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Abstract. In this article, we introduce a new subclass of analytic functions, using the
exponent operators of Rafid and g-derivative. The coefficient estimates, extreme points,
convex linear combination, radii of starlikeness, convexity and finally integral have been
investigated.
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1. Introduction

The theory of univalent functions can be described by using the theory of the ¢-
calculus. In recent years, such g-calculus as the g-integral and g-derivative have been
used to construct several subclasses of analytic functions [1, 6, 11, 12]. The theory
of g-analysis has motivated the researchers owing to many branches of mathematics
and physics. For example, in the areas of special functions, ¢-difference, g-integral
equations, optimal control problems, g-difference, g-integral equations, g-transform
analysis and in quantum physics see for instance, [7, 8, 10, 14].

The main subject of the present paper is to introduce and investigate a new
subclass of analytic functions in the open unit disk U by using the operators Rafid
and g-derivative. Let A denote the class of functions f(z) in the form of:

+oo
(1.1) f(z) :z—l—Zakzk,
k=2
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which are analytic in the punctured unit disk
U={z€eC: |z| <1}

For f(z) € A, the ¢- derivative, 0 < g < 1, of f(z) is defined by Gasper and Rahman

[5]-

flgz) — f(2)
(= £0)
(1.2 Dfzy =4 @17
70 (= 0)

where z € U and 0 < g < 1.
Let T'(p) be the class of all p -valent functions of the form

+oo
(1.3) f(z) =2 — Z anz" an, >0,
n=p+1

which are analytic in the punctured unit disk
U={z€C: |z| <1}.

If f € T(p) is given by Equation (1.3) and g € T(p) is given by

+oo
(1.4) g(z) = 2P — Z bpz" by >0,
n=p+1

then the Hadamard product f * g of f and g is defined by

+oo
(1.5) (frg)(2) =2" = Y anbpz" = (g f)(2).

n=p+1

From Equation (1.2) for a function f(z) given by Equation(1.3) we get

(16) qu(Z) = [p}qu_l - Z [n}qa’n'zp—l y 2 € U7
n=p+1
where
1—-4¢ 2 -1
[plg = 1—¢ =l+q+q+--+¢" 7,
and

= q:1+q+q2+...+q"*1.

Also [p]; — p and [n], — n as ¢ — 1. So we conclude that

lim D,f(z) = f(2) , =2€U,

q—1
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see also [13].

Waggas and Rafid defined the Rafid -operator of a function f(z) = z—zzz an 2"
by

too _ n—1 n
(1.7) R === 1 ﬁ()a +E)(9’ )

n=2

apz”.

See for instance, [2, 3, 4]).
By using Rafid and ¢-derivative operators, we define the RﬁDq( f(2)) for a function
f € T(p) as follows:

Definition 1.1. The Rafid -operator of f € T'(p) , is denoted by RﬁDq and defined
as following:

t

z oo —(
RuD,(f(2)) = [p]q(l—u)p+9+1r(p+9+l)/0 "t L= 1 Dy(f(2t))dt

(1.8)

Then it is easy to deduce the series representation of the function RZ( f(2)) as
following:

+oo _
0 — P _ (1 =) PT(n+0+1)
RID,(f(z) = = ; e
o0
(1.9) = "= > M(n,p,q,p0)a,2"
n=p+1
where
(1.10) M(n,p.g,p,0) = Mall )T+ 04 1)

plT(p+6+1)

We now define a new subclass T}, (R(X, o, 5, i1, 0) of analytic functions of T'(p)
by using the operators Rafid and ¢-derivative. Let f(z) € T'(p) is said to be in the
class Tp o R(X, o, B, 11, 0) if and only if it satisfies the inequality:

AZ2(RS(Dy(f % 9)(2)))" + 2(R5(Dy(f % 9)(2)))
2(R)(Dq(f % 9)(2)))" + (1 = N)(R(Dg(f % 9)(2)))

Here, 0 <g<1,0<A<1,0<a<1,0<u<1,0<6<1and g < 1.

(1.11) —(1-8)| <.

2. Main Results

Unless otherwise mentioned, we suppose throughout this paper that 0 < ¢ < 1,0 <
A<1,0<a<1,0€u<1,0<60<1andf < 1. First we state coefficient
estimates on the class T, ;R(\, o, 5, 1, 0).
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Theorem 2.1. Let f(z) € T(p) , then f(z) € T, ¢ R(\, o, B, 1t,0) if and only if

+oo
(2.1) Z [(n(n—l)—(a—i—ﬁ)—l—l)A—&—(n—i—l)(a—&—ﬁ)—l M(n,p,q, p,0)anb, < 1-2\.
n=p+1

Proof. Suppose f(z) difined by Equation(1.3) and f(z) € Tp R\, o, B, 11,60), then
Equation (1.11) holds true, we have

[(2=B)A+25 —1]zP
(2—X)zP—(n—A+1) ::;Hl M(n,p,q, p, 8)anbyz"

[P1—n)+B8—-1A+1—-(14+n)8 ]Z i1 n(n — 1)M(n,p, q, i, 0)anby 2" -
— a.
(2 - A)Zp - ('fl - A + ) +3O M(n,p, q, I, e)a‘nbnzn

n=p+1
Since Re(z) < |z| for all z,

Re{ [(2 6)A4—2ﬁ——ﬂzp
2=Nzp=(n—-A+1)> " p+1 M(n,p,q, @, 0)an,b,z™
_[n(l —n)+p—-1A+1—-(1+n)pB ]Zn p_Hn( 1)M(n,p,q,p,9)anbnz"} —
(2—=N)2zP —(n—X+1) Z:};H M (n,p,q, p, 0)anb, 2"
By letting z — 1 through real values, we have

+oo
Z {(n(n— D—(a+B8)+ DA+ (n+1)(a+p)— I}M(n,p7q,,u,9)anbn <1-2A\
n=p+1

Conversely, let Equation (2.1) holds true, it is enough to show that
X(f) = A2 (RD(f + 9)(=))
)

)"+ 2(R,(Dy(f % 9)(2)))
—(1 = B)[=(B(Dy(f ¥ 9)(2))) + (1 = N)(Rp(D U*@(DM

)
—al2(RAD,(f +9)())) + (1 = N(RLD,(f + 9)(=))| <0
But for 0 < |z| = r < 1 we have

X(f)—’ [(2 = BA[zP — Z —prin(n—1)M(n,p,q, p,0)anb,2"]
Z::p-i-l nM(n,p,q, p, 0)a,b,z"

_(1 - B)([Zp - E+E<;>;+1 nM(n D> q, 1, a)anbnzn]

+(1=N[P = nM(n,p,q,p, 9)anbnz"])‘

p+1
_a([zp - :3)+1 nM(n7paQ7Ma9)a'nbnzn]
(1= NP = 0% M (9., 1, 6)anbu")|

< i [ = 1) = @+ B) + DA+ (1) @+ B) = 1 M(n,p, g, 1, 0)anba] 1™
—(1-2)).



Properties of a New Subclass of Analytic Functions 183

Since the above inequality holds for allr (0 < r < 1), by letting r — 1 and using
Equation(2.1) we obtain X (f) < 0. This completes the proof. [

Corollary 2.1. If function f(z) of the form Equation (1.3) belongs to T, ¢R(\, o, B, 11, 6)
then

1—2X

an <
[(n(n —1)—(a+B)+DA+(n+1)(a+8) - 1} M(n,p,q, 1, 0)by,

where
M(n,p,q,un,0) = [n]q(l[;]q'l?:p_ira(zt)e + 1), n>p+1.
With the equality for the function
F2) = 27— 1—2) z”
[(n(n = 1) = (a4 B) + DA+ (n+ 1) (@ + 8) = 1| M(n, p, .1, 0)by

Next we obtain extreme points and convex linear combination property for f(z)
belongs to T}, R(A, @, B, 1, 6).

Theorem 2.2. The function f(z) of the form Equation (1.3) belongs to T, ¢R(\, v, 5, 1, 0)
if and only if it can be expressed by

f(2)201f1(2>+ Z Unfn(z)7 onp>1, o1+ Z op =1
n=p+1 n=p+1

where

fi(z) = 2P,

Fulz) = 1—-2)\ Zk,

[((n(n = 1) = (a+ ) + DA+ (n+1)(a+ 8) = 1| M(n. p,q. 1, 6)b,

(n>p+1).

Proof. Let

f(Z) = Ulfl(z) + Zzozp_t,q Unfn(z)

:Jlfl(z)+2;.lo:p+1 On [Z”_ 1-2X }Z"
{("(n—l)—(a+5)+1)>\+("+1)(0¢+/3)—1} M(n,p,q,1,0)br

— P E;’;pﬂ 1—2X -
[(n(n—l)—(a+ﬁ)+1)>\+(n+1)(a+ﬂ)—1} M (n,p,q,41,0)br,
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Now apply Theorem 2.1 to conclude that f(z) € T, 4R(A, o, B, 11, 0). Conversely,
if f(z) given by Equation (1.3) belongs to T, ¢R(\, v, B, 11, 8), by letting

+oo
01:1_ E On,

n=p+1

where

[(n(n = 1) = (a4 B) + DA+ (n+ 1)(a + B) = 1| M(n,p, 4, 1,0)bs
1—2X

O = Qp,

(n>p+1).

we conclude the required result. [

Theorem 2.3. Let fort = 1,2,--- ,k, fi(z) = 2P — :24_1 an2"™ belongs to

T, 4R\ a, B, p1,0), then F(z) = Zle ot ft(2) is also in the same class, where
Zf:l o =1. Hence Ty, 4R(\, o, B, 11,0) is a convex set.
Proof. According to Theorem 2.1 for everyt =1,2,--- ,k we have

+oo
S [(n(nf 1) = (a+B8)+ DA+ (n+1)(a+p) — 1]M(n,p,q,u,0)an7tbn <1-2x
n=p+1

But
k
F(z) = Zo'tft(z)
t=1

k 0
= Eat 2P — E a, 2"
t=1

n=p+1
k oo k
= 2P Zat — Z ( Utan,t> 2"
t=1 n=p+1 \t=1

= P _ i (thanﬁt)z".

n=p+1 t=1
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Since
+oo
> [ =1~ (@A) + DA+ ()t 5) ~ 1]
n=p+1
xM(n,p,q, p, 9)an,tbn( Z anakﬁn)
m —+o0
= Yo X [mn-1) = (@+8)+ DA+ (n+ 1)(a+ ) — 1]
n=1 n=p+1

XM(n7pa q; 1, a)an,tbn

N

k
< o (1=2)) = (1-20)) oy =1-2),
t=1

o+
Il

1

by Theorem 2.1 the proof is complete. [

3. Radii of close—to—convexity, starlikeness and convexity

In this section we obtain radii of close—to—convexity, starlikeness , convexity and
investigate about partial sum property.
In the proof of next theorem, we need the Alexander’s Theorem. This theorem

states that if f is an analytic function in the unit disk and normalized by f(0) =
£ (0) =1 =0, then f(z) is convex if and only if zf (z) is starlike.

Theorem 3.1. Let f(z) of the form Equation (1.3) belongs to T, (R(X, &, B, 1, 6)
then

(1) f(2) is p—wvalently close—to—convex of order v in |z| < Ry, where 0 <y <p

and
p—|(n(n = 1) = (@ +B) + DA+ (n+ (@ + ) — 1| M(n, p, ¢, 4, O)anbn | 1
n(l—2X\) } ’

(
Ry =inf {
(7) f(z) is p—valently starlike of order v in |z| < Rz, where 0 < < p and

p—[((n = 1) = (@+B) + DA+ (n+ 1)@+ ) = 1] M(n,p, g, p. O)anbn | 1
(=1 —2%) ;s

(
Ro = znf{
(#33) f(z) is p—valently convex of order 7y in |z| < Rs, where 0 <~y < p and

p—|((n—1) = (a+8) + DA+ (n+ D)(a+B) = 1| M(n,p,q, 1, 0)anbn | 1
n(n—7)(1 =2\ ;T

Rgzinf{p(

Proof. (i) For close—to— convexity it is enough to show that

2L —pl<p-1,
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but
zf, _ pzpil_Z:::;erl nan|z|" —pzP"! < +o0 n—p <
-1 P = 2p—1 > Zn:p+1 nan|z| =P—7
or :f;)ﬂ 75 an|2|" 7P < 1. By using Equation (2.1) we obtain
+oo n
D ol
n=p+1 p=7
_ *i n(1 = 2\)[z|" P
= (0= = 1) = (@ +B) + DA+ (n+ 1)+ ) ~ 1

1
<1.
. M(n,p,q, p, 0)anb, —

So, it is enough to suppose

|Z‘7l—p

(b= )|(n(n = 1) = (@ +8) + DA+ (n+ D(a+ B) = 1| M(n,p. g, 1,0)anbn
n(l—2X\) ’

which completes the case (7).

(i3) For starlikeness it is enough to show that ‘% - p‘ <p-—7.
But

—+oo

Lf/ o n:p—i—l(n_p)anzn < Zz)+l(n—p)an|z\"_p B
f h= ZP — :S;H anz™ | 1—2:;“ an|z|"P
Therefore,
+o0 too
Yo (n=panz"P < -1 Y anlz"P),
n=p+1 n=p+1
or
“+o0
Z ni,yan\zv%p <1.
n=p+1 p="

Now by Equation (2.1), we obtain

+oo n— -
> ol
WP
S (n—7)(1— 2X)]z]"

W (=) (= 1) = (@ + B) + DA+ (n+ D(a+ 6) — 1]

1
<.
. M(n,p,q, p1,0)anb, ~
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So, it is enough to suppose

|2 7P

< (p _’7) (n(n - 1) - (O‘+B) + 1))‘+ (n+ 1)(a +ﬁ) -1 M(nvp’%ﬂa a)anbn
- (n—7)(1—2X) '

Hence we get the required result.

(#i1) For convezity, by Alexander’s Theorem and by applying an easy calculation,
we reach the required result. Hence the result. []

Theorem 3.2. The class T, (R(\, o, B, 1,0) is a convex set.

Proof. Let f(z) = 2P — ::;H anz™ and g(z) = 2P — E::;H bp2™, be in the

class T, sR(\, o, B, 11,0). For t € (0,1), it is enough to show that the function

h(z) = (1 —t)f(z) + tg(z) is in the class Tp, (R(\, 0, B, 11,6). Since h(z) = 2P —
o0 (L= t)ap + thy)2",

+oo
> [mn=1) = (@+8) + DA+ (n+ 1)+ 8) = 1| M(n,p,q, 1, 0) (1 = )an + tha)bn < (1-2X)
n=p+1

and so h(z) € T, (R(\, @, B, ,0). O

Corollary 3.1. Let fi(z), 1 <k <m, defined by fr(z) = 2P — :z;a+1 an, 2" be
in the class Ty R(\, o, B, 11, 0), then the function F(z) = Y ;- ek fu(2) is also in

TpoRON, o, B, p1,0), where Y ;" | ¢ = 1.

4. Integral operators on T, ;R(\, , 5, 1, 0)

In this section we investigate properties of functions in the class T), (R(\, @, 8, 11, 8),
involving the familiar operator F.(z) .

Theorem 4.1. If f(z) = ZP—E:;’)H anz™ belongs to T, ¢R(\, @, B, 11, 8), then the

function F.(z) defined by F.(z) = <2 fol tef(tz)dt, ¢ > 1, isalsoin T, (R(\, a, B, 1, 6).

zC
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Proof. Since f(z) belong to T, R(\, v, 5, 11, 0),

pte [ S
F.(z) = . / e 2P — Z apnt"ldt , e>1,
o 0 n—p+1
_ p'tc/ tp+c 1 Z an tn-i—c 1
z 0 nept+1
+oo
p+c, 1 1
= g [?tp-&-c _ Z anmtn-i-c]g
p n=p+1
—+oo
_ b + C[ 1 Spte _ Z an 1 Zn+c]
z¢ ‘p+tec S n+c
+oo
C
= 2P P anz"
i n-+c

: ptc
Since e < 1,

+oo
iiz [(n(n —D=(a+B)+DA+(n+1)(a+8) — 1]M(n,p,q,u79)anbn
n=p+1
+oo
< Z [(n(n —1)—(a+B)+DA+(n+1)(a+8) - 1}M(n,p,q,,u,9)anbn
n=p+1
<(1-2)).

Hence the result. O

Corollary 4.1. If f(z) € T,,R(\ «,B,u,0) and F.(z) is defined as F.(z) =
cfol vef(vz)dv, ¢ > 1. Then F.(z) € T, ;R\, o, B, 1, 0).
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