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Abstract. The object of the present paper is to study invariant submanifolds of f -
Kenmotsu manifolds with respect to quarter symmetric metric connections. Some nec-
essary and sufficient conditions for such submanifolds to be totally geodesic have been
deduced. Also we have constructed an example of a submanifold of a five-dimensional
f -Kenmotsu manifold to justify our results.
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1. Introduction

In 1924, Friedman and Schouten [10] introduced the notion of semi-symmetric met-
ric connections on a manifold and the notion of quarter symmetric metric con-
nections was defined and studied by Golab [11]. The quarter-symmetric metric
connections are generalizations of the semi-symmetric metric connections. A linear
connection ∇̄ in a Riemannian manifold is said to be a quarter symmetric metric
connection [11] if the torsion tensor T defined by

T (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ](1.1)

satisfies
T (X,Y ) = η(Y )φX − η(X)φY,(1.2)

for any vector field X,Y on the manifold. Here η is a 1-form and φ is a (1,1)
tensor field. If φX = X , then the quarter symmetric connection is reduced to a
semi-symmetric connection. If the quarter symmetric connection ∇̄ satisfies the
condition

(∇̄Xg)(Y, Z) = 0,

for any vector field X,Y, Z on the manifold, then the connection ∇̄ is said to be
quarter symmetric metric connection; otherwise, it is non-metric connection.
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Quarter symmetric connections have been characterized by several authors ([3],
[16], [17], [18], [26], [28]). Recently, P-Sasakian manifolds admitting a quarter
symmetric metric connections have been studied by De et all [7].

The notion of invariant submanifolds is an important topic of study in differential
geometry. If in a submanifold of an almost contact manifold the structure tensor
maps tangent vector fields to tangent vector fields, then the submanifold is called
invariant [5]. Invariant submanifolds of Sasakian manifolds were studied by M.
Kon [14]. Invariant submanifolds of contact and para contact manifolds have been
studied by several authors ( [8], [20], [21], [24], [25], [30]).

In 1982, Olszak and Rosca [22] introduced f -Kenmotsu manifolds and gave their
geometric interpretations, they also proved that a Ricci symmetric f -Kenmotsu
manifold is an Einstein manifold. Several authors ([4], [6], [29]) studied f -Kenmotsu
manifolds. In the present paper we would like to study invariant submanifolds of
f -Kenmotsu manifolds with respect to quarter symmetric metric connections. In
fact, we have obtained the conditions for such submanifolds to be totally geodesic.
The present paper is organized as follows:

Section 1, is introductory. After preliminaries in Section 2, we obtain the rela-
tions between the curvature tensor, Ricci tensor and scalar curvature of the manifold
with respect to Levi-Civita connection and quarter symmetric metric connection in
Section 3. Next we study invariant submanifolds of an f -Kenmotsu manifold and
construct an example of a submanifold of a five-dimensional f -Kenmotsu manifold
to justify our results. Finally, we obtain the conditions for such submanifolds to be
totally geodesic.

2. Preliminaries

Let M̃ be a (2n+1)-dimensional differentiable manifold with an almost contact
metric structure (φ, ξ, η, g), where φ is a (1,1)-tensor field, ξ is a vector field, η is a
1-form and g is the Riemannian metric on the manifold, satisfying the relations

φ2X = −X + η(X)ξ, η(ξ) = 1,

η(X) = g(X, ξ),

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.1)

φξ = 0, ηoφ = 0, g(X,φY ) = −g(φX, Y )

for any vector fields X,Y on the manifold M̃ .

The manifold M̃ is called an f -Kenmotsu manifold if the covariant differentiation
of φ satisfies the relation [29]

(∇̃Xφ)Y = f(g(φX, Y )ξ − η(Y )φX),(2.2)
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where ∇̃ is the Levi-Civita connection of the f -Kenmotsu manifolds and f is a
C∞-function on the manifold. If f = β = constant 6= 0, then the manifold is β-
Kenmotsu manifold [13] and if f = 0, then the manifold reduces to cosymplectic
manifold [13]. Moreover f -Kenmotsu manifold is called regular if f2+f ′ 6= 0, where
f ′ = ξf .

Form (2.2), we get

∇̃Xξ = f(X − η(X)ξ).(2.3)

Let M2m+1 (m < n) be a submanifold of a contact metric manifold M̃2n+1. Let

∇ and ∇̃ be the Levi-Civita connections of M and M̃ , respectively. Then for any
vector fields X,Y ∈ χ(M), the second fundamental form h is defined by

∇̃XY = ∇XY + h(X,Y )(2.4)

and for any vector field V of normal bundle T⊥M

∇̃XV = −AVX +∇⊥

XV.(2.5)

The second fundamental form h and the shape operator AV are related by [27]

g(h(X,Y ), V ) = g(AVX,Y ).(2.6)

A submanifold M of a f -Kenmotsu manifold is said to be totally umbilical if

h(X,Y ) = g(X,Y )H(2.7)

for any vector field X,Y on M ; H is the mean curvature of M given by

H =
1

2m+ 1

2m+1∑

i=1

h(ei, ei).(2.8)

Moreover, if h(X,Y ) = 0 for all X,Y ∈ χ(M), then the submanifold is called totally

geodesic. If H = 0, then the submanifold M is minimal in M̃ .

Covariant derivative of order p, p ≥ 1 of a (0, k) tensor field is denoted by ∇pT .
According to [23] the tensor T is said to be recurrent and 2-recurrent if

(∇T )(X1, X2, ..., Xk;X)T (Y1, Y2, ...Yk) = (∇T )(Y1, Y2, ...Yk;X)T (X1, X2, ..., Xk),
(2.9)
and

(∇2T )(X1, X2, ..., Xk;X,Y )T (Y1, Y2, ...Yk) =

(∇2T )(Y1, Y2, ...Yk;X,Y )T (X1, X2, ..., Xk),(2.10)

where X,Y,X1, X2, ..., Xk, Y1, Y2, ...Yk ∈ χ(M̃). If T is non-zero then there exists a
unique 1-form π and a (0, 2) tensor ψ, such that

∇T = T ⊗ π, π = d(log ||T ||),(2.11)
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and

∇2T = T ⊗ ψ,(2.12)

where ||T || = g(T, T ).

In a (2n+ 1) dimensional f -Kenmotsu manifold, we have [22]

R(X,Y )ξ = f2(η(X)Y − η(Y )X)

+ (Y f)φ2X − (Xf)φ2Y(2.13)

S(X, ξ) = −(2nf2 − ξf)η(X)− (2n− 1)Xf,(2.14)

S(ξ, ξ) = −2n(f2 − ξf),(2.15)

Qξ = −(2nf2 − ξf)ξ − (2n− 1)gradf,(2.16)

where R, S and Q denote the Riemann curvature tensor, Ricci tensor and Ricci
operator respectively.

In a 3-dimensional f - Kenmotsu manifold we also have [22]

R(X,Y )Z = (
r

2
+ 2f2 + 2f ′)(X ∧ Y )Z(2.17)

− (
r

3
+ 3f2 + 2f ′)(η(X)(ξ ∧ Y )Z + η(Y )(X ∧ ξ)Z),(2.18)

S(X,Y ) = (
r

2
+ f2 + f ′)g(X,Y )− (

r

3
+ 3f2 + 2f ′)η(X)η(Y ),(2.19)

where r is the scalar curvature and f ′ = ξf .

On a manifold M̃ , for a (0, k)-type tensor field T (k ≥ 1) and a (0, 2)-type tensor
field E, we denote by Q(E, T ) a (0, k + 2)-type tensor field [12] defined as follows

Q(E, T )(X1, X2, ..., Xk;X,Y ) = − T ((X ∧E Y )X1, X2, ..., Xn)

− T (X1, (X ∧E Y )X2, ..., Xk)− ...

− T (X1, ..., (X ∧E Y )Xk),(2.20)

where (X ∧E Y )Z = E(Y, Z)X − E(X,Z)Y.

The submanifold M of M̃ is pseudo parallel ([1], [2], [9]) if

R̃(X,Y ).h = (∇̃X∇̃Y − ∇̃Y ∇̃X − ∇̃[X,Y ])h = L1Q(g, h)(2.21)

for any vector field X,Y tangent to M and L1 is a function on the subset U on M ,
where U = {x ∈M : Q(g, h) 6= 0atx}. Again if L1 = 0, then the manifold is said to
be semiparallel [15]. The submanifold is Ricci generalized pseudoparallel [19] if its
second fundamental form h satisfies

R̃(X,Y ).h = L2Q(S, h),(2.22)

where L2 is a function on the subset V ofM , where V = {x ∈M : Q(S, h) 6= 0atx}.
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3. f-Kenmotsu manifolds with respect to quarter symmetric metric

connection

Let ∇̃ and ∇̃ be the Levi-Civita and quarter symmetric metric connections of an
f -Kenmotsu manifold M̃ of dimension (2n+ 1). Then we have [11]

∇̃XY = ∇̃XY + U(X,Y ),(3.1)

where U(X,Y ) is (1,1) tensor field and X,Y ∈ χ(M̃). The tensor U is defined by

U(X,Y ) =
1

2
(T (X,Y ) + T ′(X,Y ) + T ′(Y,X)),(3.2)

where
g(T ′(X,Y ), Z) = g(T (Z,X), Y )(3.3)

for X,Y, Z ∈ χ(M̃).
Now from (1.2) and (3.3) we infer that

T ′(X,Y ) = g(X,φY )ξ − η(X)φ(Y ).(3.4)

Using (1.2) and (3.4) in (3.2), we obtain

U(X,Y ) = −η(X)φ(Y ).(3.5)

Therefore, the relation between quarter symmetric metric connection ∇̃ and the
Levi-Civita connection ∇̃ in an f -Kenmotsu manifold is given by

∇̃XY = ∇̃XY − η(X)φ(Y ).(3.6)

Let R̃ be the curvature tensor of an f -Kenmotsu manifold M̃ with respect to

quarter symmetric metric connection ∇̃. Then R̃ is defined by

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z.(3.7)

With the help of (2.2), (2.3) and (3.6) we obtain

∇̃X∇̃Y Z = ∇̃X∇̃Y Z − η(X)φ(∇̃Y Z)− (g(∇̃XY, ξ) + fg(X,Y )

− fη(X)η(Y ))φ(Z) − η(Y )(∇̃Xφ(Z)− η(X)Z − η(X)η(Z)ξ)

and

∇̃Y ∇̃XZ = ∇̃Y ∇̃XZ − η(Y )φ(∇̃XZ)− (g(∇̃Y Z, ξ) + fg(X,Y )

− fη(X)η(Y ))φ(Z) − η(X)(∇̃Y φZ − η(Y )Z − η(Y )η(Z)ξ)

and

∇̃[X,Y ]Z = ∇̃[X,Y ]Z − η(∇̃XY − ∇̃YX)φ(Z).
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Using these results in (3.7) we have

R̃(X,Y )Z = R̃(X,Y )Z + f(η(Y )φ(X)− η(X)φ(Y ))η(Z)

+ f(η(X)g(φY, Z)− η(Y )g(φX,Z))ξ,(3.8)

where R̃ is curvature tensor with respect to Levi-Civita connection.

Let S̃ and S̃ be Ricci curvature tensors of M̃ with respect to quarter symmetric

and Levi-Civita connections. Then S̃ is defined by

S̃(X,Y ) =

2n+1∑

i=1

g(R̃(ei, X)Y, ei),(3.9)

where {e1, e2, ...., e2n+1} is a local orthonormal basis on M̃ . Using the relations in
(2.1) and (3.8) we have

S̃(X,Y ) = S̃(X,Y ) + fg(φX, Y ).(3.10)

Let Q̃ and Q̃ be the Ricci operators on M̃ with respect to the connections ∇̃
and ∇̃ respectively. Then using (3.10) we have

Q̃X = Q̃X + fφX.(3.11)

Let r̃ and r̃ be the scalar curvature in M̃ with respect to the connections ∇̃ and
∇̃ respectively. Then

r̃ = r̃.(3.12)

Now for X,Y ∈ χ(M̃) we obtain from the previous results

R̃(X,Y )ξ = R̃(X,Y )ξ + f(η(Y )φ(X)− η(X)φ(Y )),(3.13)

S̃(X, ξ) = S̃(X, ξ)(3.14)

and

Q̃X = Q̃X.(3.15)

Now we prove the following:

Theorem 3.1. In an f -Kenmotsu manifold M̃ with respect to quarter symmetric

metric connection ∇̃ we have

R̃(X,Y )Z + R̃(Y, Z)X + R̃(Z,X)Y = 0.

Proof. Using (3.8) we obtain the theorem.
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4. Invariant submanifolds of f-Kenmotsu manifolds with respect to

quarter symmetric metric connection

Let M be a (2m+1)-dimensional invariant submanifold of a f -Kenmotsu manifold

M̃ of dimension (2n + 1) (where n > m). Generally the submanifold M is said to

be invariant submanifold of M̃ if φ(TM) ⊂ TM . Let ∇̃ and ∇̃ be the Levi-Civita

and quarter symmetric metric connections of M̃ . Let ∇ and ∇̄ be the induced

connections on M form the connections ∇̃ and ∇̃.

Let h and h̄ be the second fundamental forms of the submanifold with respect
to Levi-Civita connections and quarter symmetric metric connections respectively.

Then we have
∇̃XY = ∇̄XY + h̄(X,Y ).(4.1)

Using the equation (3.6) in (4.1) we have

∇̄XY + h̄(X,Y ) = ∇XY + h(X,Y )− η(X)φ(Y ).(4.2)

Since the submanifold is invariant, therefore comparing tangential and normal com-
ponents, we have

∇̄XY = ∇XY − η(X)φ(Y ),(4.3)

h̄(X,Y ) = h(X,Y ).(4.4)

Thus the second fundamental forms h̄ and h of the submanifold with respect to the
quarter symmetric metric connection and the Levi-Civita connection are the same.
From (3.6) and (4.3) we can say that an invariant submanifold admits quarter
symmetric connections. Hence we have the following:

Lemma 4.1. Let M be an invariant submanifold of a f -Kenmotsu manifold M̃ ,

and ∇̃ and ∇̃ are the Levi-Civita and quarter symmetric metric connections of M̃ .

If ∇ and ∇̄ are the induced connections on M form the connections ∇̃ and ∇̃ of M̃

respectively, then M admits a quarter symmetric metric connection and the second

fundamental forms with respect to ∇̃ and ∇̃ are same.

Theorem 4.1. Any invariant submanifold of an f -Kenmotsu manifold is totally

geodesic with respect to the Levi-Civita connections if and only if it is so with respect

to quarter symmetric metric connections.

Proof. The above theorem follows from the Lemma 4.1.

Using (2.8) and (4.4), we can say that the mean curvature vector with respect
to the Levi-Civita connection and quarter symmetric metric connection are same.
Thus we have the following:
Theorem 4.2. Let M be an invariant submanifold of an f -Kenmotsu manifold

M̃ . Then the mean curvature vector with respect to the Levi-Civita connection and

quarter symmetric metric connection are same.

We may state the following:
Corollary 4.1. An invariant submanifold of a f -Kenmotsu manifold is totally um-

bilical with respect to the Levi-Civita connection if and only if it is totally umbilical
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with respect to the quarter symmetric metric connection.

Corollary 4.2. An invariant submanifold of a f -Kenmotsu manifold is minimal

with respect to the Levi-Civita connection if and only if it is minimal with respect

to the quarter symmetric metric connection.

Example 4.1. We consider a five-dimensional manifold M̃ = {(x1, x2, x3, x4, t) ∈
R

5 : t 6= 0}, where (x1, x2, x3, x4, t) are the standard coordinates in R
5. Let us

choose the vector fields

e1 = t2
∂

∂x1
, e2 = t2

∂

∂x2
, e3 = t2

∂

∂x3
, e4 = t2

∂

∂x4
, e5 =

∂

∂t
,

which are linearly independent at each point of M̃ . We define the metric g such
that {e1, e2, e3, e4, e5} is an orthonormal basis of M̃ i.e.,

g(ei, ej) = 1 if i = j

= 0 if i 6= j, where 1 6 i, j 6 5.

We consider a 1-form η defined by

η(X) = g(X, e5), X ∈ χ(M̃).

That is, we choose e5 = ξ. We define the tensor field φ by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = −e4, φ(e4) = e3, φ(e5) = 0.

The linearity property of g and φ shows that

η(e5) = 1, φ2(X) = −X + η(X)e5,

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X,Y on M̃ . Then M̃(φ, ξ, η, g) forms an almost contact man-
ifold with e5 = ξ. Let ∇̃ be the Levi-Civita connection with respect to the metric
g. Then we have

[e5, ei] =
2

t
ei, i = 1, 2, 3, 4, and [ei, ej ] = 0, otherwise.

Now by Koszul’s formula, we can obtain the following

∇̃e1e1 =
2

t
e5, ∇̃e1e5 = −

2

t
e1, ∇̃e2e5 = −

2

t
e2, ∇̃e2e2 =

2

t
e5,

∇̃e3e3 =
2

t
e5, ∇̃e3e5 = −

2

t
e3, ∇̃e4e4 =

2

t
e5, ∇̃e4e5 = −

2

t
e4,

∇̃eiej = 0, otherwise.

The above relations imply that the manifold satisfies

∇̃Xξ = f{X − η(X)ξ}
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for ξ = e5, and f = − 2
t
. Hence we can say that M̃ is an f -Kenmotsu manifold.

Again since f2 + f ′ 6= 0, so the manifold is regular f -Kenmotsu manifold.
Let M be a subset of M̃ and consider the immersion h : M → M̃ defined by

h(x1, x2, t) = (x1, x2, 0, 0, t).

It is easy to prove that M = {(x1, x2, t) ∈ R
3 : t 6= 0} is a submanifold of M̃ , where

(x1, x2, t) are the standard coordinates of R3. We choose the vector fields

e1 = t2
∂

∂x1
, e2 = t2

∂

∂x2
, e5 =

∂

∂t
.

We define g1 such that {e1, e2, e5} is an orthonormal basis of M . That is,

g1(ei, ej) = 1 if i = j

= 0 if i 6= j, where i, j = 1, 2, 5.

We define a 1-form η1 and a (1,1) tensor φ1 respectively by

η1 = g1(X, e5), and φ1(e1) = −e2, φ1(e2) = e1, φ1(e5) = 0.

The linearity property of g1 and φ1 shows that

η1(e5) = 1, φ21(X) = −X + η1(X)e5,

g1(φ1X,φ1Y ) = g1(X,Y )− η1(X)η1(Y )

for any vector fields X,Y on M(φ1, ξ, η1, g1). It is seen that M is an invariant

submanifold of M̃ with e5 = ξ. Moreover, let ∇ be the Levi-Civita connection with
respect to the metric g1. Then we have

[e5, ei] =
2

t
ei, i = 1, 2, and [ei, ej] = 0, otherwise.

Now by Koszul’s formula, we can obtain the following

∇e1e1 =
2

t
e5, ∇e1e5 = −

2

t
e1, ∇e2e5 = −

2

t
e2, ∇e2e2 =

2

t
e5,

∇eiej = 0, otherwise.

Let us consider ¯̃∇ and ∇̄ be the quarter symmetric metric connections on M̃ and

M respectively. Using (3.6) we can find ¯̃∇eiej and ∇̄eiej.
Let h and h̄ be the second fundamental forms with respect to Levi-Civita connection
and quarter symmetric metric connections. By using (2.4) we have

h(X,Y ) = 0, and h̄(X,Y ) = 0

for any vector field on the manifold. Thus the submanifold is totally geodesic with
respect to Levi-Civita connection and quarter symmetric metric connection. Hence
the Theorem 4.1 is verified.
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5. Invariant submanifolds of f-Kenmotsu manifolds with certain

curvature conditions on the second fundamental form

Now from (2.3) and (2.4) we have

∇Xξ + h(X, ξ) = f(X − η(X)ξ).(5.1)

Comparing normal and tangential components, we have

h(X, ξ) = 0,(5.2)

∇Xξ = f(X − η(X)ξ).(5.3)

Using (4.4) and (5.2) we can say that

h̄(X, ξ) = 0.(5.4)

From (2.2) and (2.4), we obtain

(∇Xφ)Y − h(X,φY ) + φ(h(X,Y )) = f(g(φX, Y )ξ − η(Y )φX).(5.5)

Comparing tangential components, we get

h(X,φY ) = φ(h(X,Y )).(5.6)

Theorem 5.1. Let M be an invariant submanifold of an f -Kenmotsu manifold

M̃ . Then h is recurrent with respect to the quarter symmetric metric connection if

and only if it is totally geodesic. Proof. If h is recurrent with respect to quarter
symmetric metric connection, then from (2.11) we have

(∇̃Xh)(Y, Z) = π(X)h(Y, Z).

Putting Z = ξ and using (5.2) we have

h(Y, ∇̄Xξ) = 0.(5.7)

From (2.3), (5.2) and the above equation we obtain fh(X,Y ) = 0. Consequently
h(X,Y ) = 0, for any X,Y ∈ χ(M). The converse is trivial.
This proves the theorem.

Theorem 5.2. Let M be an invariant submanifold of a f -Kenmotsu manifold M̃ .

Then M has parallel third fundamental form with respect to the quarter symmetric

metric connection if and only if it is totally geodesic.

Proof. LetM has parallel third fundamental form with respect to quarter symmetric
metric connection. Then we have

(∇̃X∇̃Y h)(Z,W ) = 0.(5.8)
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Substituting W = Z = ξ and using the equations (2.1), (5.2) we have from above

2h(∇̄Xξ, ∇̄Y ξ) = 0.(5.9)

Now we use the result in (2.3) and we get f2h(X,Y ) = 0, thus we have h(X,Y ) = 0,
for any X,Y ∈ χ(M). Therefore, M is totally geodesic. The converse statement is
trivially true.
This completes the proof.

Theorem 5.3. Let M be an invariant submanifold of an f -Kenmotsu manifold

M̃ . Then h is 2-recurrent with respect to the quarter symmetric metric connection

if and only if it is totally geodesic.

Proof. Let h be 2-recurrent with respect to quarter symmetric metric connection.
Then from (2.12) we have

(∇̃X∇̃Y h)(Z,W ) = ψ(X,Y )h(Z,W ).(5.10)

Putting Z = ξ and using the equation (5.2) we have

(∇̃X∇̃Y h)(ξ,W ) = 0.(5.11)

Then by previous theorem we can sayM is totally geodesic. The converse is trivially
true.
This finishes the proof.

Theorem 5.4. An invariant submanifold of an f -Kenmotsu manifold is totally

geodesic if and only if Q(S, ∇̃Xh) = 0, provided f2 6= ξf .

Proof. LetM be an invariant submanifold of an f -Kenmotsu manifold M̃ satisfying

Q(S, ∇̃Xh) = 0. Then

Q(S, ∇̃Xh)(W,K;U, V ) = 0

for the vector fields X,W,K,U, V ∈ χ(M). By the above equation and (2.20), we
have

0 = − (∇̃Xh)(S(V,W )U,K) + (∇̃Xh)(S(U,W )V,K)

− (∇̃Xh)(W,S(V,K)U) + (∇̃Xh)(W,S(U,K)V ).

Hence,

0 = − ∇̄⊥

Xh(S(V,W )U,K) + h(∇̄XS(V,W )U,K) + h(S(V,W )U,∇XK)

+ ∇̄⊥

Xh(S(U,W )V,K)− h(∇̄XS(U,W )V,K)− h(S(U,W )V, ∇̄XK)

− ∇̄⊥

Xh(W,S(V,K)U) + h(∇̄XW,S(V,K)U) + h(W, ∇̄XS(V,K)U)

+ ∇̄⊥

Xh(W,S(U,K)V )− h(∇̄XW,S(U,K)V )− h(W, ∇̄XS(U,K)V ).

Substituting K = V = W = ξ in the above equation and using equation (5.2) we
can obtain

S(ξ, ξ)h(U, ∇̄Xξ) = 0.(5.12)
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Using the equations (2.3), (2.15) in the above equation, we have

(2n)(f2 − ξf)fh(U, φX) = 0.(5.13)

With the help of (5.6) we obtain h(U,X) = 0, provided f2 6= ξf , for any U,X ∈
χ(M). Hence the submanifold is totally geodesic. Converse is trivially true.
This proves the theorem.

Theorem 5.5. Let M an invariant submanifold of an f -Kenmotsu manifold M̃ .

Then M is totally geodesic if and only if the submanifold is semiparallel with respect

to quarter symmetric connection, provided f2 6= ξf .
Proof. If the submanifold M is semiparallel then

R̃(X,Y )h(U, V ) = 0.(5.14)

The above equation gives

RN(X,Y )h(U, V )− h(R̄(X,Y )U, V )− h(U, R̄(X,Y )V ) = 0.(5.15)

Putting U = X = ξ in the forgoing equation and using (5.2) we have

h(R̄(ξ, Y )ξ, V ) = 0.(5.16)

Then using (3.13) we get

{f2 − ξf}h(Y, V ) = 0.(5.17)

With the help of (5.6) we obtain h(Y, V ) = 0, provided f2 6= ξf , for any Y, V ∈
χ(M). Hence the submanifold is totally geodesic. Converse is trivially true.
This completes the proof.
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