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Ser. Math. Inform. Vol. 36, No 2 (2021), 349–363

https://doi.org/10.22190/FUMI200730026B

Original Scientific Paper

FIXED POINTS OF GENERALIZED (α,ψ, ϕ)-CONTRACTIVE
MAPS AND PROPERTY(P) IN S-METRIC SPACES

Gutti Venkata Ravindranadh Babu1 and Leta Bekere Kumssa2

1 Department of Mathematics, Andhra University,

Visakhapatnam-530 003, India
2 Department of Mathematics, Madda Walabu University,

Bale-Robe, P. O. Box 247, Ethiopia

Abstract. In this paper, we have introduced generalized (α,ψ, ϕ)-contractive maps
and proved the existence and uniqueness of fixed points in complete S-metric spaces.
We have also proved that these maps satisfy property (P ). The results presented in
this paper extend several well known comparable results in metric and G-metric spaces.
We have provided an example in support of our result.
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1. Introduction and Preliminaries

Over the past two decades the development of fixed point theory in metric spaces
has attracted considerable attention due to numerous applications in various areas.
Finding the existence of fixed points of a self map by considering more general
ambient spaces is an interesting aspect. In this course of development, some authors
have tried to give generalizations of metric spaces in various ways. In 2005, Mustafa
and Sims [13] introduced a new structure of metric spaces which are called G-metric
spaces as a generalization of metric spaces to develop and introduce new concepts on
contraction maps and proved the existence of fixed points of various mappings in this
new space. For more works on G-metric spaces, we refer [3, 14, 21]. In 2007, Sedghi
[18] introduced D*-metric spaces which is a probable modification of the definition
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of D-metric spaces introduced by Dhage [7] and proved some basic properties of
D*-metric spaces [17, 18]. In 2012, Sedghi, Shobe and Aliouche [19] introduced a
new concept on metric spaces, namely S-metric spaces and studied some properties
of these spaces. Sedghi, Shobe and Aliouche [19] asserted that S-metric space is a
generalization of G-metric space. But, very recently Dung, Hieu and Radojevic [8]
have verified by example (Example 2.1 and Example 2.2) that S-metric space is
not a generalization of G- metric space or vice versa. Therefore, the classes of G-
metric spaces and S- metric spaces are different. Recent papers dealing with fixed
point theorems for mappings satisfying certain contractive conditions on S-metric
spaces can be referred in [1, 2, 8, 12, 15, 16, 20].

Now we provide some preliminaries and basic definitions which we use throughout
this paper. We start with a G- metric spaces introduced by Mustafa and Sims [13].

Definition 1.1. [13] Let X be a non-empty set, G : X3 → [0,∞) be a function
satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) G(x, x, y) > 0 for all x, y ∈ X with x 6= y,

(G3) G(x, x, y) 6 G(x, y, z) for all x, y, z ∈ X with y 6= z,

(G4) G(x, y, z) = G(x, z, y) = G(z, x, y) = ... (symmetry in all three variables),

(G5) G(x, y, z) 6 G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric (G-metric) and the pair (X,G)
is called a G-metric space.

Definition 1.2. [11] A mapping ψ : [0,∞) → [0,∞) is said to be an altering
distance function if it satisfies: (i) ψ is continuous (ii) ψ non-decreasing and
(iii) ψ(t) = 0 if and only if t = 0.

We denote the class of all altering distance functions by Ψ.

We denote Φ = {ϕ : [0,∞)→ [0,∞) ϕ is continuous and non-decreasing}.

Remark 1.1. [4] If ψ ∈ Ψ and ϕ ∈ Φ with the condition ψ(t) > ϕ(t) for all t > 0, then
ϕ(0) = 0. Therefore ϕ ∈ Ψ.

Definition 1.3. [9] Let X be a non-empty set and T be a self map of X. We
denote the set of all fixed points of T by F (T ), where F (T ) 6= Ø. Then, T is said
to satisfy property (P ) if F (T ) = F (Tn) for all n ∈ N.

Here we note that even though, a map f : X → X has a unique fixed point, it
may not have property (P ).

In [4] Bousselsal et.al proved the existence and uniqueness of fixed points and
property (P ) in G-metric spaces.
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Theorem 1.1. [4] Let (X,G) be a complete G-metric space and f : X → X be a
mapping. If there exists ψ ∈ Ψ and ϕ ∈ Φ with the condition ψ(t) > ϕ(t) for all
t > 0, such that

(1.1) ψ(G(fx, fy, fz)) 6 ϕ
(

max
{
G(x, y, y), G(x, fx, fx), G(y, fy, fy),

G(z, fz, fz), αG(fx, fx, y)+(1−α)G(fy, fy, z), βG(x, fx, fx)+(1−β)G(y, fy, fy)
})

for all x, y, z ∈ X, where α, β ∈ (0, 1).
Then f has a unique fixed point (say u) and f is G-continuous at u. Further, f has
property (P ).

Note: In view of Remark 1.1, we can choose ϕ ∈ Ψ in Theorem 1.1.

Remark 1.2.

Since max
{
G(x, y, z), G(x, fx, fx), G(y, fy, fy), G(z, fz, fz), αG(fx, fx, y)

+(1− α)G(fy, fy, z), βG(x, fx, fx) + (1− β)G(y, fy, fy)
}

= max
{
G(x, y, z), G(x, fx, fx), G(y, fy, fy), G(z, fz, fz), αG(fx, fx, y)

+(1− α)G(fy, fy, z)
}

so that we need not consider the β terms in the inequality (1.1).

In 2012, Sedghi, Shobe and Aliouche [19] introduced S-metric spaces as follows:

Definition 1.4. [19] Let X be a non-empty set. An S−metric on X is a function
S : X3 → [0,∞) that satisfies the following conditions: for each x, y, z, a ∈ X

(S1) S(x, y, z) > 0,

(S2) S(x, y, z) = 0 if and only if x = y = z and

(S3) S(x, y, z) 6 S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

Example 1.1. (Example 2.4 [19]). Let (X, d) be a metric space. Define S : X3 → [0,∞)
by S(x, y, z) = d(x, y) + d(x, z) + d(y, z) for all x, y, z ∈ X. Then S is an S-metric on X.
This S-metric is called the S-metric induced by the metric d.

Example 1.2. (Example 1.9 [8]). Let X = R and let S(x, y, z) = |y + z − 2x|+ |y − z|
for all x, y, z ∈ X. Then (X,S) is an S-metric space.

Example 1.3. (Example 2.2 [8]). There exists an S-metric which is not a G-metric.
Let (X,S) be the S-metric space in Example 1.2. We have
S(1, 0, 2) = |0 + 2− 2|+ |0− 2| = 2, S(2, 0, 1) = |0 + 1− 4|+ |0− 1| = 4.
Then S(1, 0, 2) 6= S(2, 0, 1). So that (G4) fails. Hence S is not a G-metric.
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Example 1.4. (Example 2.1, [8] ). There exists a G-metric which is not an S-metric.
Let X = {a, b}. Define G : X3 → [0,∞) by G(a, a, a) = G(b, b, b) = 0, G(a, b, b) =
2, G(a, a, b) = 1 and extend G to all X3 by using (G4). Then G is a G-metric but not
an S-metric. Since 2 = G(a, b, b) � 1 = G(a, a, b) +G(b, b, b) +G(b, b, b). This shows that
G is not an S-metric on X.

Remark 1.3. From Example 1.3 and Example 1.4, we can conclude that the class of
S-metrics and the class of G-metrics are distinct.

The following lemmas are very useful in our subsequent discussions in proving our
main results.

Lemma 1.1. [19] In an S-metric space, we have S(x, x, y) = S(y, y, x).

Lemma 1.2. [8] Let (X,S) be an S-metric space. Then
(i) S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z) and
(ii) S(x, x, z) ≤ 2S(x, x, y) + S(z, z, y).

Definition 1.5. [19] Let (X,S) be an S-metric space. We define the following:

(i) A sequence {xn} in X converge to a point x ∈ X if S(xn, xn, x) → 0
as n → ∞. That is, for each ε > 0, there exists n0 ∈ N such that for all
n > n0, S(xn, xn, x) < ε and we denote it by lim

n→∞
xn = x.

(ii) A sequence {xn} in X is called a Cauchy sequence if for each ε > 0, there
exists n0 ∈ N such that S(xn, xn, xm) < ε for all n,m > n0.

(iii) The S-metric space (X,S) is said to be complete if each Cauchy sequence in
x is convergent.

Definition 1.6. [12] Let (X,S) and (Y, S′) be two S-metric spaces. Then the
function f : X → Y is S-continuous at x ∈ X if it is S-sequentially continuous at
x, that is, whenever {xn} is S-convergent to x, we have f(xn) is S′-convergent to
f(x).

Lemma 1.3. [19] Let (X,S) be an S-metric space. If the sequence {xn} in
X converges to x, then x is unique.

Lemma 1.4. [19] Let (X,S) be an S-metric space. If there exists sequences {xn}
and {yn} in X such that lim

n→∞
xn = x and lim

n→∞
yn = y, then

lim
n→∞

S(xn, xn, yn) = S(x, x, y).

Lemma 1.5. [1] Any S-metric space is a Hausdorff space.

In 2012, Sedghi [19] proved an analogue of Banach’s contraction principle in
S-metric space.
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Definition 1.7. [19] Let (X,S) be an S-metric space. A map f : X → X is
said to be an S-contraction if there exists a constant 0 6 λ < 1 such that
S(f(x), f(x), f(y)) ≤ λS(x, x, y) for all x, y ∈ X.

Theorem 1.2. [19] Let (X,S) be a complete S−metric space and f : X → X be
a contraction. Then f has a unique fixed point u ∈ X. Furthermore, for any x ∈ X
we have lim

n→∞
fn(x) = u with S(fn(x), fn(x), u) ≤ 2λn

1−λ (Sx, x, f(x)).

We now introduce the following definition.

Definition 1.8. Let (X,S) be an S-metric space. Let f : X → X be a self map
of X. If there exists α ∈ (0, 1) and ψ,ϕ ∈ Ψ such that

(1.2) ψ(S(fx, fy, fz)) 6 ϕ
(

max
{
S(x, y, z), S(x, x, fx), S(y, y, fy),

S(z, z, fz), αS(fx, fx, y) + (1− α)S(fy, fy, z)
})

for all x, y, z ∈ X. Then we say that f is a generalized (α,ψ, ϕ)-contractive map
on X.

Remark 1.4. We note that S-contraction map is a generalized (α,ψ, ϕ)-contraction map
with ψ(t) = t, for all t > 0 and ϕ(t) = λt, for all t > 0 where λ is an S-contraction
constant. But its converse is not true (Example 3.1). Thus the class of S-contraction map
is a proper subset of the class of all generalized (α,ψ, ϕ)-contraction map.

Hence we study the existence of fixed points of generalized (α,ψ, ϕ)-contractions in
S-metric spaces.

2. Main Results

We start this section with following lemma which is useful in proving our main
results.

Lemma 2.1. Let (X,S) be an S-metric space and {xn} be a sequence in X such
that

(2.1) lim
n→∞

S(xn, xn, xn+1) = 0.

If {xn} is not a Cauchy sequence, then there exists an ε > 0 and two sequences
{mk} and {nk} of positive integers with mk > nk > k such that

(2.2) S(xmk
, xmk

, xnk
) > ε, S(xmk−1, xmk−1, xnk

) < ε and

(i) lim
k→∞

S(xmk
, xmk

, xnk
) = ε,

(ii) lim
k→∞

S(xmk
, xmk

, xnk−1) = ε,
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(iii) lim
k→∞

S(xmk−1, xmk−1, xnk−1) = ε.

Proof. Let {xn} ⊂ X be not Cauchy. Then there exists an ε > 0 and two sequences
{mk} and {nk} of positive integers with mk > nk > k such that

(2.3) S(xmk
, xmk

, xnk
) > ε.

We choose mk, the least positive integer satisfying (2.3). Then mk > nk > k
with S(xmk

, xmk
, xnk

) > ε and S(xmk−1, xmk−1, xnk
) < ε. Hence (2.2) holds.

From (2.2), we have

(2.4) ε 6 S(xmk
, xmk

, xnk
).

On taking the lower limit in (2.4), we get

(2.5) ε ≤ lim inf
k→∞

S(xmk
, xmk

, xnk
).

By Lemma 1.2, we have

S(xmk
, xmk

, xnk
) 6 2S(xmk

, xmk
, xmk−1) + S(xnk

, xnk
, xmk−1)

= 2S(xmk
, xmk

, xmk−1) + S(xmk−1, xmk−1, xnk
)

< 2S(xmk
, xmk

, xmk−1) + ε.(2.6)

From (2.4), (2.6) and on taking the upper limit as k →∞, we have

(2.7) lim sup
k→∞

S(xmk
, xmk

, xnk
) = ε.

From (2.5) and (2.7), we obtain

(2.8) lim
k→∞

S(xmk
, xmk

, xnk
) = ε.

Hence (i) is proved.

Again, from (2.2), by Lemma 1.1 and Lemma 1.2, we have

ε ≤ S(xmk
, xmk

, xnk
) = S(xnk

, xnk
, xmk

)

6 2S(xnk
, xnk

, xnk−1) + S(xnk−1, xnk−1, xmk
)

= 2S(xnk
, xnk

, xnk−1) + S(xmk
, xmk

, xnk−1).(2.9)

From (2.9) and on taking the upper limit as k →∞, we obtain

(2.10) ε ≤ lim sup
k→∞

S(xmk
, xmk

, xnk−1).

Once again, by Lemma 1.2 and (2.3), we get

S(xmk
, xmk

, xnk−1) = S(xnk−1, xnk−1, xmk
)
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6 2S(xnk−1, xnk−1, xnk
) + S(xnk

, xnk
, xmk

)

= 2S(xnk−1, xnk−1, xnk
) + S(xmk

, xmk
, xnk

).(2.11)

Now, on taking the upper limit as k →∞ in (2.11), we obtain

(2.12) lim sup
k→∞

S(xmk
, xmk

, xnk−1) 6 ε.

By (2.10) and (2.12), we get

(2.13) lim sup
k→∞

S(xmk
, xmk

, xnk−1) = ε.

From (2.9), we obtain

(2.14) S(xmk
, xmk

, xnk−1) ≥ ε− 2S(xnk
, xnk

, xnk−1).

Hence on taking the lower limit as k →∞ in (2.14), we get

(2.15) ε ≤ lim inf
k→∞

S(xmk
, xmk

, xnk−1).

Therefore from (2.13) and (2.15), we obtain

(2.16) lim
k→∞

S(xmk
, xmk

, xnk−1) = lim
k→∞

S(xnk−1, xnk−1, xmk
) = ε.

So, (ii) is proved.

Again, from (2.2), by Lemma 1.1 and Lemma 1.2, we have

ε ≤ S(xmk
, xmk

, xnk
) = S(xnk

, xnk
, xmk

)

6 2S(xnk
, xnk

, xnk−1) + S(xnk−1, xnk−1, xmk
)

= 2S(xnk
, xnk

, xnk−1) + S(xmk
, xmk

, xnk−1)

≤ 2S(xnk
, xnk

, xnk−1) + 2S(xmk
, xmk

, xmk−1) + S(xmk−1, xmk−1, xnk−1).(2.17)

From (2.17) and on taking the upper limit as k →∞, we obtain

(2.18) ε ≤ lim sup
k→∞

S(xmk−1, xmk−1, xnk−1).

Again, by Lemma 1.1 and Lemma 1.2, we have

(2.19) S(xmk−1, xmk−1, xnk−1) ≤ 2S(xmk−1, xmk−1, xmk
)+S(xmk

, xmk
, xnk−1).

On taking the upper limit as k →∞ in (2.19) and by using (2.16), we have

(2.20) lim sup
k→∞

S(xmk−1, xmk−1, xnk−1) ≤ ε.
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From (2.17), we obtain

(2.21) S(xmk−1, xmk−1, xnk−1) ≥ ε− 2S(xmk
, xmk

, xmk−1).

Hence on taking the lower limit as k →∞ in (2.21), we get

(2.22) ε ≤ lim inf
k→∞

S(xmk
, xmk

, xnk−1).

Therefore by combining (2.18), (2.20) and (2.22), we obtain

(2.23) lim
k→∞

S(xmk−1, xmk−1, xnk−1) = ε.

So, (iii) is proved. Hence the lemma follows.

In the following we prove the main result of this paper.

Theorem 2.1. Let (X,S) be a complete S-metric space and let f be a generalized
(α,ψ, ϕ)-contractive map. If there exists ψ,ϕ ∈ Ψ with the condition ψ(t) >
ϕ(t) for all t > 0, then f has a unique fixed point (say u) and f is S-continuous at
u.

Proof. Let x0 ∈ X be arbitrary. We define a sequence {xn} by xn+1 = fxn for
n = 0, 1, 2, . . . . If xn = xn+1 for some n, then xn is a fixed point of f and we are
through.

Now, we assume that xn 6= xn+1 for all n. By (1.2) and substituting x = y =
xn−1, z = xn, we have

ψ(S(xn, xn, xn+1)) = ψ(S(fxn−1, fxn−1, fxn)) 6 ϕ
(

max
{
S(xn−1, xn−1, xn),

S(xn−1, xn−1, fxn−1), S(xn−1, xn−1, fxn), S(xn, xn, fxn),

αS(fxn−1, fxn−1, xn−1) + (1− α)S(fxn−1, fxn−1, xn)
})
,

= ϕ
(

max
{
S(xn−1, xn−1, xn), S(xn−1, xn−1, xn), S(xn−1, xn−1, xn),

S(xn, xn, xn+1), αS(xn, xn, xn−1) + (1− α)S(xn, xn, xn)
})
,

= ϕ
(

max
{
S(xn−1, xn−1, xn), S(xn, xn, xn+1), αS(xn, xn, xn−1)

})
,

= ϕ
(

max
{
S(xn−1, xn−1, xn), S(xn, xn, xn+1)

})
.(2.24)

If S(xn, xn, xn+1) > S(xn−1, xn−1, xn), then (2.24) becomes

(2.25) ψ(S(xn, xn, xn+1)) 6 ϕ(S(xn, xn, xn+1)) < ψ(S(xn, xn, xn+1)),

a contradiction. Hence S(xn−1, xn−1, xn) is the maximum. Therefore

(2.26) ψ(S(xn, xn, xn+1)) 6 ϕ
(
S(xn−1, xn−1, xn)

)
<ψ(S(xn−1, xn−1, xn)).

By using the property of ψ, ϕ and from (2.26), we obtain

S(xn, xn, xn+1) 6 S(xn−1, xn−1, xn) for all n.
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Hence {S(xn, xn, xn+1)} is a decreasing sequence of positive real numbers. Then
there exists r > 0 such that

(2.27) lim
n→∞

S(xn, xn, xn+1) = r.

On letting n→∞ in (2.26) and using (2.27), we have ψ(r) 6 ϕ (r) < ψ(r),
a contradiction. Hence r = 0.

We now prove that {xn} is an S-Cauchy sequence. If possible {xn} is
not S-Cauchy. By Lemma 2.1, there exist an ε > 0 and two sequences {mk} and
{nk} of positive integers with nk > mk > k such that S(xmk

, xmk
, xnk

) > ε,
S(xmk−1, xmk−1, xnk

) < ε and the identities (i)-(ii) of Lemma 2.1.
Putting x = y = xmk−1, z = xnk−1 and applying (1.2), we get

ψ(S(xmk
, xmk

, xnk
)) = ψ(S(fxmk−1, fxmk−1, fxnk−1))

6 ϕ
(

max
{
S(xmk−1, xmk−1, xnk−1), S(xmk−1, xmk−1, fxmk−1),

S(xmk−1, xmk−1, fxmk−1), S(xnk−1, xnk−1, fxnk−1),

αS(fxmk−1, fxmk−1, xmk−1) + (1− α)S(fxmk−1, fxmk−1, xnk−1)
})
,

= ϕ
(

max
{
S(xmk−1, xmk−1, xnk−1), S(xmk

, xmk
, xmk−1),

S(xmk
, xmk

, xmk−1), S(xnk
, xnk

, xnk−1),

αS(xmk
, xmk

, xmk−1) + (1− α)S(xmk
, xmk

, xnk−1)
})

= ϕ
(

max
{
S(xmk−1, xmk−1, xnk−1), S(xmk

, xmk
, xmk−1), S(xnk

, xnk
, xnk−1),

αS(xmk
, xmk

, xmk−1) + (1− α)S(xmk
, xmk

, xnk−1)
})
.(2.28)

On letting k →∞ in (2.28), using (2.27) and Lemma 2.1, we obtain

ψ(ε) 6 ϕ
(

max
{
ε, 0, 0, (1− α)ε

})
= ϕ(ε) < ψ(ε),

a contradiction.
Hence {xn} is an S-Cauchy sequence. Since (X,S) is complete, there exists
u ∈ X such that xn → u.

We now show that u is a fixed point of f . Here by Lemma 1.4, we note that

lim
n→∞

S(xn, xn, fu) = S(u, u, fu).

Suppose that f(u) 6= u and we consider

ψ(S(fu, fu, xn)) = ψ(S(fu, fu, fxn−1)) 6 ϕ
(

max
{
S(u, u, xn−1), S(u, u, fu), S(u, u, fu),

S(xn−1, xn−1, fxn−1), αS(fu, fu, u) + (1− α)S(fu, fu, xn−1)
})

= ϕ
(

max
{
S(u, u, xn−1), S(u, u, fu), S(xn−1, xn−1, xn),

αS(fu, fu, u) + (1− α)S(fu, fu, xn−1), S(fu, fu, u)
})
.(2.29)

On letting n→∞ in (2.29), we have

ψ(S(fu, fu, u)) 6 ϕ
(

max
{
S(u, u, u), S(u, u, fu), S(u, u, u),
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αS(fu, fu, u) + (1− α)S(fu, fu, u)
})

= ϕ(S(fu, fu, u)) < ψ(S(fu, fu, u)),

a contradiction. Hence fu = u.
Next we prove uniqueness of fixed point. Suppose u and v are two distinct fixed

points of f . Now, we consider

ψ(S(u, u, v)) = ψ(S(fu, fu, fv))

6 ϕ
(

max
{

(S(u, u, v), S(u, u, fu), S(u, u, fu), S(v, v, fv),

αS(fu, fu, u) + (1− α)S(fu, fu, v)
})

= ϕ
(

max
{
S(u, u, v), (1− α)S(u, u, v)

})
= ϕ(S(u, u, v)) < ψ(S(u, u, v)),

a contradiction. Therefore u = v.
Finally we prove that f is S-continuous at u. Let {xn} be a sequence in X

such that xn → u as n → ∞. We show that fxn → fu as n → ∞. For this
purpose, we consider

ψ(S(u, u, fxn)) = ψ(S(fu, fu, fxn))

6 ϕ
(

max
{
S(u, u, xn), S(u, u, fu), S(u, u, fu), S(xn, xn, fxn),

αS(fu, fu, u) + (1− α)S(fu, fu, xn)
})
,

= ϕ
(

max
{
S(u, u, xn), S(u, u, u), S(xn, xn, xn+1),

= αS(u, u, u) + (1− α)S(u, u, xn)
})
.(2.30)

By taking the limit on both sides of (2.30), and using the continuity of ϕ, we have
lim
n→∞

ψ(S(fu, fu, fxn)) = 0.

By the continuity of ψ, we have ψ( lim
n→∞

S(fu, fu, fxn)) = 0.

i.e., ψ( lim
n→∞

S(fxn, fxn, fu) = 0 (by Lemma 1.1).

Again, by property of ψ we have lim
n→∞

S(fxn, fxn, fu)) = 0.

Hence by the definition of continuity of f , it follows that fxn → fu as n → ∞.
Therefore, f is S-continuous at u.

Theorem 2.2. Under the hypotheses of Theorem 2.1 f has Property (P ).

Proof. In view of the proof of Theorem 2.1, f has a fixed point. Therefore F (fn) 6=
Ø. Now, we fix n > 1 and assume that u ∈ F (fn). That is fnu = u. We show
that u ∈ F (f). Assume f(u) 6= u, we consider

ψ(S(u, u, fu)) = ψ(S(fnu, fnu, fn+1u)) = ψ(S(ffn−1u, ffn−1u, ffnu))

6 ϕ
(

max
{
S(fn−1u, fn−1u, fnu), S(fn−1u, fn−1u, ffn−1u),

S(fn−1u, fn−1u, ffn−1u), S(fnu, fnu, ffnu),

αS(ffn−1u, ffn−1u, fn−1u)
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+(1− α)S(ffn−1u, ffn−1u, fnu)
})
,

= ϕ
(

max
{
S(fn−1u, fn−1u, u), S(u, u, fn−1u), S(u, u, fn−1u),

S(u, u, fu), αS(u, u, fn−1u) + (1− α)S(u, u, u)
})
,

= ϕ
(

max
{
S(u, u, fn−1u), S(u, u, fu)

})
.(2.31)

If S(u, u, fu) is the maximum, then from (2.31), we have
ψ(S(u, u, fu)) 6 ϕ(S(fu, fu, u)) = ϕ(S(u, u, fu)) < ψ(S(u, u, fu)),
a contradiction. Consequently, S(u, u, fn−1u) is the maximum. Therefore, from
(2.31) and Lemma 1.1, we obtain

ψ(S(u, u, fu)) = ψ(S(fnu, fnu, fn+1u)) 6 ϕ(S(u, u, fn−1u))

= ϕ(S(fnu, fnu, fn−1u)) < ψ(S(fnu, fnu, fn−1u))

= ψ(S(fn−1u, fn−1u, fnu)).(2.32)

Since ψ is non decreasing, from (2.32), it follows that

S(fnu, fnu, fn+1u) 6 S(fn−1u, fn−1u, fnu).

Hence {S(fnu, fnu, fn+1u)} is a decreasing sequence of positive real numbers.
Then, there exists r > 0 such that

(2.33) lim
n→∞

S(fnu, fnu, fn+1u) = r.

On letting n→∞ in (2.32) and using (2.33), we get ψ(r) 6 ϕ(r) < ψ(r),
a contradiction. Therefore r = 0.
Hence ψ(S(u, u, fu)) = lim

n→∞
(ψ(S(fnu, fnu, fn+1u)) = 0. That is, fu = u. Therefore,

u ∈ F (f). Hence f has property (P ).

In Section 3 we draw some corollaries from our results and provide a supportive
example.

3. Corollaries and an Example

If ψ is the identity mapping on [0,∞) in Theorem 2.1, we have the following
.

Corollary 3.1. Let (X,S) be a complete S-metric space and f : X → X be a
mapping. Assume that there exists α ∈ (0, 1), ϕ ∈ Ψ satisfying ϕ(t) < t for
t > 0 such that

S(fx, fy, fz) 6 ϕ
(

max
{
S(x, y, z), S(x, x, fx), S(y, y, fy), S(z, z, fz),

αS(fx, fx, y) + (1− α)S(fy, fy, z)
})
,

for all x, y, z ∈ X. Then f has a unique fixed point (say u) and f is S-continuous
at u.
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Here we observe that the ϕ that is used in the inequality (3.1) is a Boyd-Wong [5]
type contraction.

Corollary 3.2. Let (X,S) be a complete S-metric space and f : X → X be a
mapping. Assume that there exist λ, α ∈ (0, 1), such that

S(fx, fy, fz) 6 λmax
{
S(x, y, z), S(x, x, fx), S(y, y, fy), S(z, z, fz),

αS(fx, fx, y) + (1− α)S(fy, fy, z)
}
,(3.1)

for all x, y, z ∈ X. Then f has a unique fixed point (say u) and f is S-continuous
at u.

Proof : By choosing ϕ(t) = λt, for all t > 0 in Corollary 3.1, then the conclusion
follows.

Corollary 3.3. Let (X,S) be a complete S−metric space and f : X → X be
a mapping. Assume there exist a constant 0 6 λ < 1, α ∈ (0, 1), ψ, such that
S(fx, fy, fz) ≤ λS(x, y, z) for all x, y, z ∈ X. Then f has a unique fixed point
u ∈ X.

If α = 1
2 in the inequality (1.2), we have the following corollary.

Corollary 3.4. Let (X,S) be a complete S-metric space and f : X → X be a
mapping. Assume that there exist ψ,ϕ ∈ Ψ satisfying ϕ(t) < ψ(t) for all t > 0 such
that

ψ(S(fx, fy, fz)) 6 ϕ
(

max
{
S(x, y, z), S(x, x, fx), S(y, y, fy), S(z, z, fz),

1
2 [S(fx, fx, y) + S(fy, fy, z)]

})
,(3.2)

for all x, y, z ∈ X. Then f has a unique fixed point (say u) and f is S-continuous
at u.

In the following, we provide an example in support of our result.

Let Mα(x, y, z) = max
{
S(x, y, z), S(x, x, fx), S(y, y, fy), S(z, z, fz),

αS(fx, fx, y) + (1− α)S(fy, fy, z)
}
.

Example 3.1. Let X = [0, 7
4
]. We define S : X3 → [0,∞) by

S(x, y, z) = |x− z|+ |y − z| [19] and f : X → X by

f(x) =

{
7
4
− x if x ∈ [0, 1

2
]

x+1
2

if x ∈ ( 1
2
, 7
4
].

We define ψ, ϕ : [0,∞)→ [0,∞) by

ψ(t) =
t

2
for all t > 0and ϕ(t) =

{
t
2
− t2

4
if t ∈ [0, 1

2
]

t
2
− 1

16
if t > 1

2
.
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We now show that f satisfies the inequality (1.2).
Case (i): Let x, y, z ∈ [0, 12 ]. Here we consider

ψ(S(fx, fy, fz)) = ψ|7
4
− x− (

7

4
− z)|+ |7

4
− y − (

7

4
− z)| = ψ

(
|z − x|+ |z − y|

)
=

1

2
(|z − x|+ |z − y|) ≤ 1

2
≤ |2x− 7

4
| − 1

16

= ϕ(S(x, x, fx)) ≤ ϕ
(
Mα(x, y, z)

)
.

Case (ii): Let x, y, z ∈ ( 1
2 ,

7
4 ] .

Sub-case (i): |x− z|+ |y − z| ∈ [0, 12 ]. Therefore

ψ(S(fx, fy, fz)) = ψ|x+ 1

2
− z + 1

2
|+ |y + 1

2
− z + 1

2
| = ψ

(1

2
(|x− z|+ |y − z|)

)
=

1

4
(|x− z|+ |y− z|) ≤ 1

2
(|x− z|+ |y− z|)− 1

4
(|x− z|+ |y− z|)2

= ϕ(S(x, y, z)) ≤ ϕ
(
Mα(x, y, z)

)
.

Sub-case (ii): |x− z|+ |y − z| > 1
2 . In this case

ψ(S(fx, fy, fz)) = ψ|x+ 1

2
−z + 1

2
|+|y + 1

2
−z + 1

2
| = ψ

(1

2
(|x−z|+|y−z|)

)
=

1

4
(|x− z|+ |y − z|) ≤ 1

2
(|x− z|+ |y − z|)− 1

16

= ϕ(S(x, y, z)) ≤ ϕ
(
Mα(x, y, z)

)
.

Case (iii): Let z ∈ [0, 12 ] and x, y ∈ ( 1
2 ,

7
4 ].

ψ(S(fx, fy, fz)) = ψ
(
S(x+1

2 , y+1
2 , 74 − z)

)
= ψ

(
|x+1

2 − ( 7
4 − z)|+ |

y+1
2 − ( 7

4 − z)|
)

1
2

(
|x2 + z − 5

4 |+ |
y
2 + z − 5

4 |
)
≤ |2z − 7

4 | −
1
16 = 27

16 − 2z

= ϕ(S(z, z, fz)) ≤ ϕ
(
Mα(x, y, z)

)
.

Case (iv): Let x, y ∈ [0, 12 ] and z ∈ ( 1
2 ,

7
4 ].

ψ(S(fx, fy, fz)) = ψ
(
S( 7

4 − x,
7
4 − y,

z+1
2 )

)
= ψ

(
| 74 − x−

z+1
2 |+ |

7
4 − y −

z+1
2 |

)
= ψ

(
| 54 − x−

z
2 |+ |

5
4 − y −

z
2 |
)

= 1
2

(
| 54 − x−

z
2 |+ |

5
4 − y −

z
2 |
)
≤ 1

≤ |2x− 7
4 | −

1
16 = 27

16 − 2x = ϕ(S(x, x, fx)) ≤ ϕ
(
Mα(x, y, z)

)
.

Case (v): Let z, y ∈ [0, 12 ] and x ∈ ( 1
2 ,

7
4 ].

ψ(S(fx, fy, fz)) = ψ
(
S(x+1

2 , 74 − y,
7
4 − z)

)
= ψ

(
|x+1

2 − ( 7
4 − z)|+ |

7
4 − y − ( 7

4 − z)|
)

= 1
2

(
|x2 + z − 5

4 |+ |z − y|
)
≤ 5

16 ≤ |2z −
7
4 | −

1
16 = 27

16 − 2z

= ϕ(S(z, z, fz)) ≤ ϕ
(
Mα(x, y, z)

)
.

Hence f, ψ, ϕ satisfy all the hypotheses of Theorem 2.1 and f has a unique
fixed point u = 1.
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4. Summary

In our result, the concept generalized (α,ψ, ϕ)-contractive map was introduced with
the proof of the existence and uniqueness of fixed points in complete S-metric
spaces. The new idea, property (P ), was also introduced and we proved that these
maps satisfy property (P ). The results presented in this paper extend several well
known comparable results in metric and G-metric spaces. We derived corollaries
and provided an example to show the validity of our result.
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