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Abstract. The k-means problem and the algorithm of the same name are the most com-
monly used clustering model and algorithm. Being a local search optimization method,
the k-means algorithm falls to a local minimum of the objective function (sum of squared
errors) and depends on the initial solution which is given or selected randomly. This
disadvantage of the algorithm can be avoided by combining this algorithm with more
sophisticated methods such as the Variable Neighborhood Search, agglomerative or dis-
sociative heuristic approaches, the genetic algorithms, etc. Aiming at the shortcomings
of the k-means algorithm and combining the advantages of the k-means algorithm and
revolutionary approach, a genetic clustering algorithm with the cross-mutation operator
was designed. The efficiency of the genetic algorithms with the tournament selection,
one-point crossover and various mutation operators (without any mutation operator,
with the uniform mutation, DBM mutation and new cross-mutation) are compared on
the data sets up to 2 millions of data vectors. We used data from the UCI repository
and special data set collected during the testing of the highly reliable semiconductor
components. In this paper, we do not discuss the comparative efficiency of the genetic
algorithms for the k-means problem in comparison with the other (non-genetic) algo-
rithms as well as the comparative adequacy of the k-means clustering model. Here,
we focus on the influence of various mutation operators on the efficiency of the genetic
algorithms only..
Keywords: k-means problem; Variable Neighborhood Search; genetic algorithms;
cross-mutation operator.

1. Introduction

With the increasing popularity of 5G commercialization and the development
of the IT hardware, data has grown exponentially in recent years. According to
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statistics, the global data usage has reached 40 Zb [1], and researchers in various
fields are increasingly interested in big data research. One of the most important
directions of intelligent data processing is cluster analysis. Clustering algorithm is
a technique for statistical data analysis and is widely used in many fields, including
machine learning, data mining, image analysis, and biological information process-
ing. In the commercial field, it can be used in a recommendation system to improve
efficiency of the company, and it can also solve problems such as reducing the size
of the initial data set and pattern recognition [2, 3]. Cluster analysis, also known as
group analysis or automated grouping, is a statistical analysis method performed
on a set of several patterns (data set), usually a pattern which is a metric vector,
or a point in a multidimensional space. In this paper, we call them data vectors.
The criterion to estimate the result of most clustering algorithms is the distance
between the elements in the same cluster and the distance between different clus-
ters [4]. According to the principle of clustering objects, similar objects are grouped
into a subset so that objects in the same subset are as close as possible, and the
distance between different subsets is as far as possible.

The k-means algorithm is one of the most popular clustering algorithms due
to its simplicity and remarkable effect [5]. However, the k-means algorithm is a
local search method which depends on the initial solution that is given or generated
randomly. Genetic algorithms have global optimization capabilities. The Genetic
k-Means algorithm is designed by combining the advantages of both. This article
summarizes the current research status of genetic clustering algorithms based on
the k-means optimization model.

Although the idea of the k-means clustering goes back to Steinhaus in 1957 [6],
the term ”k-means” was first used by James MacQueen in 1967 [7]. The k-means
algorithm is one of the most widely used clustering algorithms due to its simple and
convenient implementation principle and good experimental results. This algorithm
accepts the parameter k, randomly selectsk cluster centers (called centroids) among
the data vectors (if they are not given), and calculates the distance between the N
data in the data set and the closest center points. This experiment uses Euclidean
distance in a d-dimensional space [8]:

d(X,Y ) =

√

√

√

√

d
∑

i=1

(xi − yi)2.

Here, X = (x1, ..., xd) and Y = (y1, ..., yd) are two given points (vectors).

The minimized objective function (sum of squared distances also called sum of
squared errors, SSE) of the k-means optimization model and algorithm is as follows:

(1.1) f(C1, ..., Ck) =
N
∑

i=1

minj=1,kd
2(Ai, Cj).

Here, A1, ..., AN are the clustered data vectors, and C1, ..., Ck are the searched
cluster centers (centroids) which must be found.
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According to the obtained results, each data sample is assigned to its nearest
cluster, and the cluster center with the newest average value of the data samples
in each cluster is calculated. The cluster center is updated repeatedly until the
convergence condition is reached. The running process of the k-means algorithm is
as follows:

Step 1: Select k objects from the data object as the initial cluster center (this
step is optional, only is the initial solution is not given);

Step 2: Calculate the distance of each object to each cluster center separately,
and assign the object to the nearest cluster;

Step 3: Recalculate the center of k clusters after all object assignments are
completed;

Step 4: Compare with the k cluster centers obtained in the previous calculation.
If the cluster center changes, then turn to Step 2, otherwise output the clustering
results.

The advantages and disadvantages of the k-means algorithm are obvious. The
advantage is that the algorithm is simple and the convergence speed is fast. The
results (local optima) obtained with different initial cluster centroid positions may
vary significantly. It is easy to get a local optimal solution instead of a global
optimal solution.

In order to solve the shortcomings of the k-means algorithm, the k-means++
algorithm proposed by Arthur in 2007 improved the initialization step of the k-
means algorithm [9]. This improvement can be intuitively understood so that the
k initial cluster centers should be separated from each other as much as possible.
However, the k-means++ algorithm and similar ”smart initialization” algorithms
[10, 11] are still random search methods which fall into a local minimum.

The Genetic Algorithm (GA) was first proposed by Holland of the United States
in the 1970s [12]. The algorithm was designed and proposed according to the evo-
lutionary laws of organisms in nature. In 1967, Bagley, a student of Professor
Holland [13], first proposed the term ”Genetic Algorithm” in his doctoral disserta-
tion and discussed the application of the GAs in games, but early research lacked
guiding theory and the development of computing tools. In 1975, Holland et al. [14]
proposed a model theory that is extremely important for the study of genetic algo-
rithm theory.

The genetic algorithm has several basic frameworks of coding, fitness function,
and initial group selection [15, 16, 17]. Many genetic algorithms for the k-means
problem [18, 19, 3] use the direct coding: the chromosome (a solution in a population
of solutions) is the set of the coordinates of the cluster centers (centroids).

The fitness function is used to express the adaptability of an individual to the
environment. In this research, we use directly (1.1) as the fitness function.

The basic operation process of genetic algorithm is as follows [20]:
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Step 1 (Initialization): set the evolution algebra counter t = 0, set the maximum
evolution algebra T , and randomly generate n individuals as the initial group P (0).

Step 2 (Individual evaluation): Calculate the fitness of each individual in the
group P (t).

Step 3 (Selection operation): Apply the selection operator to the group. The
purpose of selection is to directly inherit the optimized individuals to the next
generation or to generate new individuals through pairing and crossover to the next
generation. The selection operation is based on the assessment of the fitness of the
individuals in the group.

Step 4 (Crossover operation): Apply crossover operator to the group. The
crossover operator plays a central role in genetic algorithms.

Step 5 (Mutation operation): Apply mutation operators to groups. That is, the
gene values at certain loci of individual strings in the group are changed. After
selection, crossover and mutation operations, the population P (t) obtains the next
generation population P (t+ 1).

Step 7 (Termination condition judgement): if t = T , the individual with the
maximum fitness obtained in the evolution process is used as the optimal solution
output to terminate the calculation. Instead of the limitaion of generations, the
time limitation can be used.

Since the k-means is an NP -hard optimization problem [21, 22, 23], the results
are easily stuck by the local optimal solution. The genetic algorithms are popular
instruments for global optimization. Krishna and Morty proposed a new clustering
method called Genetic K-means Algorithm (GKA) [17] combining the global search
capabilities of genetic algorithms with traditional k-means algorithms.

The flow of GA-k-means algorithm [17, 24, 25, 26, 27] is as follows.

Step 1: K samples are randomly selected from data set as the cluster center, and
the k cluster centers are considered as a chromosome. This operation is repeated n
times to obtain a population of size n.

Step 2: Use ordinary k-means algorithm to cluster data set with each chromo-
some as the cluster center. Get the new clustering center and the fitness function
value corresponding to each chromosome.

Step 3: Get the next generation through selection, crossover, and mutation
operations, and retain the best chromosomes from the previous generation. Repeat
Steps 2 and 3 until the termination condition is met.

Each chromosome is a sequence of real numbers representing k cluster centers.
For a d-dimensional data set, the length of the chromosome is kd. The sum of the
squared distances within the clusters in the data set (1.1) is used as the fitness
function.

Such algorithms can use two main selection operations. The first one is the most
commonly used method of proportional (roulette wheel) selection. The main idea
is that the probability that an individual is selected depends directly on the cor-
responding fitness of the individual. Another one is tournament selection strategy.
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For the k-means problem, after several iterations, the fitness function values of all
individuals become very close to each other. Thus, the roulette wheel selection is
inefficient, and we use the tournament approach. The algorithm randomly selects 3
chromosomes from the population, and then selects an individual with the highest
fitness value from these 3 chromosomes [28]. Since we need to select two ”parent”
chromosomes for the crossover operator, the second one can be chosen using the
same approach or selected randomly from the population with equal probabilities.

The crossover is a random process. The first type is a single-point crossover [24].
A point is randomly selected as the crossover point in the range of 1 to chromosome
length, and the two chromosomes are exchanged to the right of the cross point.
Two different points are randomly selected as the intersection point in the range
of 1 to chromosome length, and the middle part of the two points is exchanged
to obtain two new offspring. One of them is randomly selected to survive and
enter next generation. The third type is uniform crossover. For each node on the
chromosome, there is a certain chance that the crossover operation will occur. After
the entire process is completed, two new chromosomes will be obtained, and one
will be randomly selected to survive. However, in this paper we use the one-point
crossover only and focus on the efficiency of various mutation operators.

In the genetic algorithm, the mutation operation is to imitate the mutation link
of biological evolution in nature to change the individual. Although the chance
of mutation is relatively small, it is an indispensable link to generate new species.
Constantly fine-tune the new individuals generated by the crossover operator to
increase species diversity and search area. Traditionally, such genetics algorithms
algorithms with real-coded chromosomes for the k-means problem do not use any
mutation operators [18, 3] mutation operations commonly used in other GAs. How-
ever, this reduces the population diversity and may make the final results premature
and converge prematurely [25].

We compare several mutation operators and propose a simple idea of using
the one-point crossover operator as the mutation operator. The efficiency of such
approach is proved experimentally.

Our comparison is performed only with respect to squared distance between
points and centroids (1.1). There are lots of other clustering quality measures and
lots of clustering models (minimized or maximized objective functions), and there
is a perpetual question, which clustering model is more adequate. In this paper, we
do not compare the adequacy of the clustering models. We do not use any internal
or external criteria [29, 30, 31, 32, 33] which allow us to compare the adequacy
(preciseness) of various clustering models. The only aim of this research was to
improve the solution of the k-means optimization problem (not the accuracy of the
clustering result), i.e., to build algorithms which allow us to obtain better values of
the sum of squared distances.
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2. Mutation in the Genetic k-Means Algorithm

In comparison with the crossover operator, the mutation operator in standard
genetic algorithms is usually considered as a secondary operator with low probability
[34]. Nevertheless, some evolutionary algorithms without any crossover operator are
able to work better than standard genetic algorithms due to mutation and selection
[35, 36, 37, 38].

The majority of the bibliographical sources describe the evolutionary algorithms
for the k-means problems which use integer or binary chromosome encoding [39, 40,
30, 41, 42, 43], and thus these approaches cannot be implemented in our study
because the considered greedy heuristic algorithms use the real encoding only. The
other part of the sources propose the algorithms which actually solve a problem
other than k-means (other than sum of squared distances minimization) while we
focused on the improvement of the k-means problem solution only without any
change in the clustering model. The third part of the sources including authors’
papers do not use any mutation operators at all or use special operators called
mutation which actually run local search algorithms [18, 3, 44, 19, 45].

The mutation operator [46] changes each allele (a part of the chromosome) an
(n = 1, ..., k) to a new value a′n (a′n might be equal to an) with probability MP

independently, where 0 < MP < 1 is a parameter called the mutation probability
that is specified by the user. weak mutation, averagemutation, and strong mutation.
Usually, the probabilities are 1/5n (weak mutation) , 1/n (average mutation), and
5/n (strong mutation), and n is the length of the individual (the number of alleles
in the chromosome). There are two purposes for introducing mutations into genetic
algorithms: one is to make the genetic algorithm have local random search ability.
When the genetic algorithm is close to the optimal solution neighborhood through
the crossover operator, the local random search ability using the mutation operator
can accelerate the convergence to the optimal solution. Obviously, the probability
of mutation in this case should be a small value, otherwise the building blocks close
to the optimal solution will be destroyed by the mutation. The second is to enable
genetic algorithms to maintain group diversity to prevent immature convergence.
The termination condition of the genetic algorithm is that the individual’s fitness
reaches a preset threshold, or the fitness does not rise any more, or the number of
iterations reaches the preset algebra.

In [26], Sheng proposed a simple inversion approach. Generate randomly a
number within 0-1. If this number is less than the probability of mutation, then
perform an inversion operation on a value in the chromosome. This method has
certain limitations and can only be used for populations whose chromosomes are
binary-coded, but not for populations whose chromosomes are real-coded. For the
real-valued chromosomes, only few approaches were proposed.

Maulik proposed the Uniform random mutation in [27]. Randomly generate a
number from 0 to 1, if the number is less than mutation probability, the point on the
chromosome will mutate. The mutation strategy is as follow. Randomly generate
the number b from 0 to 1, if the value at a gene (cenreoid coordinate) position is v,
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after mutation it becomes:

v ←

{

v ± 2bv, v 6= 0,
±2b, v = 0

.

Positive and negative signs have the same probability. This mutation operation is
simple, however, the disadvantage is that when the value of a certain data is very
large or very small, the impact of this mutation will also be very large or very small,
which does not conform to the principle of mutation. If the range of the initial data
is very large, the gap between the mutated data and the initial data will be very
large.

In 1999, Krishna and Murty proposed a mutation strategy called distance-based
mutation (DBM) [28, 46]. Authors believed that the mutation must change the
allele value according to the distance of the cluster centroid from the corresponding
data point. Each allele (part of the chromosome) corresponds to a data point, and
its value represents the cluster to which the data point belongs. Define operators
so that if the corresponding cluster center is closer to the data point, the allele
value is more likely to be changed to the cluster number. After determining that
an allele is about to mutate, replace the allele with a randomly selected value from
the following distribution:

Pj =
cmdmax − dj

∑K

(i=1)(cmdmax− di)
.

Here, dj = d(Ai, Cj) is the Euclidean distance between point xi and centroid cj ,
and cm is a constant.

3. Idea of the Cross-Mutation Operator

The idea of our new mutation operator is very simple: to implement the crossover
operator to the individual being mutated and to a randomly generated individual.

We call this new mutation operator the cross-mutation. A randomly generated
result improved by the standard k-means algorithm is used as an input of the
mutation operator. The solution being mutated is the second input. For this two
input solutions (chromosomes), we implement the single-point crossover and then
run the k-means algorithm again to improve the result. Similar ideas are used in
known variable neighborhood search algorithms [47]. Observe the performance of
the genetic clustering algorithm using cross-mutation-like operators by comparing
the cross-mutation-like operators with the other three mutation operators.

The cross-mutation operator can be described as follows:

Required: Chromosome to be mutated S.

Step 1: Randomly generate a chromosome (set of centroids) S′;

Step 2: S′ ← kmeans(S′);
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Step 3: S ← crossover(S, S′);

Step 4: S = kmeans(S).

Our computational experiments show that the genetic algorithms based on this
idea are able to outperform both the algorithms without any mutation and the
algorithms with the uniform random mutation and DBM algorithms.

4. Computational Experiments

In our experiments, we used data sets from the UCI repository [48] and data
collected during the process of testing the highly reliable electronic components
(semiconductor devices 140UD25) [49] in a specialized testing center [50]. The aim
of clustering the highly reliable semicinductor devices is to detect the homogeneous
production batches in a mixed lot of the shipped devices.

The semiconductor device data set contains 1125 objects of dimensionality 18
(18 tests), and each dimension represents a certain attribute of the tested device.

Five clustering algorithms are used: k-means algorithm in the multi-start mode,
Genetic k-Means algorithm clustering algorithm without any mutation operator,
Genetic k-means algorithm with the uniform random mutation operator, Genetic
k-means algorithm with cross-mutation operator, and the DBM genetic clustering
algorithm.

For distance measure, Euclidean distance. For all data sets, we used the 0-1
normalization. All algorithms ran 30 times limited by 150 generations. Population
size is equal to 20.

All the experiments were performed with the average mutation probability 1/n
where n is the length of the chromosome (n = k for the Genetic k-Means algorithm).

As the result of a randomized algorithm may be accidental. In order to make
the experimental results statistically significant, run the entire experiment 30 times
and record the experimental results. The averaged results for the semiconductor
device data set are summarized in Tables 4.1 and 4.2.

Table 4.1: Computational experiments with semiconductor testing data set (1125
data vectors of dimensionality 18), 150 generations, 30 attempts

Mutation Obj. function (1.1) value
strategy Average Median

Without mutation 92.219 92.255
Uniform random mutation 91.862 91.905
Crossover-like mutation 91.638 91.635

DBM mutation 91.909 91.815
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Table 4.2: Statistical significance of the difference in results (Mann–Whitney U
test) for the semiconductor testing data set, 30 attempts

Mutation Significance Conclusion
strategies level

Without mutation vs. uniform 0.012 Significant difference
Without mutation vs. cross-mutation 0.005 Significant difference
Uniform mutation vs. cross-mutation 0.011 Significant difference

DBM vs. uniform 0.110 Difference is insignificant
DBM vs. cross-mutation 0.008 Significant difference

Fig. 4.1 shows that the convergence speed of two algorithms is almost the same.
However, the median convergence speed of 30 runs is better for the GA with our
new mutation operator, and this difference is statistically significant.

Fig. 4.1: Comparative convergence speed of four genetic algorithms with various
mutation operators on the semiconductor testing data set

The advantage of the new mutation operator over the three other variants is
statistically significant.

Clustering algorithms can be used in recommendation systems, based on user
portraits, to identify products or videos that may be of interest to users. For ex-
ample, in the e-commerce industry and short video industry that have emerged
in recent years, by using real-time recommendation systems using big data tech-
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Table 4.3: Computational experiments with household power consumption data set
(2075259 data vectors of dimensionality 6), 150 generations, 30 attempts

Mutation Obj. function (1.1) value
strategy Average Median

Without mutation 13468.54 13470.05
Uniform random mutation 13485.99 13487.90
Crossover-like mutation 13457.07 13457.70

DBM mutation 14674.96 13468.35

nology, by analyzing user behavior, making user portraits and clustering users to
recommend more products to users, this method brought a lot of revenue to many
companies [51, 52].

The second experiment uses data on the household power consumption. The
power consumprion information may be a simplest but important indicator of the
behaviour of people. The second data set contains data of electric power consump-
tion in the households with a one-minute sampling rate over a period of almost 4
years [48]. Different electrical quantities and some sub-metering values are available.
This archive contains 2075259 measurements gathered in a house located in Sceaux
(7km of Paris, France) between December 2006 and November 2010 (47 months).
Each data contains 8 attributes, namely data, time, global active power, global re-
active power, voltage, submeterings. Date and time attributes were removed, and
the other attributes were 0-1 normalized.

The results of running our algorithms are shown in Fig. 4.2 and Tables 4.3, 4.4.
As it can be seen from the above figure, the genetic clustering algorithm without
mutation operator has the fastest convergence speed, and has converged in about
10 generations, and the result stays at 13471.5. For the DBM mutation, it started
to decline particularly fast. From the 5th generation to the 25th generation, the
downward trend began to become slow. It converged around the 65th generation,
and the result stayed at 13469.3. The uniform mutation operator declined very
rapidly before the 15th generation, and the downward trend slowed down from
the 15th generation to the 35th generation, it converged at the 75th generation.
The cross-like mutation operator also had a process of hormonal decline before the
5th generation, and it has been steadily decreasing after the 5th generation until
it converges at the 110th generation, and the result is better than the other three
operators. Repeat this procedure for 15 times, and record the final results of various
mutation operators each time and record them.

For this comparatively large data set, the overall conclusion is the same: our new
mutation operator outperforms the other three versions of the genetic algorithms.
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Fig. 4.2: Comparative convergence speed of four genetic algorithms with various
mutation operators on household power consumption data set [48]

Table 4.4: Statistical significance of the difference in results (Mann–Whitney U
test) for the household power consumption data set, 30 attempts

Mutation Significance level Conclusion
strategies

Without mutation vs. uniform 0.013 Significant difference
Without mutation vs. cross-mutation 0.005 Significant difference
Uniform mutation vs. cross-mutation 0.011 Significant difference

DBM vs. uniform 0.010 Significant difference
DBM vs. cross-mutation 0.008 Significant difference
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5. Conclusions

The modern scientific literature offers only few approaches to building the mu-
tation operator for the genetic algorithms with real coded chromosomes for solving
the k-means problem. Traditionally, these algorithms do not use any mutation.
However, the simple idea of using the same single-point crossover operator for both
crossover and mutation is able to improve the results of the genetic algorithm. In
this case, the one-point crossover is applied to the chromosome being mutated and
a randomly generated chromosome improved by running the k-means algorithm.
This new mutation operator is efficient for both small and large data sets.

However, investigation of the new operator efficiency with various mutation
probabilities and various quantity of clusters as well as its applicability for the
other crossover operators are subject of our further research.
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