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Abstract. We present some fixed point theorems for mappings which satisfy certain
cyclic contractive conditions in the setting of S-metric spaces. The results presented in
this paper generalize or improve many existing fixed point theorems in the literature.
At the end of the paper, we give some examples to demonstrate our results.
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1. Introduction

In the field of fixed point theory, to find the solution of fixed point problems,
the contractive conditions on ambient functions play a significant role. The most
fundamental result in metric fixed point theory is Banach Contraction Principle
([4]).

Let (X, d) be a complete metric space and let T :X → X be a self-mapping. If
there exists k ∈ [0, 1) such that

d(T (x), T (y)) ≤ k d(x, y),(1.1)

for all x, y ∈ X, then T has a unique fixed point u ∈ X. Moreover, for any x0 ∈ X,
the sequence {xn} ⊂ X defined by xn+1 = Txn, n ∈ N, is convergent to the fixed
point u. Inequality (1.1) also implies the continuity of T .
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Over the years, due to its importance and applications in different fields of
science, several authors generalized the well-known Banach Contraction Principle
by introducing a new ambient space or a contractive condition. It is no surprise
that there is a great number of generalizations of this fundamental result.

Cyclic representation and cyclic contraction were introduced by Kirk et al. [14]
in metric spaces and investigated the existence of proximity points and fixed points
for cyclic contraction mappings and further used by several authors to obtain various
fixed point results for not necessary continuous mappings in different spaces (see,
e.g., [3, 6, 9, 11, 12, 13, 16, 17, 18, 19] and others).

Sedghi et al. [24] introduced the notion of S-metric spaces that generalized G-
metric spaces and D∗-metric spaces. In [24] the authors proved some properties of
S-metric spaces. They also obtained some fixed point theorems in the setting of
S-metric spaces for a self-map.

Gupta [9] introduced the concept of cyclic contraction in S-metric spaces and
proved some fixed theorems in the said spaces which are proper generalizations of
the results of Sedghi et al. [24].

In this paper, we establish some fixed point theorems for cyclic contractive
mappings in the setting of S-metric spaces. Our results generalize or improve several
existing fixed point theorems in the literature.

2. Preliminaries

The notion of cyclic contraction is as follows:

Definition 2.1. ([14]) Let X be a nonempty set, m ∈ N and let f :X → X be a
self-mapping. Then X = ∪mi=1Ai is a cyclic representation of X with respect to f if

a) Ai, i = 1, 2, . . . ,m are nonempty subsets of X;

b) f(A1) ⊂ A2, f(A2) ⊂ A3, . . . , f(Am−1) ⊂ Am, f(Am) ⊂ A1.

Kirk et al. [14] proved the following fixed point result via cyclic contraction
which is one of the extraordinary generalizations of the Banach’s contraction prin-
ciple.

Theorem 2.1. ([14]) Let (X, d) be a complete metric space, f :X → X and let
X = ∪mi=1Ai be a cyclic representation of X with respect to f . Suppose that f
satisfies the following condition:

d(fx, fy) ≤ ψ(d(x, y)),(2.1)

for all x ∈ Ai, y ∈ Ai+1, i ∈ {1, 2, . . . ,m}, where Am+1 = A1 and ψ: [0,∞) →
[0,∞) is a function, upper semi-continuous from the right and 0 ≤ ψ(t) < t for
t > 0. Then f has a fixed point z ∈ ∩mi=1Ai.

In 2010, Pǎcurar and Rus [17] introduced the following notion of cyclic weaker
ϕ-contraction.
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Definition 2.2. ([17]) Let (X, d) be a metric space, m ∈ N, A1, A2, . . . , Am be
closed nonempty subsets of X and X = ∪mi=1Ai. An operator f :X → X is called a
cyclic weaker ϕ-contraction if

1) X = ∪mi=1Ai is a cyclic representation of X with respect to f ;

2) there exists a continuous, nondecreasing function ϕ: [0, 1)→ [0, 1) with ϕ(t) >
0 for t ∈ (0, 1) and ϕ(0) = 0 such that

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)),(2.2)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, . . . ,m, where Am+1 = A1.

They proved the following result.

Theorem 2.2. ([17]) Suppose f is a cyclic weaker ϕ-contraction on a complete
metric space (X, d). Then f has a fixed point z ∈ ∩mi=1Ai.

We need the following definitions and lemmas in the sequel.

Definition 2.3. ([24]) Let X be a nonempty set and S:X3 → [0,∞) be a function
satisfying the following conditions for all x, y, z, t ∈ X:

(S1) S(x, y, z) = 0 if and only if x = y = z;

(S2) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).

Then the function S is called an S-metric on X and the pair (X,S) is called an
S-metric space or simply SMS.

Example 2.1. ([24]) Let X = Rn and ‖.‖ a norm on X, then S(x, y, z) = ‖y+ z− 2x‖+
‖y − z‖ is an S-metric on X.

Example 2.2. ([24]) Let X = Rn and ‖.‖ a norm on X, then S(x, y, z) = ‖x−z‖+‖y−z‖
is an S-metric on X.

Example 2.3. ([25]) Let X = R be the real line. Then S(x, y, z) = |x− z|+ |y − z| for
all x, y, z ∈ R is an S-metric on X. This S-metric on X is called the usual S-metric on X.

Definition 2.4. ([24]) Let (X,S) be an S-metric space.

(a1) A sequence {xn} in X converges to x ∈ X if S(xn, xn, x) → 0 as n → ∞,
that is, for each ε > 0, there exists n0 ∈ N such that for all n ≥ n0 we have
S(xn, xn, x) < ε. We denote this by limn→∞ xn = x or xn → x as n→∞.

(a2) A sequence {xn} in X is called a Cauchy sequence if S(xn, xn, xm)→ 0 as
n,m → ∞, that is, for each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0
we have S(xn, xn, xm) < ε.

(a3) The S-metric space (X,S) is called complete if every Cauchy sequence in
X is convergent in X.
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Definition 2.5. ([24]) Let (X,S) be an S-metric space. A mapping T :X → X is
said to be a contraction if there exists a constant 0 ≤ L < 1 such that

S(Tx, Ty, Tz) ≤ LS(x, y, z)(2.3)

for all x, y, z ∈ X. If the S-metric space (X,S) is complete then the mapping
defined as above has a unique fixed point.

Every S-metric on X defines a metric dS on X by

dS = S(x, x, y) + S(y, y, x) ∀x, y ∈ X.(2.4)

Let τ be the set of all subsets A of X with x ∈ A if and only if there exists r > 0
such that BS(x, r) ⊂ A. Then τ is a topology on X. Also, a nonempty subset A in
the S-metric space (X,S) is S-closed if Ā = A.

Lemma 2.1. ([24, Lemma 2.5]) In an S-metric space, we have
S(x, x, y) = S(y, y, x) for all x, y ∈ X.

Lemma 2.2. ([24, Lemma 2.12]) Let (X,S) be an S-metric space. If the sequence
{xn} converges to x, that is, xn → x as n → ∞ and the sequence {yn} converges
to y, that is, yn → y as n → ∞, then the sequence {S(xn, xn, yn)} converges to
S(x, x, y), that is, S(xn, xn, yn)→ S(x, x, y) as n→∞.

Lemma 2.3. ([9, Lemma 8]) Let (X,S) be an S-metric space and A is a nonempty
subset of X. Then A is said to be S-closed if and only if for any sequence {xn} in
A such that xn → x as n→∞, then x ∈ A.

3. Main Result

In this section, we shall prove some fixed point theorems via certain cyclic con-
tractive conditions in the setting of complete S-metric spaces.

First of all, we shall denote Ψ the set of functions ψ: [0,∞)→ [0,∞) satisfying
the following conditions:

(Ψ1) ψ is continuous; (Ψ2) ψ(t) < t for all t > 0.

Obviously, if ψ ∈ Ψ, then ψ(0) = 0 and ψ(t) ≤ t for all t ≥ 0.

Now, we introduce the notion of cyclic generalized gψ-contraction in S-metric
space as follows.

Definition 3.1. Let (X,S) be a S-metric space. Let m be a positive integer,
A1, A2, . . . , Am be nonempty subsets of X and Y = ∪mi=1Ai. An operator g:Y → Y
is a cyclic generalized gψ-contraction for some ψ ∈ Ψ, if

(I) Y = ∪mi=1Ai is a cyclic representation of Y with respect to g;
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(II) there exists b1, b2 ∈ [0, 1) with b1 + b2 < 1 such that for all (x, y, z) ∈
Ai ×Ai ×Ai+1, i = 1, 2, . . . ,m (with Am+1 = A1)

S(gx, gy, gz) ≤ b1 n(x, y, z) + b2 N(x, y, z),(3.1)

where

n(x, y, z) = ψ
(
S(gz, gz, z)

1 + S(gy, gy, y)

1 + S(x, y, z)

)
,

and

N(x, y, z) = max
{
ψ(S(x, y, z)), ψ(S(gx, gx, x)), ψ(S(gy, gy, y)),

ψ
(1

2
[S(gx, gx, z) + S(gz, gz, x)]

)}
.

Now, we are in a position to prove our main result.

Theorem 3.1. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am
be nonempty closed subsets of X and Y = ∪mi=1Ai. Suppose that g:Y → Y is a
cyclic generalized gψ-contraction mapping, for some ψ ∈ Ψ. Then g has a unique
fixed point. Moreover, the fixed point of g belongs to ∩mi=1Ai.

Proof. Let x0 ∈ A1 (such a point exists since A1 6= Ø). Define the sequence {xn}
in X by xn+1 = gxn, n = 0, 1, 2, . . .. We shall prove that

lim
n→∞

S(xn+1, xn+1, xn+2) = 0.(3.2)

If for some k, we have limk→∞ S(xk+1, xk+1, xk+2) = 0, then equation (3.2) follows
immediately. So, we can assume that S(xn+1, xn+1, xn+2) > 0 for all n. From the
condition (I), we observe that for all n, there exists i = in ∈ {1, 2, . . . ,m} such that
(xn+1, xn+1, xn+2) ∈ Ai × Ai × Ai+1. Then from condition (II) and using Lemma
2.1, we have

S(xn+1, xn+1, xn+2) = S(gxn, gxn, gxn+1)

≤ b1 n(xn, xn, xn+1) + b2 N(xn, xn, xn+1), n = 1, 2, . . . .

(3.3)

On the other hand, we have

n(xn, xn, xn+1) = ψ
(
S(xn+1, xn+1, xn+2)

1 + S(xn, xn, xn+1)

1 + S(xn, xn, xn+1)

)
= ψ(S(xn+1, xn+1, xn+2)),

and

N(xn, xn, xn+1) = max
{
ψ(S(xn, xn, xn+1), ψ

(1

2
S(xn, xn, xn+2)

)}
.
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• If N(xn, xn, xn+1) = ψ(S(xn, xn, xn+1), we obtain from (3.3) and the property of
ψ that

S(xn+1, xn+1, xn+2) ≤ b1 ψ(S(xn+1, xn+1, xn+2)) + b2 ψ(S(xn, xn, xn+1)

< b1 S(xn+1, xn+1, xn+2) + b2 S(xn, xn, xn+1),

that is,

S(xn+1, xn+1, xn+2) ≤
( b2

1− b1

)
ψ(S(xn, xn, xn+1).(3.4)

• If N(xn, xn, xn+1) = ψ
(
1
2S(xn, xn, xn+2)

)
, we obtain from (3.3) and the property

of ψ that

S(xn+1, xn+1, xn+2) ≤ b1 ψ(S(xn+1, xn+1, xn+2)) + b2 ψ
(1

2
S(xn, xn, xn+2)

)
< b1 S(xn+1, xn+1, xn+2) + b2

1

2
S(xn, xn, xn+2).(3.5)

By (S2) and Lemma 2.1, we have

S(xn, xn, xn+2) ≤ 2S(xn, xn, xn+1) + S(xn+2, xn+2, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xn+2).

Therefore, we have

1

2
S(xn, xn, xn+2) ≤ S(xn, xn, xn+1) +

1

2
S(xn+1, xn+1, xn+2).(3.6)

Combining (3.5) with (3.6), we obtain

S(xn+1, xn+1, xn+2) ≤ b1 S(xn+1, xn+1, xn+2) + b2 [S(xn, xn, xn+1)

+
1

2
S(xn+1, xn+1, xn+2)],

that is,

S(xn+1, xn+1, xn+2) ≤
( 2b2

2− 2b1 − b2

)
[S(xn, xn, xn+1).(3.7)

Define µ = max{ b2
1−b1 ,

2b2
2−2b1−b2

}
< 1 and let Qn+1 = S(xn+1, xn+1, xn+2) and

Qn = S(xn, xn, xn+1). Consequently, it can be concluded that

Qn+1 ≤ µQn ≤ µ2Qn−1 ≤ . . . ≤ µn+1Q0.(3.8)

Therefore, since 0 ≤ µ < 1, taking the limit as n→∞, we have S(xn+1, xn+1, xn+2)→
0, which is (3.2).
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Thus for all n < m, by using (S2), Lemma 2.1 and equation (3.8), we have

S(xn, xn, xm) ≤ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xm)

. . .

≤ 2[µn + . . .+ µm−1]S(x0, x0, x1)

≤
( 2µn

1− µ

)
S(x0, x0, x1).

Taking the limit as n,m→∞, we get

S(xn, xn, xm)→ 0,

since 0 < µ < 1. Thus, we have S(xn, xn, xm)→ 0 as n,m→∞.

This shows that the sequence {xn} is a Cauchy sequence in the complete S-
metric space (X,S). Since Y is closed in (X,S), then (Y, S) is also complete and
there exists u ∈ Y = ∪mi=1Ai. Notice that the iterative sequence {xn} has an infinite
number of terms in Ai for each i = 1, 2, . . . ,m. Hence in each Ai, i = 1, 2, . . . ,m,
we can construct a subsequence of {xn} that converges to u. Using that each Ai,
i = 1, 2, . . . ,m, is closed, we conclude that u ∈ ∪mi=1Ai and thus ∪mi=1Ai 6= Ø.

Now, we shall prove that u is a fixed point of g (which is possible since u belongs
to each Ai). Indeed, since u ∈ ∪mi=1Ai, so for all n, there exists i(n) ∈ {1, 2, . . . ,m}
such that xn ∈ Ai(n), using (II) and Lemma 2.1, we obtain

S(xn+1, xn+1, gu) = S(gxn, gxn, gu)

≤ b1 n(xn, xn, u) + b2 N(xn, xn, u),(3.9)

for all n. On the other hand, we have

n(xn, xn, u) = ψ
(
S(gu, gu, u)

1 + S(xn+1, xn+1, xn)

1 + S(xn, xn, u)

)
,

on letting n→ +∞ and using the continuity of ψ, condition (S1) and Lemma 2.1,
we obtain that

n(xn, xn, u)→ ψ(S(u, u, gu)),

and

N(xn, xn, u) = max
{
ψ(S(xn, xn, u)), ψ(S(gxn, gxn, xn)), ψ(S(gxn, gxn, xn)),

ψ
(1

2
[S(gxn, gxn, u) + S(gu, gu, xn)]

)}
= max

{
ψ(S(xn, xn, u)), ψ(S(xn+1, xn+1, xn)), ψ(S(xn+1, xn+1, xn)),

ψ
(1

2
[S(xn+1, xn+1, u) + S(gu, gu, xn)]

)}
.
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On letting n→ +∞ and using the continuity of ψ, condition (S1) and Lemma 2.1,
we obtain that

N(xn, xn, u)→ ψ
(S(u, u, gu)

2

)
.

On letting n→ +∞ in (3.9) and using (3.10) and (3.10), we obtain

S(u, u, gu) ≤ b1 ψ(S(u, u, gu)) + b2 ψ
(S(u, u, gu)

2

)
≤ b1 ψ(S(u, u, gu)) + b2 ψ(S(u, u, gu)).

Suppose that S(u, u, gu) > 0. In this case, using condition (Ψ2), we get

S(u, u, gu) < b1 S(u, u, gu) + b2 S(u, u, gu)

= (b1 + b2)S(u, u, gu) < S(u, u, gu), since b1 + b2 < 1,

which is a contradiction. Hence S(u, u, gu) = 0. Thus, gu = u. This shows that u
is a fixed point of g.

Finally, we prove that u is the unique fixed point of g. Assume that v is another
fixed point of g, that is, gv = v with v 6= u. From condition (I), this implies that
v ∈ ∪mi=1Ai. Now, we apply condition (II) for x = y = u and z = v, we obtain

S(u, u, v) = S(gu, gu, gv)

≤ b1 n(u, u, v) + b2 N(u, u, v),(3.10)

where

n(u, u, v) = ψ
(
S(gv, gv, v)

1 + S(gu, gu, u)

1 + S(u, u, v)

)
= ψ

(
S(v, v, v)

1 + S(u, u, u)

1 + S(u, u, v)

)
.

Using the property of ψ and condition (S1), we get

n(u, u, v)→ 0,(3.11)

and

N(u, u, v) = max
{
ψ(S(u, u, v)), ψ(S(gu, gu, u)), ψ(S(gu, gu, u)),

ψ
(1

2
[S(gu, gu, v) + S(gv, gv, u)]

)}
= max

{
ψ(S(u, u, v)), ψ(S(u, u, u)), ψ(S(u, u, u)),

ψ
(1

2
[S(u, u, v) + S(v, v, u)]

)}
.

Using Lemma 2.1, condition (S1) and the property of ψ, we get

N(u, u, v)→ S(u, u, v).(3.12)
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If S(u, u, v) > 0, from equations (3.10), (3.11) and (3.12), we get

S(u, u, v) ≤ b2 S(u, u, v) < S(u, u, v),(3.13)

which is a contradiction. Hence, S(u, u, v) = 0, that is, u = v. Thus we have proved
the uniqueness of the fixed point. This completes the proof.

Next, we derive some fixed point theorems from Theorem 3.1.

If we take m = 1 and A1 = X in Theorem 3.1, then we obtain immediately the
following result.

Corollary 3.1. Let (X,S) be a complete S-metric space and g:X → X satisfies
the following condition: there exists b1, b2 ∈ [0, 1) with b1 + b2 < 1 and some ψ ∈ Ψ
such that

S(gx, gy, gz) ≤ b1 ψ
(
S(gz, gz, z)

1 + S(gy, gy, y)

1 + S(x, y, z)

)
+b2 max

{
ψ(S(x, y, z)), ψ(S(gx, gx, x)), ψ(S(gy, gy, y)),

ψ
(1

2
[S(gx, gx, z) + S(gz, gz, x)]

)}
,

for all x, y, z ∈ X. Then g has a unique fixed point.

Remark 3.1. Corollary 3.1 extends and generalizes many existing fixed point theorems
in the literature to the setting of complete S-metric spaces (see, [7, 12]).

Corollary 3.2. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am
be nonempty closed subsets of X, Y = ∪mi=1Ai and g:Y → Y . Suppose that there
exists a nondecreasing function ψ ∈ Ψ such that:

(h1) Y = ∪mi=1Ai is a cyclic representation of Y with respect to g;

(h2) there exist b1, b2 ∈ [0, 1) with b1 + b2 < 1 such that for all (x, y, z) ∈
Ai ×Ai ×Ai+1, i = 1, 2, . . . ,m (with Am+1 = A1),

S(gx, gy, gz) ≤ b1 ψ
(
S(gz, gz, z)

1 + S(gy, gy, y)

1 + S(x, y, z)

)
+b2 ψ

(
max

{
S(x, y, z), S(gx, gx, x), S(gy, gy, y),

1

2
[S(gx, gx, z) + S(gz, gz, x)]

})
,(3.14)

for all x, y, z ∈ X. Then g has a unique fixed point. Moreover, the fixed point of g
belongs to ∩mi=1Ai.

Proof. It follows from Theorem 3.1 by taking that if ψ ∈ Ψ is a nondecreasing
function, we have

N(x, y, z) = ψ
(

max
{
S(x, y, z), S(gx, gx, x), S(gy, gy, y),

1

2
[S(gx, gx, z) + S(gz, gz, x)]

})
.
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Remark 3.2. It is clear that the conclusions of the Corollary 3.2 remain valid if in
condition (3.14), the second term of the right-hand side is replaced by one of the following
terms:

b2 ψ(S(x, y, z)); b2 ψ

(
1

2
[S(gx, gx, z) + S(gz, gz, x)]

)
;

b2 max

{
ψ(S(gx, gx, x)), ψ(S(gy, gy, y))

}
;

or b2 max

{
ψ(S(x, y, z)), ψ(S(gx, gx, x)), ψ(S(gy, gy, y))

}
.

Corollary 3.3. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am
be nonempty closed subsets of X, Y = ∪mi=1Ai and g:Y → Y . Suppose that there

exist five positive constants dj, j = 1, 2, 3, 4, 5 with
∑5
j=1 dj < 1 such that:

(h1) Y = ∪mi=1Ai is a cyclic representation of Y with respect to g;

(h2) for all (x, y, z) ∈ Ai ×Ai ×Ai+1, i = 1, 2, . . . ,m (with Am+1 = A1),

S(gx, gy, gz) ≤ d1

(
S(gz, gz, z)

1 + S(gy, gy, y)

1 + S(x, y, z)

)
+ d2 S(x, y, z)

+d3 S(gx, gx, x) + d4 S(gy, gy, y)

+d5
1

2
[S(gx, gx, z) + S(gz, gz, x)],(3.15)

for all x, y, z ∈ X. Then g has a unique fixed point. Moreover, the fixed point of g
belongs to ∩mi=1Ai.

Proof. It follows from Theorem 3.1 with ψ(t) = (d1 + d2 + d3 + d4 + d5)t.

As special case we obtain S-metric space versions of Banach ([4]), Kannan ([10])
and Chatterjea ([5]) fixed point results (relation (1), (4) and (11) in [23]) in the
cyclic variant from Corollary 3.3.

Corollary 3.4. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am
be nonempty closed subsets of X and Y = ∪mi=1Ai. Let g:Y → Y be such that:

(1) Y = ∪mi=1Ai is a cyclic representation of Y with respect to g;

(2) there exists δ ∈ [0, 1) such that one of the following conditions hold for all
(x, y, z) ∈ Ai ×Ai ×Ai+1, i = 1, 2, . . . ,m (with Am+1 = A1),

S(gx, gy, gz) ≤ δ S(x, y, z),

S(gx, gy, gz) ≤ δ

2
[S(x, x, gx) + S(y, y, gy)],

S(gx, gy, gz) ≤ δ

2
[S(x, x, gy) + S(y, y, gx)],

for all x, y, z ∈ X. Then g has a unique fixed point u ∈ Y .
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Proof. It follows from Corollary 3.3 by taking (1) d2 = δ and d1 = d3 = d4 = d5 = 0,
(2) d3 = d4 = δ

2 and d1 = d2 = d5 = 0, and (3) d5 = δ and d1 = d2 = d3 = d4 =
0.

If we take b1 = 0, b2 = 1 and max
{
ψ(S(x, y, z)), ψ(S(gx, gx, x)), ψ(S(gy, gy, y)),

ψ
(
1
2 [S(gx, gx, z)+S(gz, gz, x)]

)}
= ψ(S(x, y, z)) in the Theorem 3.1, then we obtain

the following result as corollary.

Corollary 3.5. Let (X,S) be a complete S-metric space, m ∈ N, A1, A2, . . . , Am
be nonempty closed subsets of X, Y = ∪mi=1Ai, g:Y → Y an operator and Y =
∪mi=1Ai is a cyclic representation of Y with respect to g. Suppose that g satisfies
the following condition: for any (x, y, z) ∈ Ai × Ai × Ai+1, i = 1, 2, . . . ,m with
Am+1 = A1,

S(gx, gy, gz) ≤ ψ(S(x, y, z)).

Then g has a unique fixed point. Moreover, the fixed point of g belongs to ∩mi=1Ai.

Remark 3.3. Corollary 3.4 extends the corresponding result of Kirk et al. [14] to the
setting of S-metric space.

If we take A1 = A2 = . . . = Am = X and ψ(t) = k t, where 0 < k < 1 in the
Corollary 3.4, then we obtain the following result.

Corollary 3.6. ([24]) Let (X,S) be a complete S-metric space and g:X → X be
a mapping such that for any x, y, z ∈ X,

S(gx, gy, gz) ≤ k S(x, y, z),

where 0 < k < 1. Then g has a unique fixed point in X.

Remark 3.4. Corollary 3.5 also extends the well-known Banach fixed point theorem [4]
form complete metric space to the setting of complete S-metric space.

Now, we give some examples in support of our results.

Example 3.1. Let X = [0, 1] and g:X → X be given by g(x) = x
8
. Let A1 = [0, 1

2
] and

A1 = [ 1
2
, 1]. Define the function S:X3 → [0,∞) by S(x, y, z) = max{x, y, z} for all for all

x, y, z ∈ X, then S is an S-metric on X. Now, define the function ψ: [0,+∞)→ [0,+∞) by
ψ(t) = t

2
, t ∈ [0, 1]. Then ψ has the properties mentioned in Corollary 3.5. Let x ≥ y ≥ z

for all x, y, z ∈ X. It is clear that X = ∪2
i=1Ai is a cyclic representation of X with respect

to g.
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(1) Now, consider the inequality of Corollary 3.5, we have

S(gx, gy, gz) = S

(
x

8
,
y

8
,
z

8

)
= max

{
x

8
,
y

8
,
z

8

}
=

x

8
≤ ψ(S(x, y, z)) = ψ(max{x, y, z})

= ψ(x) =
x

2
or

1

8
≤ 1

2
,

which is true. Thus, all the conditions of Corollary 3.5 are satisfied and u = 1
2
∈ ∪2

i=1Ai

is a unique fixed point of g.

(2) Again, consider the inequality of Corollary 3.6, we have

S(gx, gy, gz) = S

(
x

8
,
y

8
,
z

8

)
= max

{
x

8
,
y

8
,
z

8

}
=

x

8
≤ k S(x, y, z) = kmax{x, y, z}

= k x,

or

k ≥ 1

8
.

If we take 0 < k < 1, then all the conditions of Corollary 3.6 are satisfied and u = 0 ∈ X
is a unique fixed point of g.

Example 3.2. Let X = [0, 1]. We define S:X3 → R+ by

S(x, y, z) =

{
0, if x = y = z,

max{x, y, z}, if otherwise,

for all x, y, z ∈ X. Then (X,S) is a complete S-metric space. Suppose A1 = [0, 1],

A2 = [0, 1
2
] and Y = ∪2

i=1Ai. Consider the mapping g:Y → Y such that g(x) = x2

2(1+x)
for

all x ∈ Y . It is clear that Y = ∪2
i=1Ai is a cyclic representation of X with respect to g. Let

us suppose that ψ: [0,+∞)→ [0,+∞) be such that ψ(t) = t2

1+t
, t ∈ [0, 1]. Then ψ has the

properties mentioned in Theorem 3.1. Moreover, the mapping g is a cyclic representation
of Y with respect to g. Without loss of generality, we assume that x ≥ y ≥ z for all
x, y, z ∈ Y . Then

S(gx, gy, gz) = max{gx, gy, gz}

= max

{
x2

2(1 + x)
,

y2

2(1 + y)
,

z2

2(1 + z)

}
=

x2

2(1 + x)
,
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S(x, y, z) = max{x, y, z} = x.

On the other hand,

N(x, y, z) = max

{
ψ(S(x, y, z)), ψ

(
S
( x2

2(1 + x)
,

x2

2(1 + x)
, x
))

,

ψ

(
S
( y2

2(1 + y)
,

y2

2(1 + y)
, y
))

,

ψ

(
1

2

[
S
( x2

2(1 + x)
,

x2

2(1 + x)
, z
)

+ S
( z2

2(1 + z)
,

z2

2(1 + z)
, x
)])}

= max

{
ψ(x), ψ(x), ψ(y), ψ

(
1

2

[
max

{ x2

2(1 + x)
, z
}

+ x

])}
= ψ(x).

(Since it was used that the function ψ is increasing and since x ≥ z, x ≥ x2

2(1+x)
, that

1
2

[
max

{
x2

2(1+x)
, z
}

+ x

]
≤ x.)

Hence in this case

S(gx, gy, gz) ≤ 1

2
N(x, y, z)

is satisfied for b1 = 0. Thus, the condition (II) holds for b1 = 0 and b2 = 1
2
.

Hence, all conditions of Theorem 3.1 are satisfied (with m = 2) and so g has a unique
fixed point which is in this case is u = 0 ∈ ∩2

i=1Ai.

Example 3.3. Let X = [0, 1] and S:X3 → R+ be given by

S(x, y, z) =

{
|x− z|+ |y − z|, if x, y, z ∈ [0, 1)

1, if x = 1 or y = 1 or z = 1,

for all x, y, z ∈ X. Then (X,S) is a complete S-metric space.

If a mapping g:X → X is given by

g(x) =

{
1/2, if x, y, z ∈ [0, 1)
1/6, if x = y = z = 1,

and A1 = [0, 1
2
], A2 = [ 1

2
, 1], then A1∪A2 = X is a cyclic representation of X with respect

to g. Now, define the function ψ: [0,∞)→ [0, 1) and ψ(t) = 3t
4

, t ∈ [0, 1]. Then ψ has the
properties mentioned in Corollary 3.5. Moreover, the mapping g is a cyclic representation
of Y with respect to g. Without loss of generality, we assume that x ≥ y ≥ z for all
x, y, z ∈ X. Indeed, consider the following cases.

Case I: If x, y ∈ [0, 1
2
], z ∈ [ 1

2
, 1) or z ∈ [0, 1

2
], x, y ∈ [ 1

2
, 1). Then

S(gx, gy, gz) = S

(
1

2
,

1

2
,

1

2

)
= 0

≤ ψ(S(x, y, z)).
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Thus, the inequality of Corollary 3.5 is trivially satisfied.

Case II: If x, y ∈ [0, 1
2
] and z = 1. Then

S(gx, gy, gz) = S

(
1

2
,

1

2
,

1

6

)
=

2

3
,

S(x, y, z) = 1,

and

ψ(S(x, y, z)) =
3

4
.

Consequently,

S(gx, gy, gz) =
2

3
≤ ψ(S(x, y, z))

=
3

4
,

which is true. Thus, all the conditions of Corollary 3.5 are satisfied.

Case III: If x, z ∈ [0, 1
2
] and y = 1. Then

S(gx, gy, gz) = S

(
1

2
,

1

6
,

1

2

)
=

1

3
,

S(x, y, z) = 1,

and

ψ(S(x, y, z)) =
3

4
.

Consequently,

S(gx, gy, gz) =
1

3
≤ ψ(S(x, y, z)) =

3

4
,

which is true. Thus, all the conditions of Corollary 3.5 are satisfied.

Case IV: If y, z ∈ [0, 1
2
] and x = 1. Then

S(gx, gy, gz) = S

(
1

6
,

1

2
,

1

2

)
=

1

3
,

S(x, y, z) = 1,

and

ψ(S(x, y, z)) =
3

4
.
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Consequently,

S(gx, gy, gz) =
1

3
≤ ψ(S(x, y, z)) =

3

4
,

which is true. Thus, all the conditions of Corollary 3.5 are satisfied.

Considering all the above cases, we conclude that the inequality used in Corollary 3.5
remains valid for ψ and g constructed in the above example and consequently by applying
Corollary 3.5, g has a unique fixed point (which is u = 1

2
∈ A1 ∩A2).

4. Application to well posedness fixed point problem

The notion of well posedness of a fixed point problem has generated much interest
to several mathematicians, for example [1, 2, 8, 15, 20, 21, 22]. Here, we study well
posedness of a fixed point problem of mappings in Theorem 3.1.

Definition 4.1. ([8]) Let (X, d) be a metric space and g:X → X be a mapping.
The fixed point problem of g is said to be well-posed if

(i) g has a unique fixed point u in X;

(ii) for any sequence {xn} of points in X such that limn→∞ d(gxn, xn) = 0, we
have limn→∞ d(xn, u) = 0.

Now, we generalize the above notion in S-metric space.

Definition 4.2. Let (X,S) be a S-metric space and g:X → X be a mapping.
The fixed point problem of g is said to be well-posed if

(i) g has a unique fixed point u in X;

(ii) for any sequence {xn} of points in X such that limn→∞ S(gxn, gxn, xn) =
0 = limn→∞ S(xn, xn, gxn), we have limn→∞ S(xn, xn, u) = 0 = limn→∞ S(u, u, xn).

Concerning the well-posedness of the fixed point problem in a S-metric space
satisfying the conditions of Theorem 3.1, we have the following result.

Theorem 4.1. Let g:Y → Y be a self mapping as in Theorem 3.1. Then the fixed
point problem for g is well posed.

Proof. From Theorem 3.1, we know that g has a unique fixed point, say, u ∈
Y . Let {xn} ⊂ Y be a sequence in Y such that limn→∞ S(xn, xn, gxn) = 0 =
limn→∞ S(gxn, gxn, xn). Then using (S1), Lemma 2.1, condition (II) and the prop-
erty of ψ, we have

S(xn, xn, u) ≤ 2S(xn, xn, gxn) + S(u, u, gxn)

= 2S(xn, xn, gxn) + S(gxn, gxn, gu)

≤ 2S(xn, xn, gxn) + b1 n(xn, xn, u)

+b2 N(xn, xn, u),(4.1)
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where

n(xn, xn, u) = ψ
(
S(gu, gu, u)

1 + S(gxn, gxn, xn)

1 + S(xn, xn, u)

)
= ψ

(
S(u, u, u)

1 + S(gxn, gxn, xn)

1 + S(xn, xn, u)

)
= 0,(4.2)

and

N(xn, xn, u) = max
{
ψ(S(xn, xn, u)), ψ(S(gxn, gxn, xn)), ψ(S(gxn, gxn, xn)),

ψ
(1

2
[S(gxn, gxn, u) + S(gu, gu, xn)]

)}
= max

{
ψ(S(xn, xn, u)), ψ(S(gxn, gxn, xn)), ψ(S(gxn, gxn, xn)),

ψ
(1

2
[S(gxn, gxn, u) + S(u, u, xn)]

)}
= max

{
ψ(S(xn, xn, u)), ψ(S(gxn, gxn, xn)), ψ(S(gxn, gxn, xn)),

ψ
(1

2
[2S(gxn, gxn, xn) + 2S(xn, xn, u)]

)}
= max

{
ψ(S(xn, xn, u)), ψ(S(gxn, gxn, xn)), ψ(S(gxn, gxn, xn)),

ψ
(
S(gxn, gxn, xn) + S(xn, xn, u)

)}
= ψ(S(gxn, gxn, xn)).(4.3)

From equations (4.1)-(4.3), we obtain

S(xn, xn, u) ≤ 2S(xn, xn, gxn) + b2 ψ(S(xn, xn, u)).(4.4)

Using the property of ψ in equation (4.4), we obtain

S(xn, xn, u) < 2S(xn, xn, gxn) + b2 S(xn, xn, u),

taking the limit as n → ∞ in the above inequality, we get S(xn, xn, u) → 0 as
n → ∞ since b2 < 1, which is equivalent to saying that xn → u as n → ∞. This
completes the proof.

5. Conclusion

In this paper, we prove some fixed point theorems for generalized gψ-cyclic contrac-
tions in the setting of complete S-metric spaces. Also we give some examples in
support of our results. The results presented in this paper extend, generalize and
improve several fixed point results in the literature (see, e.g., [11, 12, 16, 17, 24] and
many others) to the setting of complete S-metric spaces.
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