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Abstract. In this paper, we give a nonlinear F -contraction form of the Sadovskii fixed
point theorem and we also investigate the existence of solutions for a functional integral
equation of Volterra type.
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1. Introduction and preliminaries

Let F be an increasing real-valued function on (0,∞) with limt→0 F (t) = −∞,
and ϕ : (0,∞)→ (0,∞) be a function such that lim infs→t+ ϕ(s) > 0 for any t ≥ 0.
A self-mapping T on a metric space (X, d) is said to be a (ϕ, F )-contraction (or a
nonlinear F -contraction) if

ϕ(d(x, y)) + F (d(Tx, Ty)) ≤ F (d(x, y)),

for all x, y ∈ X provided Tx 6= Ty.

Nonlinear F -contractions were considered from a new viewpoint in [13] and
the author showed, among other results, that in complete metric spaces these self-
mappings have unique fixed points and also under a suitable condition connecting
F and ϕ, a nonlinear F -contraction is condensing with respect to the Hausdorff
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measure of noncompactness; for more information on nonlinear F -contractions see
[9] and related references in [13].

The Schauder fixed point theorem states that any continuous self-mapping de-
fined on a nonempty convex and compact subset of a Banach space must have a fixed
point and it plays a crucial role in topological fixed point theory. In 1955, Darbo
[8] presented a fixed point theorem in terms of the measure of noncompactness (the
notion was first defined by Kuratowski [10]) in Banach spaces which generalized
the Schauder fixed point theorem. A slight generalization of Darbo’s theorem is
the Sadovskii fixed point theorem [12]: If Ω is a nonempty bounded closed convex
subset of a Banach X and if γ is a measure of noncompactness and T : Ω→ Ω is a
continuous mapping satisfying one of the following conditions:
(1) (Darbo [8]) T is a k-set contraction, i.e., there exists k ∈ [0, 1) such that for any
set C ⊂ Ω,

γ(T (C)) ≤ kγ(C);

(2) (Sadovskii [12]) T is a γ-condensing mapping, i.e., for any set C ⊂ Ω with
positive measure of noncompactness,

γ(T (C)) < γ(C),

then T has a fixed point.

Some generalizations of these fixed point theorems can be found for example in
[1, 7, 11] and the references therein.

In this paper, we give a nonlinear F -contraction form of the Sadovskii fixed
point theorem (Theorem 1.1) and then inspired by the main result in [13] (and [1])
we give an application to solving a functional integral equation of Volterra type
(Theorem 2.1).

We first give some preliminaries which will be needed in this paper.

Measures of noncompactness serve as useful tools in the theory of operator equa-
tions in Banach spaces and are used in the theory of functional equations, ordinary
and partial differential equations, integral and integro-differential equations, etc
(see e.g., [2, 3, 4, 5]). In this section, we give a generalization of the Sadovskii fixed
point theorem in terms of a general notion of the measure of noncompactness and
nonlinear F -contractions.

For the convenience of the reader we recall some basic notations and definitions;
see [2, 3, 4, 5]. Let R denote the set of all real numbers and R+

0 = [0,∞). In a
Banach space E, the symbols X and convX stand for the closure and closed convex
hull of the subset X of E, respectively. Denote by ME the family of all nonempty
bounded subsets of E and by NE the family consisting of all nonempty relatively
compact subsets of E.

Definition 1.1. A measure of noncompactness in the Banach space E is a map-
ping µ : ME → R+

0 which satisfies the following conditions:
(MN1) the family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE ;
(MN2) µ(X) ≤ µ(Y ) if X ⊂ Y ;
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(MN3) µ(X) = µ(X), for all X ∈ME ;
(MN4) µ(X) = µ(convX), for all X ∈ME ;
(MN5) µ(tX + (1− t)Y ) ≤ tµ(X) + (1− t)µ(Y ), for all X,Y ∈ME and t ∈ [0, 1];
(MN6) If {Xn} is a decreasing sequence of closed and nonempty sets of ME with
limn→∞ µ(Xn) = 0, then ∩∞n=1Xn is nonempty.

The following result is a generalization of the Sadovskii fixed point theorem
using F -contractions.

Theorem 1.1. Let Ω be a nonempty bounded closed convex subset of a Banach
space E and T : Ω→ Ω be a continuous mapping which satisfies

ϕ(µ(X)) + F (µ(TX)) ≤ F (µ(X)),

for any nonempty subset X of Ω with µ(TX) 6= 0 and µ(X) 6= 0, where µ is an
arbitrary measure of noncompactness and F : (0,∞)→ R and ϕ : (0,∞)→ (0,∞)
are functions such that

∀(tn) ∈ (0,∞)N (F (tn)→ −∞⇒ tn → 0)(1.1)

and

lim inf
s→t+

ϕ(s) > 0, (t ≥ 0).(1.2)

Then T has a fixed point.

Proof. Define a sequence (Ωn) inductively as follows:

Ω0 = Ω and Ωn = convTΩn−1, n ≥ 1.

We may assume, without loss of generality, that µ(Ωn) > 0, for every n ≥ 1, for
otherwise, by Schauder’s fixed point theorem T has a fixed point.

Observe that Ωn+1 ⊂ Ωn for all n ≥ 1, which means that the sequence (µ(Ωn))
is decreasing and therefore is convergent to some nonnegative real number. From
(1.2), there exist a c > 0 and n1 ∈ N such that ϕ(µ(Ωn)) > c for all n ≥ n1.
Therefore, we have

F (µ(Ωn)) ≤ F (µ(Ωn−1))− ϕ(µ(Ωn−1))

...

≤ F (µ(Ω0))−
n−1∑
i=0

ϕ(µ(Ωi))

= F (µ(Ω0))−
n1−1∑
i=0

ϕ(µ(Ωi))−
n−1∑
i=n1

ϕ(µ(Ωi))

< F (µ(Ω0))− (n− n1)c,
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for all n > n1. We get F (µ(Ωn))→ −∞ as n→∞ and hence by (1.1), µ(Ωn)→ 0.

Since (Ωn) is a decreasing sequence of closed and nonempty sets of ME with
limn→∞ µ(Ωn) = 0, by (MN1) and (MN6) of Definition 1.1 we have that Ω∞ =
∩∞n=0Ωn is a nonempty compact convex subset of Ω. Moreover, T maps Ω∞ into
itself. Now, applying the Schauder fixed point theorem we infer that T has a fixed
point in Ω∞.

Note that in the setting of Banach spaces Theorem 2.1 in [13] can be deduced
from Theorem 1.1. Furthermore, notice that putting F (x) = lnx in Theorem 1.1
we have the Sadovskii fixed point theorem. In fact, we have

ϕ(µ(X)) + ln(µ(TX)) ≤ ln(µ(X))

and therefore

µ(TX) ≤ 1

eϕ(µ(X))
µ(X) < µ(X).

Also, Theorem 1.1 can be easily generalized in the spirit of [11, Theorem 5].

Indeed, let Φ denote the set of all functions f : R+2 → R satisfying

∀(tn) ∈ (0,∞)N (∀n ∈ N (tn+1 ≤ tn ∧ f(tn+1, tn) ≥ 0)⇒ tn → 0) .

Observe that f ∈ Φ such that f(x, y) = −F (x)+F (y)−ϕ(y), where F and ϕ satisfy
(1.1) and (1.2), respectively. Then, we clearly have the following:

Theorem 1.2. Let µ be a measure of noncompactness on a Banach space E. As-
sume that Ω is a nonempty bounded closed and convex subset of E and T : Ω→ Ω
is a continuous mapping such that

∃f ∈ Φ∀X ⊂ Ω (X is noncompact⇒ f(µ(TX), µ(X)) ≥ 0).

Then, T has a fixed point.

2. Application to a functional integral equation of Volterra type

In this section, we follow the terminology and notations used in [6] unless oth-
erwise specified. Consider the Banach space BC(R+

0 ) consisting of all bounded and
continuous real-valued functions on the nonnegative real numbers R+

0 equipped with
the norm

‖x‖ = sup {|x(t)| : t ≥ 0} ,

where x ∈ BC(R+
0 ). Let X be a nonempty bounded subset of BC(R+

0 ) and L > 0.
For x ∈ X and ε > 0, the modules of continuity of the function x on the interval
[0, L], denoted by wL(x, ε), is defined as

wL(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, L], |t− s| ≤ ε}.
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Moreover, let

wL(X, ε) = sup{wL(x, ε) : x ∈ X}
wL0 (X) = lim

ε→0
wL(X, ε)

w0(X) = lim
L→∞

wL0 (X).

Also, for a fixed number t ∈ R+
0 let

X(t) = {x(t) : x ∈ X}.

Define a function µ on the family MBC(R+
0 ) as

µ(X) = w0(X) + lim sup
t→∞

diamX(t),(2.1)

where diamX(t) is defined as

diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X}.

The function µ defined above is a measure of noncompactness in the Banach space
BC(R+

0 ) (see [4, 6]).

Let F denote the set of all functions F : (0,∞)→ R which satisfy the following
conditions:
(F1) For all t1, t2 > 0 , t1 > t2 implies F (t1) > F (t2);
(F2) For any sequence (tn) ⊂ (0,∞), tn → 0 if and only if F (tn)→ −∞.

Suppose that two functions f and g satisfy the following conditions:

(i) f : R+
0 × R → R is a continuous function such that t 7→ f(t, 0) is also an

element of the Banach space BC(R+
0 ), f(0, 0) = 0, and c ≤ f(0, 2c) for each c ≥ 0;

(ii) If F ∈ F is continuous and ϕ : (0,∞)→ (0,∞) is a nonincreasing continuous
function such that

lim
s→t+

ϕ(s) > 0, (t ∈ R+
0 )

(or equivalently, lim infs→t+ ϕ(s) > 0), then

F (|f(s, u)−f(s, u1)|+ |f(t, w)−f(t, w1)|+f(0, c)) ≤ (F−ϕ)(|u−u1|+ |w−w1|+c),

where c, s, t ∈ R+
0 and u, u1, w, w1 ∈ R with

|f(s, u)−f(s, u1)|+ |f(t, w)−f(t, w1)|+f(0, c) > 0 and |u−u1|+ |w−w1|+c > 0.

Note that under the above assumptions we, in particular, have

F (|f(s, u)− f(s, u1)|) < F (|u− u1|)
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and consequently

|f(s, u)− f(s, u1| ≤ |u− u1|;

(iii) g : R+
0 × R+

0 × R → R is a continuous function and there exist continuous
functions α, β : R+

0 → R+
0 such that

lim
t→∞

α(t)

∫ t

0

β(s)ds = 0(2.2)

and

|g(t, s, x)| ≤ α(t)β(s)

for any x ∈ R and t, s ∈ R+
0 with s ≤ t;

(iv) With

κ = sup

{
f(t, 0) + α(t)

∫ t

0

β(s)ds : t ≥ 0

}
,

we have 0 ≤ κ <∞ and there exists a positive real number r0 such that

(F − ϕ)(r + 2κ) ≤ F (r).

Example 2.1. The following functions satisfy conditions (i)-(iv):

• f : R+
0 × R→ R defined by f(s, t) = | sin(s)|+ t

2 ;

• F ∈ F defined by F (t) = − 1
t ;

• ϕ : (0,∞)→ (0,∞) defined by ϕ(t) = 1
t ;

• g : R+
0 × R+

0 × R → R defined by g(t, s, x) = se−t h1(x)
1+|h2(x)| , where h1, h2 ∈

BC(R) with |h1(x)| ≤ 1 + |h2(x)|, for all x ∈ R;

• α, β : R+
0 → R+

0 defined by α(t) = e−t, β(s) = s.

Now we give an application of Theorem 1.1 where we show that a functional
equation of Volterra type has a solution.

Theorem 2.1. The integral equation of Volterra type

x(t) = f(t, x(t)) +

∫ t

0

g(t, s, x(s))ds, (t ∈ R+
0 )(2.3)

where f and g are functions satisfying conditions (i)-(iv) has a solution in the
Banach space BC(R+

0 ).
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Proof. We will use some ideas from [6]. Define a mapping T on the Banach space
BC(R+

0 ) as follows:

(Tx)(t) = f(t, x(t)) +

∫ t

0

g(t, s, x(s))ds, (t ∈ R+
0 ).

It is easy to see that for any x ∈ BC(R+
0 ), the function Tx is a real-valued continuous

function on R+
0 . In addition, for any function x ∈ BC(R+

0 ) and t ≥ 0 we have

F (|(Tx)(t)|) = F

(∣∣∣∣f(t, x(t)) +

∫ t

0

g(t, s, x(s))ds

∣∣∣∣)
≤ F

(
|f(t, x(t))− f(t, 0)|+

∫ t

0

|g(t, s, x(s))| ds+ f(t, 0)

)
≤ F (|f(t, x(t))− f(t, 0)|+ κ)

≤ F (|f(t, x(t))− f(t, 0)|+ f(0, 2κ))

≤ (F − ϕ) (|x(t))|+ 2κ)

≤ (F − ϕ)(‖x‖+ 2κ).

From assumption (iv), choose r0 > 0 such that (F −ϕ)(r0 + 2κ) ≤ F (r0). Then,
in particular, we have

F (|(Tx)(t)|) ≤ (F−ϕ)(|x(t)|+2κ) ≤ (F−ϕ)(‖x‖+2κ) ≤ (F−ϕ)(r0+2κ) ≤ F (r0),

when ‖x‖ ≤ r0 and since F is increasing we get |(Tx)(t)| ≤ r0 and finally since
t ≥ 0 was arbitrary, we have ‖Tx‖ ≤ r0. Therefore T maps the closed ball Br0 =
{x ∈ BC(R+

0 ) : ‖x‖ ≤ r0} into itself. (Notice also, since

F (|(Tx)(t)|) ≤ F (|f(t, x(t))− f(t, 0)|+ κ) ≤ F (|x(t))|+ κ) ≤ F (‖x‖+ κ),

Tx is bounded for any x ∈ BC(R+
0 ).)

Now, we show that the self-mapping T is continuous on the ball Br0 . Let ε > 0
be given. Suppose that x, y ∈ Br0 such that ‖x− y‖ < ε. We have

F (|(Tx)(t)− (Ty)(t)|)
≤ F

(
|f(t, x(t))− f(t, y(t))|+

∣∣∣∫ t0 g(t, s, x(s))ds−
∫ t
0
g(t, s, y(s))ds

∣∣∣)
≤ F

(
|f(t, x(t))− f(t, y(t))|+

∣∣∣∫ t0 g(t, s, x(s))ds
∣∣∣+
∣∣∣∫ t0 g(t, s, y(s))ds

∣∣∣)
≤ F

(
|f(t, x(t))− f(t, y(t))|+ 2α(t)

∫ t
0
β(s)ds

)
,

for any t ≥ 0. From assumption (iii), there exists a number L > 0 such that

2α(t)

∫ t

0

β(s)ds < ε,
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for each t ≥ L. Thus, for an arbitrary t ≥ L we obtain

F (|(Tx)(t)− (Ty)(t)|) ≤ F (|f(t, x(t))− f(t, y(t))|+ ε)

≤ F (|x(t))− y(t))|+ ε)

< F (2ε),

and since F is increasing, we obtain

|(Tx)(t)− (Ty)(t)| ≤ 2ε, (t ≥ L).(2.4)

Since the function g is uniformly continuous on the set [0, L]× [0, L]× [−r0, r0], we
have limε→0 w

L(g, ε) = 0, where

wL(g, ε) = sup{|g(t, s, x)− g(t, s, y) : t, s ∈ [0, L], x, y ∈ [−r0, r0], |x− y| ≤ ε}.

On the other hand, for an arbitrary fixed t ∈ [0, L], we have

F (|(Tx)(t)− (Ty)(t)|)
≤ F

(
|f(t, x(t))− f(t, y(t))|+ |

∫ t
0
g(t, s, x(s))ds−

∫ t
0
g(t, s, y(s))ds|

)
≤ F

(
|f(t, x(t))− f(t, y(t))|+

∫ L
0
wL(g, ε)ds

)
= F

(
|f(t, x(t))− f(t, y(t))|+ LwL(g, ε)

)
≤ F

(
|x(t)− y(t)|+ LwL(g, ε)

)
,

and since F is increasing we obtain

|(Tx)(t)− (Ty)(t)| ≤ |x(t)− y(t)|+ LwL(g, ε),(2.5)

for any t ∈ [0, L]. Finally, the continuity of T on the ball Br0 is obtained from (2.4)
and (2.5).

Let X be an arbitrary nonempty subset of the closed ball Br0 . Let ε > 0, L > 0,
z, w ∈ X, and t′ > 0 be fixed. Choose t, s ∈ [0, L] with |t− s| ≤ ε. Without loss of
generality, we assume that s < t. Then for any x, y ∈ X we have

F (|(Tx)(t)− (Tx)(s)|+ |(Tz)(t′)− (Tw)(t′)|)
≤ F (|f(t, x(t)) +

∫ t
0
g(t, τ, x(τ))dτ − f(s, x(s))−

∫ s
0
g(s, τ, x(τ))dτ |

+|f(t′, z(t′)) +
∫ t′
0
g(t′, s, z(s))ds− f(t′, w(t′))−

∫ t′
0
g(t′, s, w(s))ds|)

≤ F (|f(t, x(t))− f(s, x(t))|+ |f(s, x(t))− f(s, x(s))|+ |
∫ t
0
g(t, τ, x(τ))dτ

−
∫ t
0
g(s, τ, x(τ))dτ |+ |

∫ t
s
g(s, τ, x(τ))dτ |+ |f(t′, z(t′))− f(t′, w(t′))|

+|
∫ t′
0
g(t′, s, z(s))ds−

∫ t′
0
g(t′, s, w(s))ds|)

≤ F (wL1 (f, ε) + |f(s, x(t))− f(s, x(s))|+ LwL1 (g, ε) +
∫ t
s
|g(t, τ, x(τ))|dτ

+|f(t′, z(t′))− f(t′, w(t′))|+
∫ t′
0
|g(t′, s, z(s))− g(t′, s, w(s))|ds)

≤ F (wL1 (f, ε)+|f(t, x(t))−f(s, x(s))|+LwL1 (g, ε)+ε sup{α(s)β(t) : t, s ∈ [0, L]}
+|f(t′, z(t′))− f(t′, w(t′)))|+ 2α(t′)

∫ t′
0
β(s)ds))
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≤ F (|f(t, x(t))− f(s, x(s))|+ |f(t′, z(t′))− f(t′, w(t′))|+ ηLf,g(ε) + γ(t′)),

where

wL1 (f, ε) = sup{|f(t, x)− f(s, x)| : t, s ∈ [0, L], x ∈ [−r0, r0], |t− s| ≤ ε}

wL1 (g, ε) = sup{|g(t, τ, x)− g(s, τ, x)| : t, s, τ ∈ [0, L], x ∈ [−r0, r0], |t− s| ≤ ε},

and
ηLf,g(ε) = wL1 (f, ε) + LwL1 (g, ε) + ε sup{α(s)β(t) : t, s ∈ [0, L]},

γ(t′) = 2α(t′)

∫ t′

0

β(s)ds.

Notice that since f and g are uniformly continuous on the sets [0, L]× [−r0, r0]
and [0, L]× [0, L]× [−r0, r0], respectively, we have wL1 (f, ε) → 0 and wL1 (g, ε) → 0
as ε→ 0. In addition, since α and β are continuous functions on R+

0 , we have

sup{α(s)β(t) : t, s ∈ [0, L]} <∞.

Note also that, from (2.2), we have γ(t′) → 0 as t′ → ∞. Since, from assumption
(iv),

ηLf,g(ε) + γ(t′)) ≤ f
(
0, 2

(
ηLf,g(ε) + γ(t′)

))
,

using assumption (iii) we obtain

F (|(Tx)(t)− (Tx)(s)|+ |(Tz)(t′)− (Tw)(t′)|)
≤ (F − ϕ)(|x(t)− x(s)|+ |z(t′)− w(t′)|+ 2 ηLf,g(ε) + 2 γ(t′)).

Now, taking the supremum of the previous inequality as t, s ∈ [0, L] with |t− s| ≤ ε
we get

F (wL(Tx, ε) + |(Tz)(t′)− (Tw)(t′)|)
≤ (F − ϕ)(wL(x, ε)) + |z(t′)− w(t′)|+ 2 ηLf,g(ε) + 2 γ(t′)).

Taking the supremum as z, w ∈ X, we have

F
(
wL(TX, ε) + diam(TX)(t′)

)
≤ (F−ϕ)(wL(X, ε))+diamX(t′)+2 ηLf,g(ε)+2 γ(t′)).

Letting first ε→ 0 and then L→∞ we get

F (w0(TX) + diam(TX)(t′)) ≤ (F − ϕ) (w0(X) + diamX(t′) + 2 γ(t′)) .

Finally, taking the limit superior as t′ →∞ we obtain

F

(
w0(TX) + lim sup

t′→∞
diam(TX)(t′)

)
≤ (F − ϕ)

(
w0(X) + lim sup

t′→∞
diamX(t′)

)
.
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This can be restated as

F (µ(TX)) ≤ F (µ(X))− ϕ(µ(X)),

in which µ is the measure of noncompactness given in (2.1). Now, Theorem 1.1
gives the desired result.

Example 2.2. Consider the functions given in Example 2.1. An easy application
of Theorem 2.1 shows that the integral equation

x(t) = 2| sin(t)|+
∫ t

0

2se−t sin3 x(s)

1 + cos2 x(s)
ds, (t ∈ R+

0 )

has a solution in the Banach space BC(R+
0 ).
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