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Abstract. The main purpose of this paper is to study transversal hypersurface (briefly,
T -hypersurface) P of a paraSasakian manifold M . We derive results allied with totally
geodesic and totally umbilical T -hypersurface of M . The necessary and sufficient condi-
tion for normality of (f, g, µ, υ, δ)-structure is established. Examples of T -hypersurface
are also illustrated.
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1. Introduction

The study of hypersurface in pseudo-Riemannian manifold is one of the potent as-
pects of the theory of pseudo-Riemannian geometry. It has ample significance in
general theory of relativity, black holes and quantum mechanics ( [1–3]). Therefore,
several researchers showed interest in studying the geometry of hypersurface in dif-
ferent ambient spaces (c.f., [4–7]).

On the other hand, transversal hypersurface (briefly, T -hypersurface) of con-
tact Riemannian manifold is a hypersurface such that ξ, the characteristic vector
field (or Reeb vector field) of manifold never tangent to the hyperplane. The con-
cept of T -hypersurface is introduced by K.Yano in 1972 [8]. After that transversal
hypersurfaces were investigated by several authors in different ambient manifolds
(c.f., [9–11]).

A systematic study of transversal hypersurfaces of paraSasakian manifold has not
been undertaken yet, however paraSasakian manifolds have many analogies and dif-
ferences with the Sasakian manifolds due to the fact that the geometry of hypersur-
faces of pseudo-Riemannian manifold behave differently (for more details see, [12]).
In the present paper, we consider an almost paracontact pseudo-metric manifold
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M . We obtain that every T -hypersurface of M admits an almost paraHermitian
structure as well as a (f, g, µ, υ, δ)-structure, and derive results allied with totally
geodesic and totally umbilical transversal hypersurface. Finally, the condition of
normality of (f, g, µ, υ, δ)-structure is obtained in a paraSasakian manifold. Exam-
ples of T -hypersurface with (f, g, µ, υ, δ)-structure are also illustrated.

2. Preliminaries

Let a manifold M of dimension (2n + 1) be C∞ and paracompact, and Γ(TM)
denotes the section of tangent bundle TM of manifold. Then M is said to be an
almost paracontact manifold if it admits a tensor field ϕ of (1, 1)-type, a 1-form η

and a characteristic vector field ξ such that

ϕ2 + η ⊗ ξ = I and η(ξ) = 1,(2.1)

where ϕ induces an almost paracomplex structure on the distribution D = ker(η),
that is, the eigenspaces corresponding to eigenvalues ±1 have equal dimension and
I being the identity operator on tangent bundle of M . Equation (2.2) yields

ϕξ = 0, rank(ϕ) = 2n and η ◦ ϕ = 0.(2.2)

A pseudo-metric g̃ is known as compatible with structure (ϕ, ξ, η) if for any vector
fields Y and Z, we have

g̃(Y, Z) = η(Y )η(Z)− g̃(ϕY, ϕZ)(2.3)

where signature of g̃ is necessarily (n + 1, n) and (M ;ϕ, ξ, η, g̃) is known as an
almost paracontact pseudo-metric (2n+1)-manifold. Here, g̃(Y, ξ) = η(Y ). In view
of equations (2.1) and (2.2), we have

g̃(Y, ϕZ) = −g̃(ϕY,Z).(2.4)

Let us consider (M ;ϕ, ξ, η, g̃) be an almost paracontact pseudo-metric (2n + 1)-
manifold. Let

(

Z, ν d
dx

)

be any tangent vector on M × R, where Z ∈ Γ(TM), x
denotes standard coordinate on R and ν is a smooth function. Then the almost
paracomplex structure J on product manifold M × R is given by J

(

Z, ν d
dx

)

=
(

ϕZ + νξ, η(Z) d
dx

)

and M is called normal if and only if J is integrable i.e., M is
normal if and only if

dη(Y, Z)ξ =
1

2
Nϕ(Y, Z),(2.5)

where Nϕ being the Nijenhuis torsion of endomorphism ϕ which is given as follows:

Nϕ(Y, Z) = (∇ϕY ϕ)Z − (∇ϕZϕ)Y + ϕ((∇Zϕ)Y − (∇Y ϕ)Z),(2.6)

for any tangent vectors Y , Z on M . Let Φ denotes the fundamental 2-form on M

then it is defined by Φ(Y, Z) = g̃(Y, ϕZ). If Φ(Y, Z) = dη(Y, Z)then (M ;ϕ, ξ, η, g̃)
is said to be a paracontact pseudo-metric manifold (c.f., [13–18]).
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Definition 2.1. Let (M ;ϕ, ξ, η, g̃) be a (2n+ 1)-dimensional almost paracontact
pseudo-metric manifold, then it is called:

• paracosympletic if Φ and η are parallel, that is ∇Φ = 0 and ∇η = 0.

• paraSasakian if and only if

(∇Zϕ)Y = η(Y )Z − g̃(Z, Y )ξ.(2.7)

From equation (2.7), we can deduce that

∇Zξ = −ϕZ,(2.8)

Φ(Z, Y ) = (∇Zη)Y.(2.9)

Let L denotes Lie-derivative then for every paraSasakian manifold we have Lξ g̃ =
Lξϕ = 0 (see also, [15, 18–20]).

3. T -hypersurfaces

Let (M ;ϕ, ξ, η, g̃) be an almost paracontact pseudo-metric manifold, P be a smooth
connected 2n-manifold and ι : P → M be an immersion. Then i(P ) is known as
an immersed hypersurface of M . Let ι induces a symmetric tensor field g on the
immersed hypersurface ι(P ) which satisfies g(Y, Z)|p = g̃(ι∗Y, ι∗Z)|ι(p), ∀Y, Z ∈
TpP , where ι∗ is the pushforward map (or differential map) of ι defined by ι∗ :
TpP → Tι(p)M and (ι∗Z)(β) = Z(β ◦ ι) for any smooth function β in a vicinity
of ι(p) of ι(P ). Hereafter, we put p and P in place of ι(p) and ι(P ). In view of
causal character of vector fields of manifold, we have three types of hypersurface P ,
specifically, pseudo-Riemannian, Riemannian and null (or lightlike) and metric g is a
non-degenerate or a degenerate according as P is pseudo-Riemannian (Riemannian)
hypersurface and lightlike hypersurface respectively [12, p. 42].

Let us suppose that (P, g) be a pseudo-Riemannian hypersurface of M . Then
normal bundle of P is given by TP⊥ = {Y ∈ Γ(TM)|g(Y, Z) = 0, ∀Z ∈ Γ(TM)}.
Here dim(TpP

⊥) = 1, due to the fact that P is a hypersurface. The orthogonal
complementary decomposition is given by TM = TP⊥ ⊥ TP , TP⊥ ∩ TP = {0}.

The hypersurface P is said to be a T -hypersurface of M if the characteristic vector
field ξ is never tangent to the hyperplane. Here, ξ can be considered as affine
normal to P . Now, ξ and Y ∈ Γ(TP ) are linearly independent, therefore ϕ(Y ) can
be written as

ϕY = JY + α(Y )ξ,(3.1)

where J is a tensor field of type (1, 1) and α is a 1-form on P . Operating ϕ on
(3.1) and using equation (2.2), we have ϕ2Y = ϕJY . Employing equations (2.1)
and (3.1), this expression yields

Y − η(Y )ξ = J2Y + (α ◦ J)(Y )ξ.
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Considering normal and tangential parts from above relation, we obtain

J2 = I, α ◦ J = −η.(3.2)

From above equation, we can deduce that

η ◦ J = −α.(3.3)

Therefore, we have a paracomplex structure J on T -hypersurface P . From equation
(3.1), ∀ Y, Z ∈ Γ(TP ) we have

g(ϕY, ϕZ) = g(JY, JZ) + α(Y )g(ξ, JZ) + α(Z)g(JY, ξ) + α(Y )α(Z)g(ξ, ξ).

Employing equations (2.1)-(2.3) and (3.3) in the above expression, we attain that

g(JY, JZ) + g(Y, Z) = η(Y )η(Z) + α(Y )α(Z).(3.4)

Let us define

H(Y, Z) = g(ϕY, ϕZ).(3.5)

We claim that H is paraHermitian metric. From equation (3.5), we find

H(JY, JZ) = g(ϕJY, ϕJZ).

In light of (2.3), above expression can be written as

H(JY, JZ) + g(JY, JZ) = η(JY )η(JZ)

using equations (3.3) and (3.4) in the above relation, we have

H(JY, JZ) = g(Y, Z)− η(Y )η(Z) = −H(Y, Z).

This shows that H is a paraHermitian metric. Thus, we are in position to give the
following result:

Proposition 3.1. Let P be a T -hypersurface of an almost paracontact pseudo-
metric manifold. Then P admits an almost paraHermitian structure.

Let P be a orientable T -hypersurface of M , D denotes the induced Levi-Civita
connection on P and N be a unit normal vector field to the hypersurface P . Then
the formulas of Gauss and Weingarten formulas are given respectively by

∇Y N = −ANY,(3.6)

∇Y Z = DY Z + h(Y, Z)N,(3.7)

where

h(Y, Z) = g(ANY, Z)(3.8)
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is a second fundamental form and AN is the shape operator allied with the normal
section N . The hypersurface P is totally geodesic in M if second fundamental form
vanishes identically. A point p of P is called umbilical if h(Y, Z)|p = ρg(Y, Z)|p,
∀ Y, Z ∈ TpM , where ρ ∈ R and depends on p. The hypersurface P is said to be
totally umbilical if every point of P is umbilical, that is, h = ζg, where ζ is a smooth
function (see, [1, 15, 21]).

Given Y ∈ Γ(TP ), the vector field ϕY does not belong to Γ(TP ). Therefore, ϕY
can be decomposed as follows

ϕY = fY + µ(Y )N,(3.9)

where f is a (1, 1)-type tensor field and µ is a non-zero 1-form.
Next, we define

ϕN = −U, ξ = V + δN, η(Y ) = υ(Y ), η(N) = δ,(3.10)

where U, V ∈ Γ(TP ), υ is a 1-form and δ is a smooth function on P. Clearly δ 6= 0
because if δ = 0 then g(ξ,N) = 0, this implies that ξ is perpendicular to N so we
have ξ ∈ Γ(TP ), which contradicts the fact that P is a T -hypersurface. Substituting
U in place of Y in (3.9), we get

ϕU = fU + µ(U)N,

in the light of (3.10), we obtain

−ϕ2N = fU + µ(U)N.

Now employing (2.2) in above expression, we have

−N + η(N)ξ = fU + µ(U)N,

applying (3.10) in above relation, we arrive at

−N + δV + δ2N = fU + µ(U)N,

considering normal and tangential parts of above expression, we obtain

fU = δV, µ(U) = δ2 − 1.(3.11)

On the other hand, substituting X = V in (3.9), we get

ϕV = fV + µ(V )N.

Using (3.10), above equation takes the form

ϕ(ξ − δN) = fV + µ(V )N,

comparing normal and tangential parts from the above equality, we find

fV = δU, µ(V ) = 0.(3.12)
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By the consequences of equations (3.9) and (3.10), we get µ(Y ) = g(U, Y ) and

µ(fY ) = g(fY, U) = g(ϕ(Y )− µ(Y )N,−ϕ(N)),

employing (2.3) in above relation, we achieve that

µ ◦ f = −δυ.(3.13)

Similarly, we can find

υ ◦ f = −δµ,(3.14)

υ(U) = 0, υ(V ) = 1− δ2.(3.15)

Replacing Y by fY in (3.9), we have

ϕ(fY ) = f(fY ) + µ(fY )N,

again using (3.9) in above equation, we obtain

ϕ2(Y )− µ(Y )ϕN = f2(Y )− δυ(Y )N.

Employing (2.2) and (3.10) in the above relation, we conclude that

Y − η(Y )ξ + µ(Y )U = f2(Y )− δυ(Y )N,

reusing (3.10) in above expression, we have

f2 = I − υ ⊗ V + µ⊗ U.(3.16)

With the help of (2.3) and (3.9), we find that g satisfying

g(fY, fZ) + g(Y, Z) = υ(Y )υ(Z)− µ(Y )µ(Z),(3.17)

and

g(Y, fZ) + g(fY, Z) = 0,(3.18)

∀Y, Z ∈ Γ(TP ). The above computations lead to the following result:

Proposition 3.2. Let P be a T -hypersurface of an almost paracontact pseudo-
metric manifold M . Then P admits a (f, g, µ, υ, δ)-structure.

Example 3.1. Let M = (R−{0, 1})×R
4
2 ⊂ R

5
2 with standard Cartesian coordinates

(x1, x2, x3, x4, x5). Define ϕ, ξ, η and g̃ on M by

ϕ∂x1
= ∂x2

, ϕ∂x2
= ∂x1

, ϕ∂x3
= ∂x4

, ϕ∂x4
= ∂x3

, ϕ∂x5
= 0,

ξ = ∂x5
, η = dx5 and g̃ = x2

1(dx
2
2 − dx2

1) + x1(dx
2
4 − dx2

3) + η ⊗ η,
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where ∂xj
= ∂

∂xj
(j ∈ {1, 2, 3, 4, 5}). Then from simple computations, we find that

(M ;ϕ, ξ, η, g̃) is an almost paracontact pseudo-metric 5-manifold. Consider (P, g)
be a pseudo-Riemannian hypersurface of M which is given by

F(x1, x2, x3, x4) = (x1, x2, x3, x4, x1).

Then the local basis of tangent hyperplane of P is given by

X1 = ∂x1
+ ∂x5

, X2 = ∂x2
, X3 = ∂x3

, X4 = ∂x4

and normal vector field N of the hypersurface is given by N = ∂x1
+ x2

1∂x5
. Here,

it is clear that ξp, p ∈ P is not tangent to the hypersurface. Therefore, P is a
T -hypersurface of M . Here, we find

η(N) = x2
1 = δ, V = −x2

1∂x1
+ (1 − x4

1)∂x5
andU = −∂x2

.

Further, any tangent vector field of the hypersurface P can be expressed as X =
∑4

i=1 aiXi, where a1, a2, a3 and a4 are smooth functions. Operating ϕ on both the
sides, we have

ϕX = a2(1 + x2
1)∂x1

+ a1∂x2
+ a4∂x3

+ a3∂x4
+ a2x

4
1∂x5

− x2
1a2N

= fX + µ(X)N,

where µ(X) = −x2
1a2 and f is given by

f =













0 1 + x2
1 0 0 0

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 x4

1 0 0 0













.

Hence, P is a T -hypersurface of M which admits a (f, g, µ, υ, δ)-structure.

Lemma 3.1. If P be a T -hypersurface of an almost paracontact pseudo-metric
manifold M . Then, we have

δα = µ,(3.19)

J = f− 1
δ
µ⊗ V,(3.20)

H(·, J ·) = −g(·, f·),(3.21)

JU = 1
δ
V,(3.22)

µ ◦ J = µ ◦ f = −δυ,(3.23)

JV = fV = δU.(3.24)

Proof. Using (3.10) in equation (3.1), we obtain ϕY = JY +α(Y )V +δα(Y )N . Now
with the help of (3.9), we achieve that fY + µ(Y )N = JY + α(Y )V + δα(Y )N .
Comparing tangential and normal parts from above relation, we find (3.19) and

f = J + α⊗ V.
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In view of (3.19), the above expression yields (3.20). By the virtue of equations
(3.3) and (3.5), we have

H(Y, JZ) + g(Y, JZ) + α(Z)η(Y ) = 0.(3.25)

Using equations (3.19) and (3.20) in (3.25), we get (3.21). Now from (3.20), we
conclude

JU = fU −
1

δ
µ(U)V.

Employing (3.11) in above equality, we achieve (3.22). Now, we have µ(JY ) =
µ(fY ) − α(Y )µ(V ), by the consequences of equations (3.12) and (3.13), we derive
(3.23). Further, (3.24) follows from equations (3.12) and (3.20). These completes
the proof.

Lemma 3.2. Let P be a T -hypersurface of an almost paracontact pseudo-metric
manifold. Then, we have

(∇Y ϕ)Z = (DY f)Z − µ(Z)ANY + h(Y, Z)U + {(DY µ)Z + h(Y, fZ)}N,(3.26)

∇Y ξ = DY V − δANY + {h(Y, V ) + Y.δ}N,(3.27)

(∇Y ϕ)N = −DY U + fANY + (u(ANY )− h(U, Y ))N,(3.28)

(∇Y η)Z = (DY υ)Z − δh(Y, Z),(3.29)

for any Y, Z ∈ Γ(TP ).

Proof. We have (∇Y ϕ)Z = ∇Y ϕZ − ϕ∇Y Z, by the consequence of (3.7) this ex-
pression reduces to

(∇Y ϕ)Z = DY ϕZ + h(Y, ϕZ)N − ϕ(DY Z + h(Y, Z)N).

Employing equations (3.9) and (3.10) in the above relation, we find

(∇Y ϕ)Z = (DY f)Z + µ(Z)DY N + (Y.µ(Z))N

+h(Y, fZ)N − µ(DY Z)N + h(Y, Z)U.

In view of (3.6), the above equation leads to (3.26). From (3.10), we get

∇Y ξ = ∇Y (V + δN) = ∇Y V + Y.δN + δ∇Y N.

Now employing (3.6) and (3.7), we find (3.27). We have (∇Y ϕ)N = ∇Y ϕN −
ϕ(∇Y N), by the virtue of (3.7) and (3.9), this expression yields (3.28). Since
(∇Y η)Z = g(∇Y ξ, Z), therefore using equations (3.6), (3.7) and (3.10) we obtain
(3.29). This completes the proof of lemma.

As a direct consequence of above lemma, we obtain the following result:
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Proposition 3.3. Let P be a T -hypersurface of a paracosympletic manifold, then
we have

(DY f)Z = µ(Z)ANY − h(Y, Z)U,(3.30)

(DY µ)Z = −h(Y, fZ),(3.31)

DY V = δANY,(3.32)

(DY υ)Z = δh(Y, Z),(3.33)

Y.δ = h(Y, V ),(3.34)

DY U = fANY.(3.35)

Remark 3.1. Let the vector field U be parallel on T -hypersurface P of a para-
cosympletic manifold M , then from (3.35) we receive that fANY = 0, which shows
that 0 is an eigen value of f.

Remark 3.2. (a) If f is parallel that is, (DY f)Z = 0, then by equation (3.30) we
obtain that h(Y, Z)U = µ(ANY )µ(Z).

(b) If υ is parallel then from equation (3.33), we have h(X,Y ) = 0 that is, P is a
totally geodesic, since δ 6= 0.

4. T -hypersurface of a paraSasakian manifold

Here, we consider a T -hypersurface P of a paraSasakian manifold M .

Theorem 4.1. Let P be a T -hypersurface of a paraSasakian manifold, then we
have

(DY f)Z = µ(Z)ANY + υ(Z)Y − h(Z, Y )U − g(Z, Y )V,(4.1)

(DY µ)Z = −δg(Y, Z)− h(Y, fZ),(4.2)

DY V − δANY + fY = 0,(4.3)

h(Y, V ) + µ(Y ) + Y.δ = 0,(4.4)

DY U + δY − fANY = 0,(4.5)

(DY η)Z − δh(Z, Y )− g(fZ, Y ) = 0,(4.6)

for any Z, Y ∈ Γ(TP ).

Proof. Using equation (2.7) in (3.26), we get

−g(Z, Y )ξ + η(Z)Y = (DY f)Z − µ(Z)ANY + h(Z, Y )U

+{(DY µ)Z + h(Y, fZ)}N.

In view of (3.10) above equation reduces to the following form

−g(Z, Y )V − δg(Z, Y )N + υ(Z)Y = (DY f)Z − µ(Z)ANY + h(Z, Y )U

+{(DY µ)Z + h(fZ, Y )}N.
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Considering normal and tangential parts from above expression, we receive (4.1)
and (4.2). By the virtue of equations (2.8), (3.9) and (3.27), we obtain (4.3) and
(4.4). In view of equations (2.7) and (3.28), we have (4.5). equation (4.6) follows
from (2.9) and (3.29). Hence this completes the proof of the theorem.

Using h(Z, Y ) = ζg(Z, Y ) in equation (4.4), we obtain following result:

Corollary 4.1. If P be a totally umbilical T -hypersurface of a paraSasakian man-
ifold, then necessary and sufficient condition for P to be a totally geodesic is that

µ(Z) + Z.δ = 0.(4.7)

equation (4.6) leads to the following remark:

Remark 4.1. Let P be a T -hypersurface of a paraSasakian manifold M . Then P

is a totally geodesic ⇐⇒ (DY η)Z = g(fZ, Y ), ∀ Y, Z ∈ Γ(TP ).

Let us consider the fundamental 2-form F on P , given by F(Y, Z) = H(Y, JZ).
Using the equation (3.21), this reduces to F(Y, Z) = g(Y, fZ). From equation (4.1),
we have

(DY F)(Z,W ) = µ(W )h(Z, Y ) + υ(W )g(Y, Z)− µ(Z)h(Y,W )− υ(Z)g(Y,W ).

In view of the above equation, we find

(DWF)(Y, Z) + (DY F)(Z,W ) + (DZF)(W,Y ) = 0.

This implies that F is closed. Now differentiating (3.20) covariantly along X and
using equations (4.1)-(4.4), we get

(DY J)Z = υ(Z)Y − h(Z, Y )U +
1

δ
(h(JZ, Y ) + µ(Z)JY ).(4.8)

In view of the above equation, we find that the Nijenhuis tensor NJ formed with J

satisfies NJ(Y, Z) = 0. These lead to the following proposition:

Proposition 4.1. Every T -hypersurface of a paraSasakian manifold admits paraKäehlerian
structure.

Let the tensor field f be parallel then from (4.1), we have

h(Z, Y )U = µ(Y )ANZ + υ(Y )Z − g(Z, Y )V.(4.9)

Operating µ on (4.9) and using (3.11), we find

(δ2 − 1)h(Z, Y ) = µ(ANZ)µ(Y ) + υ(Y )µ(Z).(4.10)

Replacing Z by V and employing (3.11), the above equation reduces to

h(Y, V ) + µ(Y ) = 0.(4.11)

In view of equations (4.4) and (4.11), we obtain that Y.δ = 0. This leads to the
following proposition:



On T -hypersurfaces of a Parasasakian Manifold 1013

Proposition 4.2. Let P be a T -hypersurface of a paraSasakian manifold M and
the tensor field f be parallel. Then δ is a non-zero constant.

Let Sf denotes the torsion tensor of f defined by

Sf(Z, Y ) = Nf(Z, Y ) + dµ(Z, Y )U + dυ(Z, Y )V,(4.12)

where Nf is the Nijenhuis torsion of f, and

dµ(Z, Y ) = (DZµ)Y − (DY µ)Z,

dυ(Z, Y ) = (DZυ)Y − (DY υ)Z.

If Sf vanishes identically, then the structure (f, g, µ, υ, δ) is said to be normal. Let
P be a T -hypersurface of paraSasakian manifold and the structure (f, g, µ, υ, δ) be
normal. Then, we find

η (Nf(Z, Y )) +
(

1− δ2
)

dη(Z, Y ) = 0, ∀ Z, Y ∈ Γ(TP ).(4.13)

Theorem 4.2. If P be a T -hypersurface of a paraSasakian manifold. Then the
structure (f, g, µ, υ, δ) is normal if and only if the shape operator AN of P satisfies
AN f = fAN .

Proof. Employing equations (3.18) and (4.1), we have

Nf(Z, Y ) = µ(Y )(AN fZ − fANZ)− µ(Z)(AN fY − fANY )

+(h(Z, fY )− h(fZ, Y ))U − 2g(Z, fY )V.(4.14)

In light of equations (4.2) and (4.3), we get

dµ(Z, Y ) = h(fZ, Y )− h(Z, fY ),(4.15)

dυ(Z, Y ) = 2g(Z, fY ).(4.16)

Using equations (4.14)-(4.16) in (4.12), we obtain

Sf(Z, Y ) = µ(Y )(AN fZ − fANZ)− µ(Z)(AN fY − fANY ).(4.17)

This completes the proof.

Example 4.1. Let M = R
3
1 with coordinates (x, y, z). Define ϕ, ξ and η on M by

ϕ∂x = ∂y − 2x∂z , ϕ∂y = ∂x, ϕ∂z = 0, ξ = ∂z, and η = 2xdy + dz,

where ∂x = ∂
∂x

, ∂y = ∂
∂y

and ∂z = ∂
∂z
. Then (ϕ, ξ, η) is an almost paracontact

structure on M . By simple computations, it can be seen that the structure is normal.
Now, we consider g̃ = −dx2 + dy2 + η ⊗ η. Using ϕ and the metric g̃, we find
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g̃ (ϕY, ϕZ) + g̃(Y, Z) = η(Y )η(Z) and η(Y ) = g̃(Y, ξ), and thus (M ;ϕ, ξ, η, g̃) is a
normal almost paracontact pseudo-metric 3-manifold. With respect to g̃, we have

∇∂x
∂x = 0,∇∂x

∂y = ∇∂y
∂x = 2x∂y + (1− 4x2)∂z ,

∇∂x
∂z = ∇∂z

∂x = ∂y − 2x∂z ,∇∂y
∂y = 4x∂x,

∇∂y
∂z = ∇∂z

∂y = ∂x,∇∂z
∂z = 0.

Using equation (2.7) and the above expressions, we find that M is a paraSasakian
manifold. Let (P, g) be a pseudo-Riemannian hypersurface of M which is defined
by

F(r, ϑ) = (r, sinhϑ, coshϑ),

where r, ϑ ∈ R. Then the local basis of tangent bundle of P is given by the vector
fields

Z1 = ∂x, andZ2 = coshϑ∂y + sinhϑ∂z.

The normal vector field N of the hypersurface is expressed as

N = ∂y −
(4r2 + 1) + 2r tanhϑ

2r + tanhϑ
∂z.

Here, it is clear that ξ is never tangent to the hypersurface. Therefore, P is a
T -hypersurface of M . Now, we obtain that

η(N) = − 1
2r+tanhϑ

= δ,

V = 1
2r+tanhϑ

∂y +
(

2r tanhϑ−sech2 ϑ
(2r+tanhϑ)2

)

∂z andU = −∂x.

Further, any tangent vector field of the hypersurface P can be expressed as Z =
b1Z1 + b2Z2, where b1 and b2 are smooth functions. Operating ϕ on both the sides,
we have

ϕZ = fZ + µ(Z)N,

where µ(Z) = b1 and f is given by

f =





0 coshϑ 0
0 0 0
1

2r+tanhϑ
0 0



 .

Hence, P is a T -hypersurface of a paraSasakian manifold M and admits (f, g, µ, υ, δ)-
structure.
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