
FACTA UNIVERSITATIS (NIŠ)
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Abstract. In this paper, we study the uniqueness of linear differential polynomials
of meromorphic functions when they share a set of roots of unity. Our results shall
generalize recent results.
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1. Introduction and main results

In this paper, by meromorphic function we shall always mean a meromorphic
function in the complex plane. We adopt the standard notations in the Nevanlinna
Theory of meromorphic functions as explained in [5, 13, 14]. It will be convenient to
let E denote any set of positive real numbers of finite linear measure, not necessarily
the same at each occurrence.

For any non-constant meromorphic function f , we denote by S(r, f) any quantity
satisfying S(r, f) = ◦(T (r, f)) as r →∞, r 6∈ E. A meromorphic function a is said
to be small with respect to f if T (r, a) = S(r, f). We denote by S(f) the collection
of all small functions with respect to f . Clearly C∪{∞} ⊂ S(f) and S(f) is a field
over the set of complex numbers.
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For any two non-constant meromorphic functions f and g, and a ∈ S(f)∩S(g),
we say that f and g share a IM(CM) provided that f − a and g − a have the same
zeros ignoring(counting) multiplicities.

During the last few decades the uniqueness theory of entire or meromorphic
functions has developed as an active sub-field of the value distribution theory. The
main interest of the uniqueness theory is to determine an entire or meromorphic
function uniquely satisfying some necessary conditions.

In 1997 Yang and Hua [6] studied the unicity problem for meromorphic functions
and differential monomials of the form fnf (1), when they share only one value. S.
S. Bhoosnurmath and R. S. Dyavanal [3] extended the Yang-hua’s results to the
case of (fn)(k).

Definition 1.1. Let f be a non-constant meromorphic function. An expression
of the form

(1.1) P [f ] =

u∑
k=1

ak

p∏
j=0

(
f (j)

)lkj

where ak ∈ S(f) for k = 1, 2, ......, u and lkj are non-negative integers for k =
1, 2, ......, u; j = 0, 1, 2, ...., p and d =

∑p
j=0 lkj , for k = 1, 2, ......, u, is called a

homogeneous differential polynomial of degree d generated by f .

In 2019, Bhoosnurmath, Chakrabarty and Srivastava [4] proved that for a non-
constant homogeneous differential polynomial P [f ], the equation P [f ] = 1 has
infinitely many zeros.

To state the result we need the following definition.

Definition 1.2. For a meromorphic function f and a set S ⊆ C, we define
Ef (S) =

⋃
a∈S{z|f(z)−a = 0}, counting multiplicities; Ef (S) =

⋃
a∈S{z|f(z)−a =

0}, ignoring multiplicities. If Ef (S) = Eg(S)
(
Ef (S) = Eg(S)

)
, then we say that f

and g share S CM (IM). Evidently, if S contains only one element then it coincides
with the usual definition of CM (respectively IM) shared values.

Recently in 2018 V. H. An and H. H. Khoai [7] have proved the following unique-
ness theorem of meromorphic functions.

Theorem 1.1. Let f and g be two non-constant meromorphic functions. Let k,
d, n be three positive integers with n > 2k+ 2k+8

d , d ≥ 2 and S = {a ∈ C : ad = 1}.
If (fn)(k) and (gn)(k) share S CM, then one of the following holds:
1. f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three non-zero constants

such that (−1)kd(c1c2)nd(nc)2kd = 1.
2. f = tg for some t ∈ C such that tnd = 1.

Question 1.1. Regarding Theorem 1.1, a natural question to asked: Can CM be
replace by IM keeping the same conclusion?
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In 2020 Dilip et al. answered the above question positively and proved the following
theorem.

Theorem 1.2. [11] Let f and g be two non-constant meromorphic functions. Let
k, d, n be three positive integers with n > 2k+ 8k+14

d , d ≥ 2 and S = {a ∈ C : ad =

1}. If (fn)(k) and (gn)(k) share S IM, then one of the following holds:
1. f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three non-zero constants

such that (−1)kd(c1c2)nd(nc)2kd = 1.
2. f = tg for some t ∈ C such that tnd = 1.

Now we recall the notion of weighted sharing which appeared in the literature
in ([8, 9]) as this definition paves the way for future discussions as far as relaxation
of sharing is concerned. In the following definition, we shall explain this notion.

Definition 1.3. [8, 9]. Let l be a non-negative integer or infinity and a ∈ S(f).
We denote by El(a, f) the set of all zeros of f − a, where a zero of multiplicity m
is counted m times if m ≤ l and l + 1 times if m > l. If El(a, f) = El(a, g), we say
that f, g share the function a with weight l. We write f and g share (a, l) to mean
that f and g share the function a with weight l. Since El(a, f) = El(a, g) implies
that Es(a, f) = Es(a, g) for any integer s (0 ≤ s < l), if f, g share (a, l), then f, g
share (a, s), (0 ≤ s < l). Moreover, we note that f and g share the function a IM
or CM if and only if f and g share (a, 0) or (a,∞) respectively.

Definition 1.4. Let S be a set of distinct elements of C ∪ {∞} and l be a non-
negative integer or ∞. We denote by Ef (S, l) the set Ef (S, l) =

⋃
a∈S El(a, f). We

say that f and g share the set S with weight l if Ef (S, l) = Eg(S, l) .

Definition 1.5. Let f be a non-constant meromorphic function. Then we denote
by L(f) a differential polynomial of the following form: L(f) = f (k) for k = 1, 2, 3

and L(f) =
∑k−3

j=1 ajf
(j) + f (k) for k ≥ 4, where a1, a2, ..... , ak−3 are constants.

In 2020 Lahiri et al proved the following theorem which improved and generalized
Theorem 1.1.

Theorem 1.3. [10] Let f and g be two non-constant meromorphic functions shar-
ing (∞, 0) and k, d, n be three positive integers with n > 2k + 2k+8

d , d ≥ 2. Let
S = {a ∈ C : ad = 1}. If L(fn) and L(gn) share (S, 2) then one of the following
holds:
1. L(fn) = hL(gn) for some h ∈ C such that hd = 1.
2. f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three non-zero constants

such that

(c1c2)n

A
k−3∑
j=1

aj(nc)
j + (nc)k

+

A
k−3∑
j=1

aj(−nc)j + (−nc)k
 = h

and hd = 1, and A = 0 if k = 1, 2, 3 and A = 1 if k ≥ 4.
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In this paper, we shall prove the following result:

Theorem 1.4. Let f and g be two non-constant meromorphic functions sharing
(∞, 0). Let k (≥ 1), l (≥ 0), d (≥ 2), n (≥ 1) be integers and S = {a ∈ C : ad = 1}.
If L(fn) and L(gn) share (S, l) with one of the following conditions:
(i) l ≥ 2 and

(1.2) n > 2k +
2k + 8

d
,

(ii) l = 1 and

(1.3) n > 2k +
3k + 9

d
,

(ii) l = 0 and

(1.4) n > 2k +
8k + 14

d
,

then one of the following holds:
1. L(fn) = hL(gn), where hd = 1;
2. f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three non-zero constants

such that

(c1c2)n

A
k−3∑
j=1

aj(nc)
j + (nc)k

+

A
k−3∑
j=1

aj(−nc)j + (−nc)k
 = h

and hd = 1, and A = 0 if k = 1, 2, 3 and A = 1 if k ≥ 4.

Corollary 1.1. Let f and g be two non-constant entire functions. Let k (≥ 1),
l (≥ 0), d (≥ 2), n (≥ 1) be integers and S = {a ∈ C : ad = 1}. If L(fn) and L(gn)
share (S, l) with one of the following conditions:
(i) l ≥ 2 and

n > 2k +
2k + 4

d
,

(ii) l = 1 and

n > 2k +
5k + 9

2d
,

(ii) l = 0 and

n > 2k +
5k + 7

d
,

then one of the following holds:
1. L(fn) = hL(gn), where hd = 1;
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2. f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are three non-zero constants
such that

(c1c2)n

A
k−3∑
j=1

aj(nc)
j + (nc)k

+

A
k−3∑
j=1

aj(−nc)j + (−nc)k
 = h

and hd = 1, and A = 0 if k = 1, 2, 3 and A = 1 if k ≥ 4.

Corollary 1.2. Let f and g be two non-constant meromorphic functions sharing
(∞, 0). Let k (≥ 1), l (≥ 0), d (≥ 2), n (≥ 1) be integers and S = {a ∈ C : ad = 1}.
If (fn)(k) and (gn)(k) share (S, l) with one of the following conditions:
(i) l ≥ 2 and

n > max{3, 2k +
2k + 8

d
},

(ii) l = 1 and

n > max{3, 2k +
3k + 9

d
},

(ii) l = 0 and

n > max{3, 2k +
8k + 14

d
},

then one of the following holds:
1. f = ωg, where ωnd = 1;
2. f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three non-zero constants

such that (−1)kd(c1c2)nd(nc)2kd = 1.

2. Lemmas

In this section we present some lemmas which will needed in the sequel. Let F
and G be non-constant meromorphic functions and H be another function which is
defined as follows:

(2.1) H =

(
F (2)

F (1)
− 2

F (1)

F − 1

)
−
(
G(2)

G(1)
− 2

G(1)

G− 1

)
.

Lemma 2.1. [12, 14] Let f be a non-constant meromorphic function and let a0, a1,
..., an( 6≡ 0) be small functions with respect to f . Then

T
(
r, anf

n + an−1f
n−1 + ...+ a0

)
= nT (r, f) + S(r, f).

Lemma 2.2. [5] Let f be a non-constant meromorphic function and let k be a
positive integer. Then

T (r, L(f)) ≤ (k + 1)T (r, f) + S(r, f).
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Lemma 2.3. [10] Let f be a non-constant meromorphic function and k, n be
positive integers with n ≥ k + 2, a ∈ C \ {0}. Then

n− k − 2

n+ k
T (r, f) ≤ N

(
r,

1

L(fn)− a

)
+ S(r, f).

Lemma 2.4. [10] Let f be a non-constant meromorphic function and k, n be
positive integers with n > 2k. Then

(i) (n− 2k)T (r, f) + kN(r, f) +N

(
r,
fn−k

L(fn)

)
≤ T

(
r, L(fn)

)
+ S(r, f).

(ii) N

(
r,
fn−k

L(fn)

)
≤ kT (r, f) + kN(r, f) + S(r, f).

Lemma 2.5. [10] Let f and g be two non-constant meromorphic functions sharing
(∞, 0) and k, n be integers with n ≥ k + 1. If L(fn).L(gn) = h, h ∈ C \ {0}. Then
f(z) = c1e

cz, g(z) = c2e
−cz, where

(c1c2)n

A
k−3∑
j=1

aj(nc)
j + (nc)k

+

A
k−3∑
j=1

aj(−nc)j + (−nc)k
 = h

and hd = 1 and A = 0 if k = 1, 2, 3 and A = 1 if k ≥ 4.

Lemma 2.6. [1] If F and G be non-constant meromorphic functions sharing (1, 1)
then
2NL(r, 1

F−1 )+2NL(r, 1
G−1 )+N

(2

E

(
r, 1

F−1

)
−NF>2(r, 1

G−1 ) ≤ N(r, 1
G−1 )−N(r, 1

G−1 )

+ S(r, F ) + S(r,G).

Lemma 2.7. [1] If F and G be non-constant meromorphic functions sharing (1, 1)
then
NF>2(r, 1

G−1 ) ≤ 1
2N(r, F ) + 1

2N(r, 1
F )− 1

2N0(r, 1
F (1) ).

Lemma 2.8. [2] If F and G be non-constant meromorphic functions sharing (1, 0)
then NL(r, 1

F−1 ) ≤ N(r, F ) +N(r, 1
F ) + S(r, F ).

Lemma 2.9. Let l be a non-negative integer or infinity. F and G be non-constant
meromorphic functions sharing (1, l) and H as defined in (2.1). If H 6≡ 0, then
(i) If l ≥ 2, then

T (r, F ) ≤ 2N(r, F ) + 2N(r,G) +N2(r,
1

F
) +N2(r,

1

G
) + S(r, F ) + S(r,G).

(ii) If l = 1, then

T (r, F ) ≤ 5
2N(r, F ) + 2N(r,G) +N2(r, 1

F ) +N2(r, 1
G )

+ 1
2N(r, 1

F ) + S(r, F ) + S(r,G).
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(iii) If l = 0, then

T (r, F ) ≤ 4N(r, F ) + 3N(r,G) +N2(r, 1
F ) +N2(r, 1

G )

+2N(r, 1
F +N(r, 1

G ) + S(r, F ) + S(r,G).

The same inequality holds for T (r,G).

Proof. By second fundamental theorem of Nevanlinna we have

T (r, F ) + T (r,G) ≤ N(r, F ) +N(r, 1
F ) +N(r, 1

F−1 ) +N(r,G) +N(r, 1
G )

+N(r, 1
G−1 )−N0(r, 1

F (1) )−N0(r, 1
G(1) ) + S(r, F ) + S(r,G),(2.2)

where N0(r, 1
F (1) ) denotes the counting function corresponding to the zeros of F (1)

which are not the zeros of F and F − 1. Similarly defined N0(r, 1
G(1) ).

We consider the following cases:
Case 1: l ≥ 1. Then from (2.1) we have

N
1)
E

(
r, 1

F−1

)
≤ N(r, 1

H ) ≤ T (r,H) +O(1) ≤ N(r,H) + S(r, F ) + S(r,G)

≤ N(r, F ) +N (2(r, 1
F ) +N(r,G) +N (2(r, 1

G ) +NL(r, 1
F−1 ) +NL(r, 1

G−1 )

+N0(r, 1
F (1) ) +N0(r, 1

G(1) ) + S(r, F ) + S(r,G),

and so

N(r, 1
F−1 ) +N(r, 1

G−1 ) = N
1)
E

(
r, 1

F−1

)
+NL(r, 1

F−1 ) +NL(r, 1
G−1 )

+N
(2

E

(
r, 1

F−1

)
+N(r, 1

G−1 ) ≤ N(r, F ) +N(r,G) +N (2(r, 1
F )

+N (2(r, 1
G ) + 2NL(r, 1

F−1 ) + 2NL(r, 1
G−1 ) +N

(2

E

(
r, 1

F−1

)
+N(r, 1

G−1 ) +N0(r, 1
F (1) ) +N0(r, 1

G(1) ) + S(r, F ) + S(r,G).(2.3)

Subcase 1.1: l = 1. Using Lemmas 2.6 and 2.7 we get

2NL(r, 1
F−1 ) + 2NL(r, 1

G−1 ) +N
(2

E

(
r, 1

F−1

)
+N(r, 1

G−1 ) ≤ N(r, 1
G−1 )

+NF>2(r, 1
G−1 ) ≤ N(r, 1

G−1 ) + 1
2N(r, F ) + 1

2N(r, 1
F )− 1

2N0(r, 1
F (1) )

+S(r, F ) + S(r,G).(2.4)

Thus from (2.3) and (2.4) we have

N(r, 1
F−1 ) +N(r, 1

G−1 ) ≤ N(r, F ) +N (2(r, 1
F ) +N(r,G) +N (2(r, 1

G )

+N(r, 1
G−1 ) + 1

2N(r, F ) + 1
2N(r, 1

F ) + 1
2N0(r, 1

F (1) ) +N0(r, 1
G(1) )

+S(r, F ) + S(r,G).(2.5)
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Now we deduce from (2.2) and (2.5) that

T (r, F ) ≤ 2N(r, F ) + 2N(r,G) +N(r, 1
F ) +N(r, 1

G ) +N (2(r, 1
F )

+N (2(r, 1
G ) + 1

2N(r, F ) + 1
2N(r, 1

F ) + S(r, F ) + S(r,G) ≤ 5
2N(r, F )

+2N(r,G) +N2(r, 1
F ) +N2(r, 1

G ) + 1
2N(r, 1

F ) + S(r, F ) + S(r,G).

Subcase 1.2: l ≥ 2. For this case we have

2NL(r, 1
F−1 ) + 2NL(r, 1

G−1 ) +N
(2

E

(
r, 1

F−1

)
+N(r, 1

G−1 )

≤ N(r, 1
G−1 ) + S(r, F ) + S(r,G).(2.6)

From (2.2), (2.3) and (2.6), we get

T (r, F ) ≤ 2N(r, F ) + 2N(r,G) +N(r, 1
F ) +N(r, 1

G ) +N (2(r, 1
F )

+N (2(r, 1
G ) + S(r, F ) + S(r,G) ≤ 2N(r, F ) + 2N(r,G) +N2(r, 1

F )

+N2(r, 1
G ) + S(r, F ) + S(r,G).

Case 2: l = 0. Then we have

N
1)
E (r,

1

F − 1
) = N

1)
E (r,

1

G− 1
) + S(r,G),

N
(2

E (r,
1

F − 1
) = N

(2

E (r,
1

G− 1
) + S(r,G).

From (2.1) we have

N(r, 1
F−1 ) +N(r, 1

G−1 ) = N
1)
E (r, 1

F−1 ) +N
(2

E (r, 1
F−1 ) +NL(r, 1

F−1 )

+NL(r, 1
G−1 ) +N(r, 1

G−1 ) ≤ N1)
E (r, 1

F−1 ) +NL(r, 1
F−1 ) +N(r, 1

G−1 )

≤ N(r, F ) +N(r,G) +N (2(r, 1
F ) +N (2(r, 1

G ) + 2NL(r, 1
F−1 ) +NL(r, 1

G−1 )

+N(r, 1
G−1 ) +N0(r, 1

F (1) ) +N0(r, 1
G(1) ) + S(r, F ) + S(r,G).(2.7)

By (2.7) and Lemma 2.8 we get from (2.2)

T (r, F ) ≤ 2N(r, F ) + 2N(r,G) +N(r, 1
F ) +N(r, 1

G ) +N (2(r, 1
F ) +N (2(r, 1

G )

+2N(r, F ) + 2N(r, 1
F ) +N(r,G) +N(r, 1

G ) + S(r, F ) + S(r,G) ≤ 4N(r, F )

+3N(r,G) +N2(r, 1
F ) +N2(r, 1

G ) + 2N(r, 1
F +N(r, 1

G ) + S(r, F ) + S(r,G).

3. Proof of Main the Theorem

Proof of Theorem 1.4:
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Proof. Let
F = {L(fn)}d and G = {L(gn)}d.

Since n ≥ k + 3, from Lemma 2.3 with the value 1, it implies that L(fn) = 1 has
infinitely many solutions. So EL(fn)(S) 6= φ. Similarly EL(gn)(S) 6= φ. Also by the
hypothesis F , G share (1, l).
By Lemmas 2.1, 2.2 and 2.4, we get

(n− 2k)T (r, f) ≤ T (r, L(fn)) + S(r, f) ≤ (k + 1)T (r, fn) + S(r, f)

≤ (k + 1)nT (r, f) + S(r, f)

and
(n− 2k)T (r, g) ≤ T (r, L(gn)) + S(r, g) ≤ (k + 1)T (r, gn) + S(r, g)

≤ (k + 1)nT (r, g) + S(r, g).

Also we have

(3.1) S(r, F ) = S(r, L(fn)) = S(r, f)

and

(3.2) S(r,G) = S(r, L(gn)) = S(r, g).

Now, if a is a zero of L(fn), then F (a) = 0 with multiplicity ≥ 2. By (ii) of
Lemma 2.4 we get

N2(r, 1
F ) = 2N

(
r, 1

L(fn)

)
≤ 2N

(
r, 1

fn−k

)
+ 2N

(
r, fn−k

L(fn)

)
≤ 2N

(
r, 1f

)
+ 2N

(
r, fn−k

L(fn)

)
≤ 2T (r, f) + 2N

(
r, fn−k

L(fn)

)
S(r, f) ≤ 2T (r, f) + 2kT (r, f) + 2kN(r, f) + S(r, f)

= 2(k + 1)T (r, f) + 2kN(r, f) + S(r, f).(3.3)

N2(r, 1
G ) = 2N

(
r, 1

L(gn)

)
≤ 2T (r, g) + 2N

(
r, gn−k

L(gn)

)
+ S(r, g)

≤ 2(k + 1)T (r, g) + 2kN(r, g) + S(r, g).(3.4)

Case 1: H 6≡ 0. Then by Lemma 2.9 we get following subcases:
Subcase 1.1: If l ≥ 2, then

T (r, F ) ≤ N2(r, 1
F ) +N2(r, 1

G ) + 2N(r, F ) + 2N(r,G)

+S(r, F ) + S(r,G).(3.5)

Using (3.1)–(3.4) in (3.5) we get

T (r, {L(fn)}d) ≤ (2k + 4)T (r, f) + 2kN(r, f) + 4T (r, g) + 2N
(
r, gn−k

L(gn)

)
+S(r, f) + S(r, g).(3.6)
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Similarly,

T (r, {L(gn)}d) ≤ (2k + 4)T (r, g) + 2kN(r, g) + 4T (r, f) + 2N
(
r, fn−k

L(fn)

)
+S(r, f) + S(r, g).(3.7)

Adding (3.6) and (3.7) we obtain

T (r, {L(fn)}d) + T (r, {L(gn)}d) ≤ (2k + 8){T (r, f) + T (r, g)}+ 2k{N(r, f)

+N(r, g)}+ 2N
(
r, fn−k

L(fn)

)
+ 2N

(
r, gn−k

L(gn)

)
+ S(r, f) + S(r, g).(3.8)

By Lemma 2.4 we get

d
{

(n− 2k)T (r, f) + kN(r, f) +N
(
r, fn−k

L(fn)

)}
≤ T (r, {L(fn)}d) + S(r, f)(3.9)

and

d
{

(n− 2k)T (r, g) + kN(r, g) +N
(
r, gn−k

L(gn)

)}
≤ T (r, {L(gn)}d) + S(r, g).(3.10)

Combining (3.9), (3.10) and using (3.8) we get

d(n− 2k){T (r, f) + T (r, g)}+ dk{N(r, f) +N(r, g)}+ dN
(
r, fn−k

L(fn)

)
+dN

(
r, gn−k

L(gn)

)
≤ (2k + 8){T (r, f) + T (r, g)}+ 2N

(
r, fn−k

L(fn)

)
+2k{N(r, f) +N(r, g)}+ 2N

(
r, gn−k

L(gn)

)
+ S(r, f) + S(r, g).(3.11)

Since d ≥ 2 we have

(3.12) dN

(
r,
fn−k

L(fn)

)
≥ 2N

(
r,
fn−k

L(fn)

)
,

(3.13) dN

(
r,
gn−k

L(gn)

)
≥ 2N

(
r,
gn−k

L(gn)

)
and

(3.14) dk{N(r, f) +N(r, g)} ≥ 2k{N(r, f) +N(r, g)}.

Using (3.12)–(3.14) we get from (3.11)

d(n− 2k){T (r, f) + T (r, g)} ≤ (2k + 8){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Therefore d(n− 2k) ≤ 2k + 8 ⇒ n ≤ 2k + 2k+8
d , which contradicts (1.2).
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Subcase 1.2: l = 1, then

T (r, F ) ≤ 5
2N(r, F ) + 2N(r,G) +N2(r, 1

F ) +N2(r, 1
G )

+ 1
2N(r, 1

F ) + S(r, F ) + S(r,G).(3.15)

Using (3.1)–(3.4) in (3.15) we get

T (r, {L(fn)}d) ≤ (3k + 5)T (r, f) + 2kN(r, f) + 4T (r, g) + 2N
(
r, gn−k

L(gn)

)
+S(r, f) + S(r, g).(3.16)

Similarly,

T (r, {L(gn)}d) ≤ (3k + 5)T (r, g) + 2kN(r, g) + 4T (r, f) + 2N
(
r, fn−k

L(fn)

)
+S(r, f) + S(r, g).(3.17)

Adding (3.16) and (3.17) we obtain

T (r, {L(fn)}d) + T (r, {L(gn)}d) ≤ (3k + 9){T (r, f) + T (r, g)}+ 2k{N(r, f)

+N(r, g)}+ 2N
(
r, fn−k

L(fn)

)
+ 2N

(
r, gn−k

L(gn)

)
+ S(r, f) + S(r, g).(3.18)

Combining (3.9), (3.10) and using (3.18) we get

d(n− 2k){T (r, f) + T (r, g)}+ dk{N(r, f) +N(r, g)}+ dN
(
r, fn−k

L(fn)

)
+dN

(
r, gn−k

L(gn)

)
≤ (3k + 9){T (r, f) + T (r, g)}+ 2N

(
r, fn−k

L(fn)

)
+2k{N(r, f) +N(r, g)}+ 2N

(
r, gn−k

L(gn)

)
+ S(r, f) + S(r, g).(3.19)

Using (3.12)–(3.14) we have from (3.19)

d(n− 2k){T (r, f) + T (r, g)} ≤ (3k + 9){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Therefore d(n− 2k) ≤ 3k + 9 ⇒ n ≤ 2k + 3k+9
d , which contradicts (1.3).

Subcase 1.3: l = 0, then

T (r, F ) ≤ 4N(r, F ) + 3N(r,G) +N2(r, 1
F ) +N2(r, 1

G ) + 2N(r, 1
F )

+N(r, 1
G ) + S(r, F ) + S(r,G).(3.20)

Using (3.1)–(3.4) in (3.20) we get

T (r, {L(fn)}d) ≤ (6k + 8)T (r, f) + 2kN(r, f) + (2k + 6)T (r, g)

+2N
(
r, gn−k

L(gn)

)
+ S(r, f) + S(r, g).(3.21)
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Similarly,

T (r, {L(gn)}d) ≤ (6k + 8)T (r, g) + 2kN(r, g) + (2k + 6)T (r, f)

+2N
(
r, fn−k

L(fn)

)
+ S(r, f) + S(r, g).(3.22)

Adding (3.21) and (3.22) we obtain

T (r, {L(fn)}d) + T (r, {L(gn)}d) ≤ (8k + 14){T (r, f) + T (r, g)}+ 2k{N(r, f)

+N(r, g)}+ 2N
(
r, fn−k

L(fn)

)
+ 2N

(
r, gn−k

L(gn)

)
+ S(r, f) + S(r, g).(3.23)

By (3.9), (3.10) and (3.23) we get

d(n− 2k){T (r, f) + T (r, g)}+ dk{N(r, f) +N(r, g)}+ dN
(
r, fn−k

L(fn)

)
+dN

(
r, gn−k

L(gn)

)
≤ (8k + 14){T (r, f) + T (r, g)}+ 2N

(
r, fn−k

L(fn)

)
+2k{N(r, f) +N(r, g)}+ 2N

(
r, gn−k

L(gn)

)
+ S(r, f) + S(r, g).(3.24)

Using (3.12)–(3.14) in (3.24) we obtain

d(n− 2k){T (r, f) + T (r, g)} ≤ (8k + 14){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Therefore d(n− 2k) ≤ 8k + 14 ⇒ n ≤ 2k + 8k+14
d , which contradicts (1.4).

Case 2: H ≡ 0. Integrating twice we get

1

G− 1
=

A

F − 1
+B,

where A (6= 0) and B are constants.
Thus

(3.25) G =
(B + 1)F + (A−B − 1)

BF + (A−B)

and

(3.26) F =
(B −A)G+ (A−B − 1)

BG− (B + 1)
.

Next we consider the following three subcases :
Subcase 2.1: B 6= 0,−1. Then from (3.26) we have

N

(
r,

1

G− B+1
B

)
= N(r, F ).

By Nevanlinna second fundamental theorem

T (r,G) ≤ N(r,G) +N(r, 1
G ) +N

(
r, 1

G−B+1
B

)
+ S(r,G)

≤ N(r,G) +N2(r, 1
G ) +N(r, F ) + S(r,G),
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⇒ T (r, {L(gn)}d) ≤ 2T (r, g) + 2N
(
r, gn−k

L(gn)

)
+N(r, g)

+N(r, f) + S(r, f) + S(r, g).(3.27)

If A−B − 1 6= 0, then it follows from (3.25) that

N

(
r,

1

F − −A+B+1
B+1

)
= N

(
r,

1

G

)
.

Again by Nevanlinna second fundamental theorem we have

T (r, F ) ≤ N(r, F ) +N(r, 1
F ) +N

(
r, 1

F−−A+B+1
B+1

)
+ S(r, F )

≤ N(r, F ) +N2(r, 1
F ) +N2(r, 1

G ) + S(r, F ) + S(r,G),

⇒ T (r, {L(fn)}d) ≤ N(r, f) + 2T (r, f) + 2N
(
r, fn−k

L(fn)

)
+2kN(r, g) + 2(k + 1)T (r, g) + S(r, f) + S(r, g).(3.28)

Combining (3.9), (3.10) and using (3.27), (3.28) we get

d(n− 2k){T (r, f) + T (r, g)}+ dk{N(r, f) +N(r, g)}+ dN
(
r, fn−k

L(fn)

)
+dN

(
r, gn−k

L(gn)

)
≤ 2T (r, f) + (2k + 5)T (r, g) + 2N

(
r, fn−k

L(fn)

)
+2k{N(r, f) +N(r, g)}+ 2N

(
r, gn−k

L(gn)

)
+ S(r, f) + S(r, g).(3.29)

By using (3.12)–(3.14) in (3.29), we obtain

(n− 2k − 2

d
)T (r, f) + (n− 2k − 2k + 5

d
)T (r, g) ≤ S(r, f) + S(r, g),

⇒ (n− 2k − 2k + 5

d
){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which contradict our assumptions (1.2)–(1.4).

Therefore A−B − 1 = 0. Then by (3.25)

N

(
r,

1

F + 1
B

)
= N(r,G).

By Nevanlinna second fundamental theorem and Lemma 2.4 we get

T (r, F ) ≤ N(r, F ) +N(r,
1

F
) +N

(
r,

1

F + 1
B

)
+ S(r, F )

≤ N(r, F ) +N2(r,
1

F
) +N(r,G) + S(r, F ),
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⇒ T (r, {L(fn)}d) ≤ N(r, f) + 2T (r, f) + 2N

(
r,
fn−k

L(fn)

)
+N(r, g)

+ S(r, f) + S(r, g).(3.30)

Adding (3.9), (3.10) and using (3.27), (3.30) we get

d(n− 2k){T (r, f) + T (r, g)}+ dk{N(r, f) +N(r, g)}

+dN
(
r, fn−k

L(fn)

)
+ dN

(
r, gn−k

L(gn)

)
≤ 2T (r, f) + 2T (r, g) + 2N

(
r, fn−k

L(fn)

)
+2{N(r, f) +N(r, g)}+ 2N

(
r, gn−k

L(gn)

)
+ S(r, f) + S(r, g).(3.31)

By using (3.12)–(3.14) we get from 3.31

(n− 2k − 2

d
){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which again violate assumptions (1.2)–(1.4).

Subcase 2.2: B = −1. Then

G =
A

A+ 1− F

and

F =
(1 +A)G−A

G
.

If A+ 1 6= 0,

N

(
r,

1

F − (A+ 1)

)
= N(r,G),

N

(
r,

1

G− A
A+1

)
= N(r,

1

F
).

By similar argument as Subcase 2.1 we get a contradiction.
Therefore A + 1 = 0 then FG = 1 ⇒ {L(fn)}d.{L(gn)}d = 1. Thus we get
L(fn).L(gn) = h, where hd = 1. Then by Lemma 2.5 we get possibility 2. of the
Theorem.

Subcase 2.3: B = 0. Then (3.25) and (3.26) gives G = F+A−1
A and F = AG+ 1−A

If A− 1 6= 0, N
(
r, 1

A−1+F

)
= N

(
r, 1

G

)
and N

(
r, 1

G−A−1
A

)
= N(r, 1

F ). Proceeding

similarly as in Subcase 2.1 we get a contradiction.
Therefore, A − 1 = 0 then F ≡ G i.e., L(fn) = hL(gn) for some h ∈ C such that
hd = 1. This completes the proof.

Proof of Corollary 1.2:
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Proof. Putting L(fn) = (fn)(k) and L(gn) = (gn)(k) we get the following cases from
Theorem 1.4.
Case A. (fn)(k) = h(gn)(k) where hd = 1.
By Case I of Theorem 1.2 of [10] we get the possibility 1.
Case B. (fn)(k).(gn)(k) = h where hd = 1.
For L(fn) = (fn)(k) and L(gn) = (gn)(k) in Lemma 2.5 we get the possibility 2.
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