FACTA UNIVERSITATIS (NIS)
SER. MATH. INFORM. Vol. 35, No 4 (2020), 1017-1030
https://doi.org/10.22190/FUMI2004017S

ON f-KENMOTSU MANIFOLDS AND THEIR SUBMANIFOLDS
WITH QUARTER SYMMETRIC METRIC CONNECTIONS *

Avijit Sarkar and Nirmal Biswas

© 2020 by University of Ni§, Serbia | Creative Commons Licence: CC BY-NC-ND
Abstract. The object of the present paper is to study invariant submanifolds of f-
Kenmotsu manifolds with respect to quarter symmetric metric connections. Some nec-
essary and sufficient conditions for such submanifolds to be totally geodesic have been
deduced. Also we have constructed an example of a submanifold of a five-dimensional
f-Kenmotsu manifold to justify our results.
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1. Introduction

In 1924, Friedman and Schouten [10] introduced the notion of semi-symmetric met-
ric connections on a manifold and the notion of quarter symmetric metric con-
nections was defined and studied by Golab [11]. The quarter-symmetric metric
connections are generalizations of the semi-symmetric metric connections. A linear
connection V in a Riemannian manifold is said to be a quarter symmetric metric
connection [11] if the torsion tensor T' defined by

(1.1) T(X,Y)=VxY —-VyX —[X,Y]
satisfies
(1.2) T(X,Y) =nY)oX —n(X)eY,

for any vector field X,Y on the manifold. Here n is a 1-form and ¢ is a (1,1)
tensor field. If X = X, then the quarter symmetric connection is reduced to a
semi-symmetric connection. If the quarter symmetric connection V satisfies the
condition

(Vxg)(Y, Z) =0,

for any vector field X,Y,Z on the manifold, then the connection V is said to be
quarter symmetric metric connection; otherwise, it is non-metric connection.
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Quarter symmetric connections have been characterized by several authors ([3],
[16], [17], [18], [26], [28]). Recently, P-Sasakian manifolds admitting a quarter
symmetric metric connections have been studied by De et all [7].

The notion of invariant submanifolds is an important topic of study in differential
geometry. If in a submanifold of an almost contact manifold the structure tensor
maps tangent vector fields to tangent vector fields, then the submanifold is called
invariant [5]. Invariant submanifolds of Sasakian manifolds were studied by M.
Kon [14]. Invariant submanifolds of contact and para contact manifolds have been
studied by several authors ( [8], [20], [21], [24], [25], [30]).

In 1982, Olszak and Rosca [22] introduced f-Kenmotsu manifolds and gave their
geometric interpretations, they also proved that a Ricci symmetric f-Kenmotsu
manifold is an Einstein manifold. Several authors ([4], [6], [29]) studied f-Kenmotsu
manifolds. In the present paper we would like to study invariant submanifolds of
f-Kenmotsu manifolds with respect to quarter symmetric metric connections. In
fact, we have obtained the conditions for such submanifolds to be totally geodesic.
The present paper is organized as follows:

Section 1, is introductory. After preliminaries in Section 2, we obtain the rela-
tions between the curvature tensor, Ricci tensor and scalar curvature of the manifold
with respect to Levi-Civita connection and quarter symmetric metric connection in
Section 3. Next we study invariant submanifolds of an f-Kenmotsu manifold and
construct an example of a submanifold of a five-dimensional f-Kenmotsu manifold
to justify our results. Finally, we obtain the conditions for such submanifolds to be
totally geodesic.

2. Preliminaries

Let M be a (2n + 1)-dimensional differentiable manifold with an almost contact
metric structure (¢, &,n, g), where ¢ is a (1,1)-tensor field, & is a vector field, 7 is a
1-form and g is the Riemannian metric on the manifold, satisfying the relations

P*°X = —X +n(X)E, n(€) =1,
n(X) = g(X,§),
(2.1) 9(9X,0Y) = g(X,Y) — n(X)n(Y),

for any vector fields X, Y on the manifold M.

The manifold M is called an f-Kenmotsu manifold if the covariant differentiation
of ¢ satisfies the relation [29]

(2.2) (Vx@)Y = f(g(¢X,Y)E — n(Y)oX),
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where V is the Levi-Civita connection of the f-Kenmotsu manifolds and f is a
C*>°-function on the manifold. If f = g = constant # 0, then the manifold is (-
Kenmotsu manifold [13] and if f = 0, then the manifold reduces to cosymplectic
manifold [13]. Moreover f-Kenmotsu manifold is called regular if f2+ f’ # 0, where

fr=¢&r
Form (2.2), we get B
(2.3) Vx& = f(X =n(X)S).

Let M?™*+1 (m < n) be a submanifold of a contact metric manifold M2"+1 Let

V and V be the Levi-Civita connections of M and M. , respectively. Then for any
vector fields X, Y € x(M), the second fundamental form b is defined by

(2.4) VxY = VxY +h(X,Y)

and for any vector field V' of normal bundle T+ M

(2.5) VxV = —Ay X + Vi V.

The second fundamental form h and the shape operator Ay are related by [27]
(2.6) g(h(X,Y),V) = g(Av X,Y).

A submanifold M of a f-Kenmotsu manifold is said to be totally umbilical if
(2.7) WX,Y) = g(X,YV)H

for any vector field X, Y on M; H is the mean curvature of M given by

1 2m—+1
(28) T 2 Heed)

Moreover, if h(X,Y) = 0 for all X, Y € x(M), then the submanifold is called totally
geodesic. If H = 0, then the submanifold M is minimal in M.

Covariant derivative of order p,p > 1 of a (0, k) tensor field is denoted by VPT.
According to [23] the tensor T is said to be recurrent and 2-recurrent if

(V) (X1, Xoy .oy Xi; X)T (Y1, Yo, .. Y) = (VT) (Y1, Ya, .Yy X)T( X4, Xo, ..., Xk),

(2.9)
and

(V2T)(X1, X2, oo, Xp; X, V)T (Y1, Y5, .. Y3) =
(2.10) (V2T)(Y1,Ys, .. Y3; X, V)T (X1, Xo, ..., X),

where X, Y, X7, Xo, ..., X, Y1, Y5, .. Y € x(M). If T is non-zero then there exists a
unique 1-form 7 and a (0, 2) tensor v, such that

(2.11) VI=Tonr,  ==d(log||T]),
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and
(2.12) VT =T @1,
where ||T|| = g(T,T).

In a (2n + 1) dimensional f-Kenmotsu manifold, we have [22]

RIX,Y)e = f(nX)Y -n(Y)X)

(2.13) + (Y)O*X - (X[f)¢*Y
(2.14) S(X,€) = —(@2nf* = £f)n(X) - (2n - )X/,
(2.15) S(€,€) = —2n(f* - &f),

(2.16) Q¢ = —(2nf? = £f)§ — (2n — 1)gradf,

where R, S and @) denote the Riemann curvature tensor, Ricci tensor and Ricci
operator respectively.

In a 3-dimensional f- Kenmotsu manifold we also have [22]
(217) R(X,Y)Z = (g L2242 (X AY)Z

(2.18) — (G 32 E)EAYIZ + (V)X AE)Z),

(219)  S(XY) = (5+ 17+ g(X.Y) = (5 + 3+ 2/ (X )n(Y),

where 7 is the scalar curvature and f' = £f.

On a manifold M, for a (0, k)-type tensor field T'(k > 1) and a (0, 2)-type tensor
field E, we denote by Q(E,T) a (0, k + 2)-type tensor field [12] defined as follows

QET) (X1, X2, ... Xi; X, V)= — T(XAgY)X1,Xo,....X,)
— T(Xl,(X NE Y)Xg,...,Xk)—...
(220) — T(Xl,,(X NE Y)Xk),

where (X Ap Y)Z = E(Y, Z2)X — E(X, Z)Y.

The submanifold M of M is pseudo parallel ([1], [2], [9]) if
(221) E(X, Y)h = (%X%y - %y%x — ﬁ[x)y])h = LlQ(g, h)

for any vector field X,Y tangent to M and L; is a function on the subset U on M,
where U = {z € M : Q(g,h) # Oatz}. Again if L1 = 0, then the manifold is said to
be semiparallel [15]. The submanifold is Ricci generalized pseudoparallel [19] if its
second fundamental form h satisfies

(2.22) R(X,Y).h = LyQ(S, h),

where Lo is a function on the subset V of M, where V = {z € M : Q(S, h) # Oatz}.
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3. f-Kenmotsu manifolds with respect to quarter symmetric metric
connection

Let V and V be the Levi-Civita and quarter symmetric metric connections of an
f-Kenmotsu manifold M of dimension (2n + 1). Then we have [11]

(3.1) VY = VyY +U(X,Y),

where U(X,Y) is (1,1) tensor field and X,Y € x(M). The tensor U is defined by

(3.2) U(X,Y) = %(T(X, Y)+ T/(X,Y) + T'(Y, X)),
where
(3'3) g(T/(X,Y),Z)Zg(T(Z,X),Y)

for X,Y,Z € x(M).
Now from (1.2) and (3.3) we infer that

(3.4) T'(X,Y) = g(X,¢Y)§ — n(X)o(Y).
Using (1.2) and (3.4) in (3.2), we obtain
(3.5) U(X,Y) = =n(X)(Y).

Therefore, the relation between quarter symmetric metric connection V and the
Levi-Civita connection V in an f-Kenmotsu manifold is given by

(3.6) VxY = VxY —n(X)o(Y).

Let R be the curvature tensor of an f-Kenmotsu manifold M with respect to
quarter symmetric metric connection V. Then R is defined by

(3.7) R(X,Y)Z =VxVyZ—VyVxZ - Vixy 7.
With the help of (2.2), (2.3) and (3.6) we obtain
VxVyZ = VxVvZ—n(X)¢(VyZ) - (g(VxY.€) + fg(X,Y)
— XY )e(Z) = n(Y)(Vx$(Z) = n(X)Z = n(X)n(Z)€)
and
VyVxZ = VyVxZ-n(¥)$(VxZ) - (9(VyZ.§) + fg(X.Y)
XY )$(2) = n(X)(Vy 6Z —n(Y)Z = n(Y )n(Z)€)

and

Vixy)Z = Vixy)Z - 1(VxY - VyX)s(2).
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Using these results in (3.7) we have

R(X,Y)Z (X, Y)Z + f(n(Y)p(X) —n(X)o(Y))n(Z)
(3.8) +  f(X)g(8Y, Z) —n(Y)g(9X, 2))E,

where R is curvature tensor with respect to Levi-Civita connection.

Let S and S be Ricci curvature tensors of M with respect to quarter symmetric
and Levi-Civita connections. Then S is defined by

_ 2n+1 _
(3'9) S(X, Y) = Z g(R(eivX)Yv ei)v
i=1
where {e1, e, ...., €241} is a local orthonormal basis on M. Using the relations in
(2.1) and (3.8) we have
(3.10) S5(X,Y) = 8(X,Y) + fg(¢X,Y).

Let 5 and Q be the Ricci operators on M with respect to the connections v
and V respectively. Then using (3.10) we have

(3.11) QX = QX + foX.

_ Let 7 and 7 be the scalar curvature in M with respect to the connections V and
V respectively. Then

(3.12) F=7

Now for X,Y € x(M) we obtain from the previous results

(3.13) R(X,Y)E = R(X,Y)E+ fF(n(Y)o(X) — n(X)p(Y)),
(3.14) 5(X,6) = 5(X,¢)

and o

(3.15) QX = QX.

Now we prove the following:
Theorem 3.1. In an f-Kenmotsu manifold M with respect to quarter symmetric
metric connection V we have

R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0.

Proof. Using (3.8) we obtain the theorem. [
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4. Invariant submanifolds of f-Kenmotsu manifolds with respect to
quarter symmetric metric connection
Let M be a (2m + 1)-dimensional invariant submanifold of a f-Kenmotsu manifold
M of dimension (2n + 1) (where n > m). Generally the submanifold M is said to
be invariant submanifold of M if ¢(TM) C TM. Let V and ¥ be the Levi-Civita
and quarter symmetric metric connections of ;]\Z . Let V and V be the induced
connections on M form the connections V and V.

Let h and h be the second fundamental forms of the submanifold with respect
to Levi-Civita connections and quarter symmetric metric connections respectively.

Then we have _ - -
(4.1) VxY =VxY +h(X,)Y).

Using the equation (3.6) in (4.1) we have
(4.2) VxY +h(X,Y)=VxY +h(X,Y) —n(X)p(Y).

Since the submanifold is invariant, therefore comparing tangential and normal com-
ponents, we have -

(4.3) VxY = VxY —n(X)o(Y),

(4.4) h(X,Y)=h(X,Y).

Thus the second fundamental forms h and h of the submanifold with respect to the
quarter symmetric metric connection and the Levi-Civita connection are the same.
From (3.6) and (4.3) we can say that an invariant submanifold admits quarter
symmetric connections. Hence we have the following:

Lemma 4.1. Let M be an invariant submanifold of a f-Kenmotsu manifold M,
and V and V are the Levi-Civita and quarter symmetric metric connections of M.

IfV and V are the induced connections on M form the connections V and V 0f]\7
respectively, then M admits a quarter symmetric metric connection and the second

fundamental forms with respect to V and V are same.

Theorem 4.1. Any invariant submanifold of an f-Kenmotsu manifold is totally
geodesic with respect to the Levi-Civita connections if and only if it is so with respect
to quarter symmetric metric connections.

Proof. The above theorem follows from the Lemma 4.1. O

Using (2.8) and (4.4), we can say that the mean curvature vector with respect
to the Levi-Civita connection and quarter symmetric metric connection are same.
Thus we have the following:

Theorem 4.2. Let M be an invariant submanifold of an f-Kenmotsu manifold
M. Then the mean curvature vector with respect to the Levi-Civita connection and
quarter symmelric metric connection are same.

We may state the following;:
Corollary 4.1. An invariant submanifold of a f-Kenmotsu manifold is totally um-
bilical with respect to the Levi-Civita connection if and only if it is totally umbilical



1024 A. Sarkar and N. Biswas

with respect to the quarter symmetric metric connection.

Corollary 4.2. An invariant submanifold of a f-Kenmotsu manifold is minimal
with respect to the Levi-Civita connection if and only if it is minimal with respect
to the quarter symmetric metric connection.

Example 4.1. We consider a five-dimensional manifold M = {(z1, 22, 23, 24,1) €
R® : t # 0}, where (w1, 72, 23,24,t) are the standard coordinates in R®. Let us
choose the vector fields

which are linearly independent at each point of Mt . We define the metric g such
that {e1, e, €3, eq, €5} is an orthonormal basis of M i.e.,

g(eivej) =1 if Z:j
= 0 if i#j, where 1<1i,j<5.

We consider a 1-form 7 defined by
(X) = g(X,es), X €x(M).
That is, we choose e5 = £. We define the tensor field ¢ by
ple1) = —ea, ¢le2) =e1, ¢lez) = —es, ¢lea) =e3, ¢(e5) =0.
The linearity property of g and ¢ shows that
nies) =1,  ¢*(X) =X +n(X)es,
for any vector fields X,Y on M. Then M(¢, &,m, g) forms an almost contact man-
ifold with e5 = £. Let V be the Levi-Civita connection with respect to the metric
g. Then we have

2
les, €] = —e;, 1=1,2,3,4, and [e;,e;] =0, otherwise.

Now by Koszul’s formula, we can obtain the following

- 2 - ~ 2 ~ 2
velel - ¥€5; v8165 = _gelv v82€5 = _¥627 V6262 - ¥€55
- 2 - 2 ~ 2 ~ 2
Vese3 = 765 Vese5 = 6 Ve,€4 = 765 Ve, €5 = e

@ei e; =0, otherwise.
The above relations imply that the manifold satisfies

Vxé = f{X —n(X)¢}
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for ¢ = es5, and f = —%. Hence we can say that M is an f-Kenmotsu manifold.

Again since f2 + f # 0, so the manifold is regular f-Kenmotsu manifold.
Let M be a subset of M and consider the immersion h : M — M defined by

h(z1,w2,t) = (21,72,0,0,t).

It is easy to prove that M = {(z1,22,t) € R3 : ¢ # 0} is a submanifold of M, where
(71, m2,t) are the standard coordinates of R3. We choose the vector fields
0 0

62:t2— 65:E.

e =t2— ,
6$2

(95[:17

We define g7 such that {ej, eq, e5} is an orthonormal basis of M. That is,

gl(ei,ej) =1 if ZZ_]
= 0 if i#j, where 4,j=1,25.

We define a 1-form 7; and a (1,1) tensor ¢ respectively by
m=g1(X,e5), and ¢i(e1) = —e2, ¢i(e2) =e1, ¢i(es)=0.
The linearity property of g; and ¢; shows that
mes) =1,  61(X) =X +m(X)es,

91($1X, 1Y) = g1 (X, Y) = m(X)m (Y)
for any vector fields X,Y on M(é1,&,m1,91). It is seen that M is an invariant
submanifold of M with e5 = £. Moreover, let V be the Levi-Civita connection with
respect to the metric g;. Then we have

2

es,¢;] =—-¢€;, 1=1,2, and |[e;,e;] =0, otherwise.
n J

Now by Koszul’s formula, we can obtain the following

2 2 2 2
velel - ¥€5; v8165 = _gelv v82€5 = _¥627 V6262 - ¥€55

Ve,ej =0, otherwise.

Let us consider V and V be the quarter symmetric metric connections on M and
M respectively. Using (3.6) we can find V,,e; and V., e;.

Let h and h be the second fundamental forms with respect to Levi-Civita connection
and quarter symmetric metric connections. By using (2.4) we have

hX,Y) =0, and h(X,Y) =0

for any vector field on the manifold. Thus the submanifold is totally geodesic with
respect to Levi-Civita connection and quarter symmetric metric connection. Hence
the Theorem 4.1 is verified.
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5. Invariant submanifolds of f-Kenmotsu manifolds with certain
curvature conditions on the second fundamental form

Now from (2.3) and (2.4) we have

(5.1) Vx&+h(X,§) = f(X = n(X)S).

Comparing normal and tangential components, we have

(5.2) h(X,§) =0,

(5.3) Vx& = f(X = n(X)E).

Using (4.4) and (5.2) we can say that

(5.4) h(X,€) =0.

From (2.2) and (2.4), we obtain

(5.5) (Vx @)Y — h(X,9Y) + o(h(X,Y)) = f(g(¢X,Y)E —n(Y)pX).
Comparing tangential components, we get

(5.6) h(X,9Y) = ¢(h(X,Y)).

Theorem 5.1. Let M be an invariant submanifold of an f-Kenmotsu manifold
M. Then h is recurrent with respect to the quarter symmetric metric connection if
and only if it is totally geodesic. Proof. If h is recurrent with respect to quarter
symmetric metric connection, then from (2.11) we have

(Vxh)(Y, Z) = 7(X)h(Y, 2).
Putting Z = ¢ and using (5.2) we have
(5.7) h(Y,Vx§) = 0.

From (2.3), (5.2) and the above equation we obtain fh(X,Y) = 0. Consequently
hX,Y) =0, for any X,Y € x(M). The converse is trivial.
This proves the theorem. O
Theorem 5.2. Let M be an invariant submanifold of a f-Kenmotsu manifold M.
Then M has parallel third fundamental form with respect to the quarter symmetric
metric connection if and only if it is totally geodesic.

Proof. Let M has parallel third fundamental form with respect to quarter symmetric
metric connection. Then we have

(5.8) (VxVyh)(Z, W) = 0.



On f-Kenmotsu Manifolds and Their Submanifolds 1027

Substituting W = Z = £ and using the equations (2.1), (5.2) we have from above
(5.9) 2h(Vx€,Vy€) = 0.

Now we use the result in (2.3) and we get f2h(X,Y) = 0, thus we have h(X,Y) = 0,
for any X,Y € x(M). Therefore, M is totally geodesic. The converse statement is
trivially true.

This completes the proof. O

Theorem 5.3. Let M be an invariant submanifold of an f-Kenmotsu manifold
M. Then h is 2-recurrent with respect to the quarter symmetric metric connection
if and only if it is totally geodesic.

Proof. Let h be 2-recurrent with respect to quarter symmetric metric connection.
Then from (2.12) we have

(5.10) (VxVyh)(Z,W) = $(X,Y)h(Z,W).
Putting Z = ¢ and using the equation (5.2) we have
(5.11) (VxVyh)(E, W) = 0.

Then by previous theorem we can say M is totally geodesic. The converse is trivially
true.
This finishes the proof. O

Theorem 5.4. An invariant submanifold of an f-Kenmotsu manifold is totally
geodesic if and only if Q(S, gxh) =0, provided f* # £f.
Proof. Let M be an invariant submanifold of an f-Kenmotsu manifold M satisfying
Q(S,Vxh) = 0. Then

Q(S, Vxh) (W, K;U,V) =0
for the vector fields X, W, K,U,V € x(M). By the above equation and (2.20), we
have

0= — (Vxh)(S(V,W)U,K)+ (Vxh)(SU,W)V,K)

(Vxh)(W, S(V, K)U) + (Vxh)(W,S(U, K)V).

Hence,

( K) + h(

+ Vxh(S K) — h(

— Vxh(W, S( )U) + h(VxW,S(V,K\)U) +h(W,VxS(V,K)U)

+ Vxh(W,S(U,K)V) - hVxW,S(U,K)V) - h(W,VxSU,K)V).
2

VxSV, W)U,
VxS(U, W)V,
v

Substituting K = V = W = ¢ in the above equation and using equation (5.2) we
can obtain

(5.12) S(€ (U, V&) = 0.
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Using the equations (2.3), (2.15) in the above equation, we have

(5.13) (2n)(f* =€) fh(U, ¢X) = 0.

With the help of (5.6) we obtain h(U, X) = 0, provided f2? # £f, for any U, X €
X(M). Hence the submanifold is totally geodesic. Converse is trivially true.
This proves the theorem. O

Theorem 5.5. Let M an invariant submanifold of an f-Kenmotsu manifold M.
Then M is totally geodesic if and only if the submanifold is semiparallel with respect
to quarter symmetric connection, provided f* # ¢f.

Proof. If the submanifold M is semiparallel then

(5.14) R(X,Y)h(U,V) = 0.

The above equation gives

(5.15) RN (X, Y)h(U,V) — h(R(X,Y)U,V) — h(U,R(X,Y)V) = 0.
Putting U = X = £ in the forgoing equation and using (5.2) we have
(5.16) h(R(&,Y)E, V) =0.

Then using (3.13) we get
(5.17) {F2 = £13h(V,V) =0,

With the help of (5.6) we obtain h(Y,V) = 0, provided f? # £f, for any Y,V €
X(M). Hence the submanifold is totally geodesic. Converse is trivially true.
This completes the proof. O
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