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INTUITIONISTIC FUZZY I-CONVERGENT DIFFERENCE
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Abstract. In this paper, we have introduced and studied the intuitionistic fuzzy I-

convergent difference sequence spaces I(µ,υ)(T,∆) and I0
(µ,υ)

(T,∆) used by compact
operator. Also, we have introduced a new concept, called closed ball in these spaces.
With the help of these notions, we have establised a new topological space and in-
vestigated some topological properties in intuitionistic fuzzy I-convergent difference

sequence spaces I(µ,υ)(T,∆) and I0
(µ,υ)

(T,∆) used by compact operator.
Key words: intuitionistic fuzzy space, compact operator, topological space.

1. Introduction

Fuzzy set theory introduced by Zadeh [1] has been applied in various fields
of mathematics such as the theory of functions [2] and the approximation theory
[3]. Fuzzy topology plays an important role in fuzzy theory. It copes with such
conditions where the classical theories break down. The intuitionistic fuzzy normed
space and intuitionistic fuzzy n-normed space which were introduced in [4]-[5] are
the most contemporary improvements in fuzzy topology. Recently, the definition
of I-convergence in intuitionistic fuzzy zweier I-convergent sequence spaces and
intuitionistic fuzzy zweier I-convergent double sequence spaces have been studied
in [10]-[14].

The notion of statistical convergence was given by Steinhaus [15] and Fast [16]
using the definition of density of the set of natural numbers. Many years later,
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statistical convergence was discussed by many researchers in the theory of fourier
analysis, ergodic theory and number theory. Related studies can be found in [32]-
[36]. Some statistical convergence types in intuitionistic fuzzy normed spaces and
intuitionistic fuzzy n-normed spaces were studied in [6]-[9] and [28]-[37]. As an
extended definition of statistical convergence, definition of I-convergence was intro-
duced by Kostyrko, Salat and Wilczynski [17] by using the idea of I of subsets of
the set of natural numbers. Recently, I- and I∗- convergence of double sequences
have been studied by Das et. al. [18].

New sequence spaces were introduced by means of various matrix transforma-
tions in [24]-[32]. Kızmaz [21] defined the difference sequence spaces with the dif-
ference matrix as follows:

X(∆) = {x = (xk) : ∆x ∈ X}

for X = l∞, c, c0, where ∆xk = xk − xk+1 and ∆ denotes the difference matrix
∆ = (∆nk) defined by

∆nk =

{
(−1)n−k, if n ⩽ k ⩽ n+ 1,

0, if 0 ⩽ k < n.

Recently, Kamber has studied intuitionistic fuzzy difference sequence spaces and
intuitionistic fuzzy difference double sequence spaces in [26] and [27].

In this paper, we introduce the intuitionistic fuzzy I-convergent difference se-

quence spaces I(µ,υ)(T,∆) and I0
(µ,υ)

(T,∆) using by compact operator and inves-
tigate some topological properties of these new spaces.

2. Basic definitions

In this section, we give some definitions and notations which will be used for
this study.
Definition 2.1. [19] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a
continuous t-norm if it satisfies the following conditions:

(i) ∗ is associative and commutative,

(ii) ∗ is continuous,

(iii) a ∗ 1 = a for all a ∈ [0, 1],

(iv) a ∗ b ⩽ c ∗ d whenever a ⩽ c and b ⩽ d for each a, b, c, d ∈ [0, 1].

Definition 2.2. [19] A binary operation ◦ : [0, 1] × [0, 1] → [0, 1] is said to be a
continuous t-conorm if it satisfies the following conditions:

(i) ◦ is associative and commutative,

(ii) ◦ is continuous,
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(iii) a ◦ 0 = a for all a ∈ [0, 1],

(iv) a ◦ b ⩽ c ◦ d whenever a ⩽ c and b ⩽ d for each a, b, c, d ∈ [0, 1].

Definition 2.3. [4] The five-tuple (X, µ, υ, ∗, ◦) is said to be intuitionistic fuzzy
normed linear space (or shortly IFNLS) is where X is a linear space over a field F , ∗
is a continuous t-norm, ◦ is a continuous t-conorm, µ, υ are fuzzy sets on X×(0,∞),
µ denotes the degree of membership and υ denotes the degree of nonmembership
of (x, t) ∈ X × (0,∞) satisfying the following conditions for every x, y ∈ X and
s, t > 0:

(i) µ (x, t) + υ (x, t) ⩽ 1,

(ii) µ (x, t) > 0,

(iii) µ (x, t) = 1 if and only if x = 0,

(iv) µ (αx, t) = µ
(
x, t

|α|

)
if α ̸= 0,

(v) µ (x, t) ∗ µ (y, s) ⩽ µ (x+ y, t+ s),

(vi) µ (x, .) : (0,∞) → [0, 1] is continuous,

(vii) lim
t→∞

µ (x, t) = 1 and lim
t→0

µ (x, t) = 0,

(viii) υ (x, t) < 1,

(ix) υ (x, t) = 0 if and only if x = 0,

(x) υ (αx, t) = υ
(
x, t

|α|

)
if α ̸= 0,

(xi) υ (x, t) ◦ υ (y, s) ⩾ υ (x+ y, s+ t),

(xii) υ (x, .) : (0,∞) → [0, 1] is continuous,

(xiii) lim
t→∞

υ (x, t) = 0 and lim
t→0

υ (x, t) = 1.

In this case (µ, υ) is called intuitionistic fuzzy norm.

Example 2.1. [4] Let (X, ∥.∥) be a normed space, and let a ∗ b = ab and a ◦ b =
min {a+ b, 1} for all a, b ∈ [0, 1]. For all x ∈ X and every t > 0, consider

µ (x, t) := t
t+∥x∥ and υ (x, t) := ∥x∥

t+∥x∥ .

Then (X, µ, υ, ∗, ◦) is an IFNLS.

Definition 2.4. [4] Let (X, µ, υ, ∗, ◦) be an IFNLS. A sequence x = (xk) in X
is convergent to L ∈ X with respect to the intuitionistic fuzzy norm (µ, υ) if, for
every ε > 0 and t > 0, there exists k0 ∈ N such that µ (xk − L, t) > 1 − ε and
υ (xk − L, t) < ε for all k ⩾ k0 where k ∈ N. It is denoted by (µ, υ)− limx = L.



488 E. Kamber

Theorem 2.1. [20] Let (X, µ, υ, ∗, ◦) be an IFNLS. Then, a sequence x = (xk) in
X is convergent to L ∈ X if and only if lim

k→∞
µ (xk − L, t) = 1 and

lim
k→∞

υ (xk − L, t) = 0.

Definition 2.5. [17] If X is a non-empty set, then a family of sets I ⊂ P (X) is
called an ideal in X if and only if

(i) Ø ∈ I,

(ii) for each A,B ∈ I implies that A ∪B ∈ I, and

(iii) for each A ∈ I and B ⊂ A we have B ∈ I,

where P (X) is the power set of X.

Definition 2.6. [17] If X is a non-empty set, then a non-empty family of sets
F ⊂ P (X) is called a filter on X if and only if

(i) Ø /∈ F ,

(ii) for each A,B ∈ F implies that A ∩B ∈ F , and

(iii) for each A ∈ F and B ⊃ A, we have B ∈ F .

An ideal I is called non-trivial if I ̸= Ø and X /∈ I. A non-trivial ideal I ⊂ P (X)
is called an admissible ideal in X if and only if {{x} : x ∈ X} ⊆ I.

A relation between the concepts of an ideal and a filter is given by the following
proposition:

Proposition 2.1. [17] Let I ⊂ P (X) be a non-trivial ideal. Then the class
F = F (I) = {M ⊂ X : M = X − A, for some A ∈ I} is a filter on X. F = F (I)
is called the filter associated with the ideal I.

Definition 2.7. [25] Let I ⊂ P (N) be a non-trivial ideal and (X, µ, υ, ∗, ◦) be
an IFNLS. Then a sequence x = (xk) in X is said to be I-convergent to L ∈ X with
respect to the intuitionistic fuzzy linear norm (µ, υ) if, for every ε > 0 and t > 0,
the set

{k ∈ N : µ (xk − L, t) ⩽ 1− ε or υ (xk − L, t) ⩾ ε} ∈ I.

In this case, we write I(µ,υ) − limx = L.

Definition 2.8. [14] Let X and Y be two normed linear spaces and T : D(T ) → Y
be a linear operator, where D ⊂ X. Then the operator T is said to be bounded,
if there exists a positive real k such that ||Tx|| ⩽ k||x||, for all x ∈ D(T ). The
set of all bounded linear operators B(X,Y ) is a normed linear space normed by
||T || = sup||Tx||(x ∈ X, ||x|| = 1) and B(X,Y ) is a Banach space if Y is a Banach
space.
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Definition 2.9. [14] Let X and Y be two normed linear spaces. An operator
T : X → Y is said to be a compact linear operator (or completely continuous linear
operator,) if

(i) T is linear,

(ii) T maps every bounded sequence (xk) in X onto a sequence (T (xk)) in Y
which has a convergent subsequence. The set of all compact linear operator
C(X,Y ) is a closed subspace of B(X,Y ) and C(X,Y ) is Banach space, if Y
is a Banach space.

3. Weighted Norlund-Euler λ-statistical convergence in IFNLS

In this paper, we defined a variant of ideal convergent sequence spaces called
intuitionistic fuzzy ideal difference convergent sequence spaces using by compact
operator and investigated some topological properties of these spaces.

Intuitionistic fuzzy I-convergent difference sequence spaces using by compact
operator are introduced as:

I(µ,υ)(T,∆) = {(xk) ∈ I(µ,υ)(T,∆) :

{k ∈ N : µ (T (∆xk)− L, t) ⩽ 1− ε or υ (T (∆xk)− L, t) ⩾ ε} ∈ I},

and

I0
(µ,υ)

(T,∆) = {(xk) ∈ I(µ,υ)(T,∆) :

{k ∈ N : µ (T (∆xk), t) ⩽ 1− ε or υ (T (∆xk), t) ⩾ ε} ∈ I}.

Moreover, an open ball Bx(r, t)(T,∆) with centre x ∈ I(µ,υ)(T,∆) and radius
r ∈ (0, 1) with respect to t, is defined as:

Bx(r, t)(T,∆) = {y ∈ I(µ,υ)(T,∆) :

{k ∈ N : µ (T (∆xk)− T (∆yk), t) ⩽ 1− r or υ (T (∆xk)− T (∆yk), t) ⩾ r} ∈ I}.

Theorem 3.1. I(µ,υ)(T,∆) and I0
(µ,υ)

(T,∆) are linear spaces.

Proof. We prove the result for I(µ,υ)(T,∆). Similarly, it can be proved for

I0
(µ,υ)

(T,∆). Let (xk), (yk) ∈ I(µ,υ)(T,∆) and α, β be scalars. The proof is trivial
for α = 0 and β = 0. Let α ̸= 0 and β ̸= 0. For a given ε > 0, choose s > 0 such
that (1− ε) ∗ (1− ε) > 1− s and ε ◦ ε < s. Hence, we have

A1 = {k ∈ N : µ (T (∆xk)− L1, t/2|α|) ⩽ 1− εor υ (T (∆xk)− L1, t/2|α|) ⩾ ε} ∈ I,

A2 = {k ∈ N : µ (T (∆yk)− L2, t/2|β|) ⩽ 1− ε or υ (T (∆yk)− L1, t/2|β|) ⩾ ε} ∈ I,
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Ac
1 = {k ∈ N : µ (T (∆xk)− L1, t/2|α|) > 1− εand υ (T (∆xk)− L1, t/2|α|) < ε}

∈ F (I),

and

Ac
2 = {k ∈ N : µ (T (∆yk)− L2, t/2|β|) > 1− ε and υ (T (∆yk)− L2, t/2|β|) < ε}

∈ F (I).

Let define the set A3 = A1 ∪ A2. Hence A3 ∈ I. It follows that Ac
3 is a non-empty

set in F (I). We will prove that for every (xk), (yk) ∈ I(µ,υ)(T,∆),

Ac
3 ⊂ {k ∈ N : µ ((α.T (∆xk) + β.T (∆yk))− (αL1 + βL2), t) > 1− s

and υ ((α.T (∆xk) + β.T (∆yk))− (αL1 + βL2), t) < s} . Let m ∈ Ac
3. In this case,

µ (T (∆xm)− L1, t/2|α|) > 1− ε

and
υ (T (∆xm)− L1, t/2|α|) < ε

and
µ (T (∆ym)− L2, t/2|β|) > 1− ε

and
υ (T (∆ym)− L2, t/2|β|) < ε.

Then,

µ((α.T (∆xm) + β.T (∆ym)− (αL1 + βL2), t) ≥
µ (α.T (∆xm)− αL1, t/2) ∗ µ (β.T (∆ym)− βL2, t/2) =

µ (T (∆xm)− L1, t/2|α|) ∗ µ (T (∆ym)− L2, t/2|β|) ≥
(1− ε) ∗ (1− ε) > 1− s

and

υ((α.T (∆xm) + β.T (∆ym))− (αL1 + βL2), t) ≤
υ (α.T (∆xm)− αL1, t/2) ◦ υ (β.T (∆ym)− βL2, t/2) =

υ (T (∆xm)− L1, t/2|α|) ◦ υ (T (∆ym)− L2, t/2|β|) <
ε ◦ ε < s.

This proves that

Ac
3 ⊂ {k ∈ N : µ ((α.T (∆xk) + β.T (∆yk))− (αL1 + βL2), t) > 1− s

and υ ((α.T (∆xk) + β.T (∆yk))− (αL1 + βL2), t) < s} . Hence I(µ,υ)(T,∆) is a lin-
ear space.

Theorem 3.2. Every closed ball Bc
x(r, t)(T,∆) is an open set in I(µ,υ)(T,∆).



Intuitionistic Fuzzy I-Convergent Differece Sequence Spaces 491

Proof. Let Bx(r, t)(T,∆) be an open ball with centre x ∈ I(µ,υ)(T,∆) and radius
r ∈ (0, 1) with respect to t, i.e.

Bx(r, t)(T,∆) = {y ∈ I(µ,υ)(T,∆) :

{k ∈ N : µ (T (∆xk)− T (∆yk), t) ⩽ 1− r or υ (T (∆xk)− T (∆yk), t) ⩾ r} ∈ I}.

Let y ∈ Bc
x(r, t)(T,∆). Then µ (T (∆x)− T (∆y), t) > 1− r and

υ (T (∆x)− T (∆y), t)< r. Since µ (T (∆x)− T (∆y), t) > 1−r, there exists t0 ∈ (0, t)
such that µ (T (∆x)− T (∆y), t0) > 1− r and υ (T (∆x)− T (∆y), t0) < r.

Let r0 = µ (T (∆x)− T (∆y), t0) . Since r0 > 1 − r, there exists s ∈ (0, 1) such
that r0 > 1 − s > 1 − r and so there exists r1, r2 ∈ (0, 1) such that r0 ∗ r1 > 1 − s
and (1− r0) ◦ (1− r2) < s.

Let r3 = max{r1, r2}. Then 1 − s < r0 ∗ r1 ⩽ r0 ∗ r3 and (1 − r0) ◦ (1 − r3) ⩽
(1− r0) ◦ (1− r2) < s.

Consider the closed balls Bc
y(1 − r3, t − t0)(T,∆) and Bc

x(r, t)(T,∆). We prove
that Bc

y(1− r3, t− t0)(T,∆) ⊂ Bc
x(r, t)(T,∆). Let z ∈ Bc

y(1− r3, t− t0)(T,∆). Then
µ (T (∆y)− T (∆z), t− t0) > r3 and υ (T (∆y)− T (∆z), t− t0) < 1− r3. Hence

µ (T (∆x)− T (∆z), t) ⩾

µ (T (∆x)− T (∆y), t0) ∗ µ (T (∆y)− T (∆z), t− t0) >

r0 ∗ r3 ⩾ r0 ∗ r1 > 1− s > 1− r

and

υ (T (∆x)− T (∆z), t) ⩽

υ (T (∆x)− T (∆y), t0) ◦ υ (T (∆y)− T (∆z), t− t0) <

(1− r0) ◦ (1− r3) < s < r.

Thus z ∈ Bc
x(r, t)(T,∆) and hence Bc

y(1− r3, t− t0)(T,∆) ⊂ Bc
x(r, t)(T,∆). Every

closed ball Bc
x(r, t)(T,∆) is an open set in I(µ,υ)(T,∆). It proves that Bc

x(r, t)(T,∆)
is an open set in I(µ,υ)(T,∆).

Remark 3.1. It is clear that I(µ,υ)(T,∆) is an IFNLS. Define

τ (µ,υ)(T,∆) ={
A ⊂ I(µ,υ)(T,∆) : for each x ∈ A there exist t > 0 and r ∈ (0, 1)

such that Bc
x(r, t)(T,∆) ⊂ A

}
.

Then τ (µ,υ)(T,∆) is a topology on I(µ,υ)(T,∆).

Theorem 3.3. The topology τ (µ,υ)(T,∆) on I0
(µ,υ)

(T,∆) is first countable.

Proof. It is clear that {Bc
x(

1
n ,

1
n )(T,∆) : n ∈ N} is a local base at x ∈ I(µ,υ)(T,∆).

Then the topology τ (µ,υ)(T,∆) on I0
(µ,υ)

(T,∆) is first countable.
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Theorem 3.4. I(µ,υ)(T,∆) and I0
(µ,υ)

(T,∆) are Hausdorff spaces.

Proof. Let x, y ∈ I(µ,υ)(T,∆) such that x ̸= y. Then 0 < µ (T (∆x)− T (∆y), t) < 1
and 0 < υ (T (∆x)− T (∆y), t) < 1.

Let define r1, r2 and r such that r1 = µ (T (∆x)− T (∆y), t) ,
r2 = υ (T (∆x)− T (∆y), t) and r = max{r1, 1− r2}. Then for each r0 ∈ (r, 1) there
exist r3 and r4 such that r3 ∗ r4 ⩾ r0 and (1− r3) ◦ (1− r4) ≤ (1− r0).

Let r5 = max{r3, (1−r4)} and consider the closed balls Bc
x(1−r5,

t
2 )(T,∆) and

Bc
y(1− r5,

t
2 )(T,∆). Then clearly Bc

x(1− r5,
t
2 )(T,∆) ∩Bc

y(1− r5,
t
2 )(T,∆) = Ø.

Suppose that z ∈ Bc
x(1− r5,

t
2 )(T,∆) ∩Bc

y(1− r5,
t
2 )(T,∆). Then

r1 = µ (T (∆x)− T (∆y), t) ⩾

µ

(
T (∆x)− T (∆z),

t

2

)
∗ µ

(
T (∆y)− T (∆z),

t

2

)
⩾

r5 ∗ r5 ⩾ r3 ∗ r4 ⩾ r0 > r

and

r2 = υ (T (∆x)− T (∆y), t) ⩽

υ

(
T (∆x)− T (∆z),

t

2

)
◦ υ

(
T (∆y)− T (∆z),

t

2

)
⩽

(1− r5) ◦ (1− r5) ⩽ (1− r3) ◦ (1− r4) ⩽ (1− r0) < 1− r,

which is a contradiction. Hence I(µ,υ)(T,∆) is a Hausdorff space.

Theorem 3.5. Let I(µ,υ)(T,∆) be an IFNLS, τ (µ,υ)(T,∆) be a topology on
I(µ,υ)(T,∆) and (xk) be a sequence in I(µ,υ)(T,∆). Then a sequence (xk) is ∆-
convergent to ∆x0 with respect to the intuitionistic fuzzy linear norm (µ, υ) if and
only if µ (T (∆xk)− T (∆x0), t) −→ 1 and υ (T (∆xk)− T (∆x0), t) −→ 0 as k −→
∞.

Proof. Let Bx0(r, t)(T,∆) be an open ball with centre x0 ∈ I(µ,υ)(T,∆) and radius
r ∈ (0, 1) with respect to t, i.e.

Bx0(r, t)(T,∆) = {(xk) ∈ I(µ,υ)(T,∆) :

{k ∈ N : µ (T (∆xk)− T (∆x0), t) ⩽ 1− r or υ (T (∆xk)− T (∆x0), t) ⩾ r} ∈ I}.

Suppose that a sequence (xk) in I(µ,υ)(T,∆) is ∆-convergent to ∆x0 with respect
to the intuitionistic fuzzy linear norm (µ, υ). Then for r ∈ (0, 1) and t > 0, there
exists k0 ∈ N such that (xk) ∈ Bc

x0
(r, t)(T,∆) for all k ⩾ k0. Thus

{k ∈ N : µ (T (∆xk)− T (∆x0), t) > 1− r and υ (T (∆xk)− T (∆x0), t) < r} ∈ F (I).

So 1− µ (T (∆xk)− T (∆x0), t) < r and υ (T (∆xk)− T (∆x0), t) < r, for all k ⩾ k0.
Then µ (T (∆xk)− T (∆x0), t) −→ 1 and υ (T (∆xk)− T (∆x0), t) −→ 0 as k −→ ∞.
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Conversely, for each t > 0 and k ∈ N, suppose that µ (T (∆xk)− T (∆x0), t) −→ 1
and υ (T (∆xk)− T (∆x0), t) −→ 0 as k −→ ∞. Then for r ∈ (0, 1), there exists
k0 ∈ N such that 1− µ (T (∆xk)− T (∆x0), t) < r and υ (T (∆xk)− T (∆x0), t) < r
for all k ⩾ k0. So, µ (T (∆xk)− T (∆x0), t) > 1− r and υ (T (∆xk)− T (∆x0), t) < r
for all k ⩾ k0. Hence (xk) ∈ Bc

x0
(r, t)(T ) for all k ⩾ k0. This proves that a sequence

(xk) is ∆-convergent to ∆x0 with respect to the intuitionistic fuzzy linear norm
(µ, υ).
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30. E. Savaş, λ- statistical convergence in intuitionistic fuzzy 2-normed space, Appl.
Math. Inf. Sci., 9(2015), 501-505.

31. E. Savaş, On Iθ− statistical convergence of order α in intuitionistic fuzzy normed
spaces, Proceedings of the Romanian Academy 16 (2015) 121-129.

32. Ekrem A. Aljimi and Valdete Loku, Generalized Weighted Norlund-Euler Statis-
tical Convergence, Int. Journal of Math. Analysis, 8(2014), no7, 345-354.
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