
x

‖ x ‖
),

x

‖ x ‖
〉 =‖ x ‖2 λ, λ ∈ W (T ) x ∈ Cn

}

The numerical range of a matrix is known to be a compact and convex subset of C.
Many interesting properties arise from this set and various properties of T can be
deduced from W(T).
When the corresponding matrix is real, W (T ) is symmetric with respect to the real
axis. On the other hand, W (T ) ⊂ R if and only if T is Hermitian, i.e., T ∗ = T ;
in this case, the endpoints of W (T ) coincide with the minimum and the maximum
eigenvalues of T. Furthermore, W (T ) is a line segment in the complex plane if and
only if the matrix T is normal and has collinear eigenvalues. We will present an
example of the real case and one of of the complex case in Figure 1.1. These two
examples will be used again in the sequel. Note that in both cases, the origin does
not belong to W (T ).

Another tool used in this work is the generalized inverse (Moore-Penrose) of a
singular square matrix. (Since the Numerical Range is defined only for square
matrices.) In the case when T is a complex m × n matrix of rank r, Penrose
showed that there is a unique matrix satisfying the four Penrose equations, called
the pseudo-inverse of T , denoted by T † such that

(1.1) TT † = (TT †)∗, T †T = (T †T )∗, TT †T = T, T †TT † = T †,

where T ∗ denotes the conjugate transpose of T .

It is easy to see that TT † is the orthogonal projection ofCn onto the rangeR(T ),
of T , denoted by PT , and that T †T is the orthogonal projection of Cm onto R(T ∗),
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Fig. 1.1: The numerical Range of (a) a real and (b) a complex matrix.

denoted by PT∗ . It is also well known that it holds R(T †) = R(T ∗). Standard
reference books on generalized inverses are [1, 2, 4].

The matrix T is called EP matrix if TT † = T †T . The set of EP matrices of
rank r are usually denoted by EPr. We take advantage of the fact that EP matrices
have a simple canonical form according to the decomposition Cm = R(T )⊕N (T ).
Indeed, an EPr matrix T has the simple block matrix form

(1.2) T = U

[

A 0
0 0

]

U∗ = U(A⊕ 0)U∗,

where the matrix A : R(T ) → R(T ) is invertible with rank(A) = r and U is unitary.
So, T can aslo be seen as a dilation of the matrix A.
The generalized inverse T † of the matrix T defined in (1.2) has the form

(1.3) T † = U

[

A−1 0
0 0

]

U∗ = U(A−1 ⊕ 0)U∗.

This decompositon is called the URU∗ decomposition of a matrix, and is a special
case of the URV decomposition.
According to another characterization, a square complex matrix T is said to be EP
if T and its conjugate transpose T ∗ have the same range. EP operators matrices
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constitute a wide class, which includes the self adjoint, the normal and the invertible
matrices. For more details about on EP matrices we refer to [2, 3, 11]. Various
characterizations of EP matrices were also collected in [12].
All the previous results are also valid for bounded EP operators on Hilbert space
with the appropriate modifications.
Throughout this paper, H will denote a separable Hilbert space of infinite dimension
and the set of all bounded operators acting on H is denoted by B(H). When the
space is finite dimensional, H will be replaced by Cn.

2. The Numerical Range of EP matrices

An important role, studying numerical ranges, plays whether or not zero belongs
to the numerical range. Necessary and sufficient conditions such that the origin
belongs to the numerical range of a complex matrix may be found e.g. in [9]. In
this work, we will examine the special case of EP matrices, T = U(A ⊕ 0)U∗ such
that 0 /∈ W (A).
For any matrix A ∈ Cn×n, and any principal submatrix A1 of A, W (A1) ⊆ W (A).
In the case of an EP operator, we have the following:

Theorem 2.1. Let T be an EP operator with the simple canonical form according

to the decomposition H = R(T )⊕N (T ), having the form : T = U(A⊕ 0)U∗.
Then W (T ) = co(W (A) ∪ (0)).

Proof. It is obvious that W (T ) ⊇ co(W (A)∪ (0)). For the contrary, since the space
can be decomposed as H = R(T )⊕N (T ), then for every x ∈ H, x = x1 + x2.
If λ ∈ W (T ), λ 6= 0 then λ = 〈Tx, x〉 = 〈Ax1, x1〉 for some x, ‖x‖ = 1, therefore
λ = 〈Ax1, x1〉 = λ′‖x1‖2 with ‖x1‖ ≤ 1 and λ′ ∈ W (A). This is equal to

λ = λ′‖x1‖
2 + (1− ‖x1‖

2)0,

so λ ∈ co(W (A) ∪ (0)). Obviously, when 0 ∈ W (A) ⇒ W (A) = W (T ).

The above result shows clearly the fact that when a number λ is a corner of W (A)
then λ is an eigenvalue of A (see [8]).

Example 2.1. We give two particular examples of the above proposition in the next two
figures.
1. Let

A =

[

4 1
3 6

]

, T =





4 1 0
3 6 0
0 0 0





A is the real matrix whose Numerical range was shown in Figure 1.1(a)
We have seen that 0 /∈ W (A). The numerical range of A is presented in blue in Figure
2.1. The numerical range of T = U(A ⊕ 0)U∗ is presented in green. W (A) is an ellipse,
with foci the eigenvalues of A, λ1 = 3, λ2 = 7 shown in red. We can see that W (T ) is the
convex hull of W (A)∪ (0) and that the origin is a corner point of W (T ).
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Fig. 2.1: Numerical Range of W (T ) = co(W (A) ∪ (0)) in green, W (A) in blue.

2. Let

B =

[

−1 i
2 3i

]

, S =





−1 i 0
2 3i 0
0 0 0





B is the complex matrix whose Numerical range was shown in Figure 1.1(b). As we have
seen in Figure 1.1(b), 0 /∈ W (B) and W (B) is an ellipse, with foci the eigenvalues of B,
λ1 = 1.508− 0.236i, λ2 = 0.508+3.24i . The numerical range W (S) of S = U(B⊕ 0)U∗ is
presented in green in Figure 2.2 and the eigenvalues are shown in red. We can see again
that the origin is a corner point of W (S) and that W (S) is the convex hull of W (B) ∪ 0.
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Fig. 2.2: Numerical Range of W (S) = co(W (B) ∪ (0)) in green.
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3. The distance between W (T ) , W (A)

As we can see from the previous results for EP operators the numerical range W (T )
is an extension of the numerical range W (A). To what extend? To have a measure
of this we define a kind of distance between the sets W (T ) and W (A). In fact,
we use the distance d(W (A, T )) of the origin to W (A). Whenever 0 ∈ W (A)
then the two sets coincide, so the distance is equal to zero. When 0 /∈ W (A)
then d(W (A, T )) = r̂(A), the inner numerical radius of A, which is defined as
r̂(A) = min|z|, z ∈ W (A). We give the following definition:

Definition 3.1. Let T ∈ B(H) be an EP operator having a canonical form T =
U(A ⊕ 0)U∗. Then the distance between the numerical ranges W (A),W (T ) is
defined as:

d(W (A, T )) =

{

0, 0 ∈ W (A)
r̂(A), 0 /∈ W (A)

As we can see, this type of distance may be seen as a special case of the Hausdorff
distance between subsets of a metric space.
Using the matrices presented in Example 2.1, we have that

d(W (A, T )) = 2.7639, d(W (B,S)) = 0.5711

The calculation of the above values was made using a modified Matlab code pre-
sented in [10].

A natural question then would be: What about the distance d(W (A−1, T †)), and its
relation with d(W (A, T ))? Equivalently, what is the relation between r̂(A), r̂(A−1)
when 0 /∈ W (A) ?

We obviously have that T † = U

[

A−1 0
0 0

]

U∗.

It also holds that W (T †) = co(W (A−1) ∪ (0)). Since in general there is no con-
nection between W (A) and W (A−1), neither between the numerical radius of these
matrices, the only relation we can have is an inequality connecting d(W (A−1, T †)),
and d(W (A, T )).
An answer can be given using a result from [6]:

Proposition 3.1. Let a nonsingular square matrix A, r̂(A) denote its inner nu-

merical radius and r(A) its numerical radius. Then it holds that:

r̂(A)

‖A‖2
≤ r̂(A−1) ≤ min{

r̂(A)

σ2

min
(A)

,
r(A)

‖A‖2
}

Based on the above result, we conclude the following Proposition:

Proposition 3.2. Let an EP matrix T with the canonical form T = U(A⊕ 0)U∗.
If 0 /∈ W (A) then we have

d(W (A, T ))

‖A‖2
≤ d(W (A−1, T †)) ≤ min{

d(W (A, T ))

σ2

min
(A)

,
r(A)

‖A‖2
}
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Example 3.1. Using the matrices from Example 2.1:

A =

[

4 1
3 6

]

, T =





4 1 0
3 6 0
0 0 0



 T † =





0.2857 −0.0476 0
−0.1429 0.1905 0

0 0 0





we have that :
r(A) = 7.2361 and r̂(A) = 2.7639, while ‖A‖ = 7.3351, σmin(A) = 3.
So, replacing in the above inequality we can see that

2.7639

7.33512
≤ d(W (A−1, T †)) ≤ min{

2.7639

9
,
7.2361

7.33512
} ⇔

0.0514 ≤ d(W (A−1, T †)) ≤ 0.1345

Using Matlab we get that d(W (A−1, T †)) = r̂(A−1) = 0.1316 which satisfies the
above inequality.

Another question on the relation between W (A),W (T ) is how much the bound-
ary ∂(A) has been changed to give ∂(T ). The distance d(W (A, T )) can give us a
measure of course, but we can also perform a statistical analysis of the boundaries
of numerical ranges as another index of the change performed. We expect the vari-
ance of ∂(T ) to increase more with respect to ∂(A), as the distance d(W (A, T ))
increases.

Example 3.2. In this example we will use the matrices B, S from Example 2.1 and the
following matrices C, R:

C =









4 0 0 −1
−1 4 0 0
0 −1 4 0
0 0 −1 4









R =













4 0 0 −1 0
−1 4 0 0 0
0 −1 4 0 0
0 0 −1 4 0
0 0 0 0 0













We have that d(W (C,R)) = r̂(C) = 3 and we can calculate the variance of the bound-
aries of C and R:

V ar(∂(C)) = 0.520, V ar(∂(R)) = 4.946.

On the other hand, using the matrices B, S from Example 2.1 with S = U(B ⊕ 0)U∗,
having a much lower distance of the Numerical Ranges, d(W (B,S)) = 0.5711 we can see
that:

V ar(∂(B)) = 0.949, V ar(∂(S)) = 0.90958.

As another possible index of change, we can also calculate the field angles Θ(W (R)) = 0.49
radians and Θ(W (S)) = 2.074 radians, using the matlab code drawing the Numerical range
found in [10].

From the above results we cannot have a clear picture of the relation between
d(W (A, T ) and the variance of the boundaries or the field angle. So, we will return
to this question in the last section (discussion) of this paper.
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Fig. 3.1: Numerical Range of W (R) = co(W (C) ∪ (0)) in blue and red, W (C) in
red.

4. The angular numerical range of EP operators and matrices

As we have seen, the origin is a sharp point of W (T ) in the above examples. This
property leads us to the notion of the Angular Numerical Range, a cone of the
complex plane and we will discuss it in this section. The angular opening of the
smallest angular sector including W (T ) is the field angle Θ(W (T )) and is also the
angular opening of the Angular Field of values F (T ):

Definition 4.1. The Angular Field of Values (or Angular Numerical range) of an
operator T, denoted by F (T ) is the subset of the complex plane C defined as:

F (T ) = {〈Tx, x〉 : x ∈ Cn, x 6= 0} .

It is clear that F (T ) is a cone or a sector in C having its top at the origin. It is
known that F (T ) is spanned by W (T ) and that Θ(W (T )) = Θ(F (T )).
In the case of nonsingular operators or matrices, we know that there is no connection
between the numerical range W (T ) and of W (T−1). But when it comes to the
angular numerical range, F (T ), then F (T ) = F (T−1), where F (T−1) denotes the
conjugate set. (See [7] page 66). It is clear from this result that for real matrices
we have F (T−1) = F (T ).
But, what happens if we replace T−1 with T † in the case of a singular operator or
matrix?
In this case we can notice the following: When T is singular, then 0 always belongs
to W (T ) ( take a vector x in the kernel of T ). In the general case when 0 is in the
interior of the numerical range, then F (T ) is the entire complex plane, and then
F (T ) = F (T †) = C.
We will examine the non trivial case, the class of EP operators, because then, 0 is
an angular point of the numerical range. In this case we have the following theorem:

Theorem 4.1. When T is a singular EP operator, T = U(A⊕0)U∗, 0 /∈ W (A).
Then F (T †) = F (T ). In the case of real matrices, it holds that F (T †) = F (T ).
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Proof. By taking the canonical form of T , there exists a unitary operator U and an
invertible operator (or an r × r matrix) A, such that

T = U

[

A 0
0 0

]

U∗

Using this factorization, and using the fact that F (T ) is preserving congruence (See
[7], page 13) we can see that F (T ) = F (A). Indeed, from the definition of F (T ) ,
we have that ( since H = R(T )⊕N (T ) ):

F (T ) = F (A⊕ 0) =
[

x∗ y∗
]

[

A 0
0 0

] [

x
y

]

= x∗Ax = F (A)

Now, using the fact that

T † = U

[

A−1 0
0 0

]

U∗

and that F (T ) = F (T−1), we have that F (T †) = F (A−1) = F (A) = F (T ).

In Figure 4.1 that follows we can see that the Field Angles and the Angular Nu-
merical Ranges (the blue and green cones anchored in the origin) coincide for the
matrices R,R† used in Example 3.2, and also presented in Figure 3.1. As we can
see, the angular opening of the sectors F (R), F (R†) is the same:
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Fig. 4.1: Numerical Ranges and Angular Numerical Ranges of the real matrices
R,R† in blue and green respectively. We can see that F (R) = F (R†).
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Table 5.1: Different values of d(W (A, T )),Θ(W (A)), V ar(A) where T = U(A⊕0)U∗

Matrix d(W (A, T )) Θ(W (T )) V ar(∂(T ))

P 15.52 1.6562 3.4704
R 3 0.49 4.95
T 2.764 0.44 10.81
S 0.571 2.075 0.909

5. Discussion- Conclusion

In this work, we presented a detailed analysis of the numerical range of EP operators
and matrices and its connection with their canonical form. We defined the distance
d(W (T,A)) when T can be decomposed as T = U(A⊕ 0)U∗.
From all the above discussion, we can say that for EP operators and matrices, the
Numerical range W (T ) can be seen as an pertrubation of W (A) when 0 /∈ W (A).
But, to what extend is this pertrubation? One can think by geometric intuition
that in general, when d(W (A, T )) gets larger then the field angle Θ(W (T )) gets
smaller, while the variance of the numerical boundary gets larger also.
Investigating this assumption, we used some numerical examples of matrices with
different sizes and various values of the distance d(W (A, T )) defined in this section.
In the following table we can see the corresponding values for the matrices presented
in the examples of this paper. The matrix P is a random 7 × 7 EP matrix of the
form P = U(P1 ⊕ 0)U∗, 0 /∈ W (P1).

From the results presented in the above table we can say that this question needs
a deeper investigation, since we can see that the general trend that we expected is
satisfied but not always. More factors have to be taken into account in order to
have a more clear picture of the connection between d(W (A, T )),Θ(W (T )). This
gives us a motivation for the extention of this work in the future.
The other topic that was presented in this work was the Angular Numerical range
F (T ). The connection of F (T ) and F (T−1) has already been investigated (see [7]),
and in this work we extended this result for F (T †) for the class of EP operators
and matrices.
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