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ASYMPTOTIC STABILITY OF NONLINEAR NEUTRAL DIFFERENTIAL
EQUATIONS WITH VARIABLE DELAYS

Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. In this paper, we study the asymptotic stability of a generalized nonlinear
neutral differential equation with variable delays by using the fixed point theory. An
asymptotic stability theorem with a necessary and sufficient condition is proved, which
improves and generalizes some results due to Burton [11], Zhang [25], Dib, Maroun and
Raffoul [16], and Ardjouni and Djoudi [3]. Two examples are also given to illustrate our
results.

Key words: Fixed points, Stability, Neutral differential equations, Variable delays.

1. Introduction

Lyapunov’s direct method has been, for more than 100 years, the most efficient tool
for investigating the stability properties of a wide variety of ordinary, functional,
partial differential and integro-differential equations. Nevertheless, the application
of this method to problems of stability in differential and integro-differential equa-
tions with delays has encountered serious obstacles if the delays are unbounded or
if the equation has unbounded terms [9]-[11]. In recent years, several investigators
have tried stability by using a new technique. Particularly, Burton, Furumochi,
Becker, Zhang and others began a study in which they noticed that some of these
difficulties vanish or might be overcome by means of fixed point theory (see [1]-
[23], [25], [26]). The fixed point theory does not only solve the problem on stability
but has other significant advantages over Lyapunov’s. The conditions of the former
are often averages but those of the latter are usually pointwise (see [9]). Moreover,
the fixed point method has been successfully used to conclude stability results to
delay problems which are perturbed by stochastic terms (see for example [22]).
This is another important feature for applications to real-world problems.

In this paper, we consider the nonlinear neutral differential equation with vari-
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able delays

d N d
O = —;bj(t)x(t—’fj(t))+&Q(t,x(t—’fl(t)),...,x t— v (1))

(1.1) +G(tx(t—11(t),.. x({t—1n (),
with the initial condition
(1.2) X(t) = ¢ (t) forte [m(t),to],

where i € C([m (to), to] , IR) and for each ty > 0,
(1.3)  mj(to) = inf{t— (1), t>to}, m(to) = min{m;(to), 1< j<N}.

Here C(S1,S,) denotes the set of all continuous functions ¢ : S; — S, with the
supremum norm ||-|. Throughout this paper we assume that b; € C(R*,R), and
7j € C(R*,R*) with t — 7;(t) — o0 ast — co. The functions Q (t, xy, ..., Xn) and
G (t, Xy, ...,xn) are globally Lipschitz continuous in xi,..,xy. That is, there are
positive constants K, ..., Ky and Ly, ..., Ly such that

N

(14) |Q (t/ X1y eees XN) - Q (tr Y1, -y yN)) < Z K] HX] - yj s
=1

and
N

(L5) G (t, X1, - X0) = G (& y1, o )| < ) L[5 = |-
=1

We also assume that
(1.6) Q(0,..,0=G(0,..0)=0.

Equation (1.1) and its special cases have been investigated by many authors.
For example, in [11], Burton studied the equation

L.7) X' () = =by (X (t— 71 (1)),
and proved the following theorem.

Theorem 1.1. (Burton [11]). Suppose that 71 (t) = r and there exists a constant & < 1
such that

t t . S
(1.8) f Ib(s+r)|ds + f b (s + r)| e~ k blusndu ( f b (u+ r)|du)ds <a,
t=r 0 s—r

forallt > Oand fom b (s) ds = co. Then, for every continuous initial function ¢ : [-r,0] —
RR, the solution x (t) = x(t,0, ¢) of (1.7) is bounded and tends to zero as t — co.
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Zhang in [25] and Ardjouni and Djoudi in [1] have studied the generalization
of (1.7) as follows

N N
(1.9) X () ==Y bjOx(t—7,®)+ Y ¢ O (t—1; 1),

=1 =1

where ¢; is differentiable and obtained the following theorems.

Theorem 1.2. (Zhang [25]). Suppose that cj = 0, 7j is differentiable, the inverse function
g; of t — 7; (t) exists, and there exists a constant « € (0, 1) such that for t > 0,

t
(1.10) tIim inff q(s)ds > —oo,
— 00 0

and

N

Z‘[Ifdb' 91(5) 'ds+f g L awau
- [ auou
(1.12) f g(u)d )q(s))(f o

N
where q(t) = Y. b; (g,- (t)). Then the zero solution of (1.9) is asymptotically stable if and
j=1

v (5)' ds

(5 (u))' du) ds] < q,

onlyiffotq(s)ds—> 0 ast — co.

Theorem 1.3. (Ardjouni and djoudi [1]). Suppose that 7; is twice differentiable and
T] (t) # 1 for all t € R*, and there exist continuous functions hj : [mj (to),oo) - R
for j=1,2,...,Nand aconstant « € (0, 1) such that for t > 0

(1.12) lim inf fot H (s) ds > —co,
and
S| c() Lot
,Zf 1-7(®) +;‘£Tj(t) [y ()] ds
Z f e~ L'H©d | _p. () 1 h; (s-710)(1-76)-r (s)| ds
j=1

N

1.13 e~ L HOdU | |( hi d}d < q,
(1.13) Zl‘f ) fuj(s)| (W|du|ds < a
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where

[ci OH® +c¢ O] (1-7,0) + ¢ O ) (1)
(1-7 @)

Then the zero solution of (1.9) is asymptotically stable if and only if

N
L14)  HO=).h@), ®=
j=1

t
(1.15) f H(s)ds —» oo ast — co.
0

Obviously, Theorem 1.3 improves and generalizes Theorems 1.1 and 1.2. On
the other hand, Dib, Maroun and Raffoul in [16] and Ardjouni and Djoudi in [3]
considered the following nonlinear neutral differential equation

SXO = BT 0) + 50 X (-7 (1)
(116) #G1 (6 X (t- 11 0), X (- T2 (),

where Q1 (t,x) and Gy (t, %, y) are globally Lipschitz continuous in x and in x and vy,
respectively. That is, there are positive constants Ej, E,, E3 such that

Q1 (t,X) - Qu(t,X)| <Eifx-y

1.17 /

(L.17) |G1(t,%,y) = G1 (t,z,W)| < EzlIx — 2|l + Es ||y — w]|,
and

(1.18) Q1 (t,0) = Gy (t,0,0) = 0.

And obtained the following theorems.

Theorem 1.4. (Dib, Maroun and Raffoul [16]). Suppose that 71 = 0 and (1.17), (1.18)

hold, and there exists a constant a € (0, 1) such that fort > 0, fot by (s)ds —» coast — oo,
and

t t
(1.19) Ly + f g~k WA (E b, (5)] + Ly + Ls)ds < a,
0

Then every solution x (t) = x (t,0, ) of (1.16) with a small continuous initial function ¢
is bounded and tends to zero as t — oo.

Theorem 1.5. (Ardjouni and Djoudi [3]). Suppose (1.17) and (1.18) hold. Let 7; be

differentiable, and suppose that there exists continuous functions h; : [m,— (to),oo) - R
for j = 1,2 and a constant a € (0, 1) such that fort > 0,

t
(1.20) tIim inff h(s)ds > —oo,
—00 O
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and

2 t
Ei + ;ft Ihj ()| ds

-Tj(t)

t 1
+f e—fs h(u)du{
0

+ 'hz (s—12(9)) (1 -1, (s))' +Eqp|h(s)| + Ex + Eg} ds

2 t S
1.21 - [hwdu hi ()| dulds < a,
(1.21) +jZl‘foe I (S)l(fs Ih; ()| U)s<a

—17(s)

“b(s) +h1 (s -7 (9) (1- 75 )|

where h (t) = Z?zl hj (t). Then the zero solution of (1.16) is asymptotically stable if and
onlyif ['h(s)ds — coast — co.

Obviously, Theorem 1.5 improves and generalizes Theorem 1.4.

Note that in our consideration the neutral term %Q (t,x({t—12(0),... x({t—1n (D))

of (1.1) produces nonlinearity in the derivative term %x(t— Tj (t)). The neutral

term %x (t - Tj (t)) in [1] enters linearly. So, the analysis made here is different form
that in [1].

Our purpose hereis to give, by using the contraction mapping principle, asymp-
totic stability results of a generalized nonlinear neutral differential equation with
variable delays (1.1). An asymptotic stability theorem with a necessary and suf-
ficient condition is proved. Two examples are also given to illustrate our results.
The results presented in this paper improve and generalize the main results in
[3, 11, 16, 25].

2. Main Results

For each (to, ¢) € R* x C([m(to),to],R), a solution of (1.1) through (to, ¢) is
a continuous function x : [m(tg),to + @) — IR for some positive constant « > 0
such that x satisfies (1.1) on [to, to + @) and x = ¢ on [m (to), to] . We denote such a
solution by x (t) = x (t, to, ). For each (tp, ¢) € R* x C([m (o), to] , R), there exists a
unique solution x (t) = x(t, to, 1) of (1.1) defined on [to, c0). For fixed ty, we define
|| = max{)¢(t)| ‘m(t) <t< to}. Stability definitions may be found in [9], for
example.

Our aim here is to generalize Theorems 1.1, 1.2, 1.4, 1.5 to (1.1).

Theorem 2.1. Suppose that 7 is twice differentiable and T] (t) # 1 forall t € R*, and
there exist continuous functions h; : [m,— (to),oo) — Rfor j=1,2,...,N and a constant
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a € (0,1)suchthatfort >0

t
(2.1) tIim inff H (s) ds > —oo0,
—00 0

and

N N t
;K,- +§ft |hj ()] ds

—7j(t)

N t
—f:H(u)du
5 f ¢
j=1

+Kj[H (s)] + Lj}ds

N t . s
2.2 - [ Hdu hi(u)|dulds < a,
2.2) +]Zl‘foe | (s)|(£ (S)| P ()| u) s <a

—1j

b +his - ©) (17 (s))'

N

where H (t) = ) h;j(t). Then the zero solution of (1.1) is asymptotically stable if and only
j=1

if

t
(2.3) f H(s)ds —» coast — co.
0

Proof. First, suppose that (2.3) holds. For each ty > 0, we set

(2.4) K =sup {e‘ k H(S)ds}.
0

Let ¢ € C([m(to), to], R) be fixed and define

S = {peC(Im(ty), ™), R): () —>0ast— oo,
p )=y () forte[m(t),to]}.

This S is a complete metric space with metric p (X, y) = SUPy ) {|x -y (t))}.
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Multiply both sides of (1.1) by ef‘o HWW 5nd then integrate from t; to t to obtain

XM = ()~ Qlto Y (to— 71 (1), ¥ (to — T ()"
N it .
=1 Yo

N
- ft g~ [ H)du Z bj (s) X (s - T (s)) ds
t i1

+ te_f HWAU (G (5, X (s — 71 (9)), ..., X (S — Tn ()))
o

—H()Q(S,x(s—11(5),...,Xx(s—tn (5))} ds

Performing an integration by parts, we have

X (t)

= (1/} (t)) - Q (tO/ v (to — 71 (t0)), .., 1 (to— Tn (to)))) . ft; H(u)du
+Q(t,x(t— 11 (1),..., X (t— Tn (1))

N t . s
+ Z e~ J H(duy (f h;j (u) x (u) dUJ
j=1 1 S—’Tj(S)

N

+Z te‘f:H(”)d” {—bj (s) + h; (s -1 (s)) (1 -] (s))}x(s - Tj (s)) ds

j=1 to

t t
+ | e FHOUG (5,X (s — 11 (5)), .oy X (S — T (5))
to

—HEG)Q(G,Xx(5=11(5), ..., x(s— 1N (5)))} ds
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Thus,

X (t)
= {¢(to) = Q(to, ¢ (to — 11 (o)), ..., ¥ (to — Tn (t0)))

N At t
) Z f hj ()¢ (s) dS} e Jo H()du
t

=1 0—7j(to)

N t
+ QX (t—T1 (), . X (t— T (1) + Zf hj (8) x (5) ds
=1 ()

t—’[j

N t .
+ Zl‘ ft e~ J H(udu {—bj (s) +h; (s - T (s)) (1 -1 (5))})( (s — 1 (s)) ds
= 0

t 1
+ f ek O G (5, x (s — 71 (5)), ., X (5 — T (5)))
to
—H(S)Q(s,X(s=1711(3), ..., x(s — Tn (8)))} ds

N

t S
25 - f e~ L HWdup (g) ( f hi (u) x () du) ds.
( ) le‘ 1) s—7j(s) .

Use (2.5) to define the operator P : S — S by (Pg) (t) = ¢ (t) for t € [m (to) , to] and

Pp)(®) = {P(to) —Q(to, ¥ (to — 71 (t0)), ..., ¥ (to — T~ (t0)))

N g t
) Z f hj (5) ¢ (s) ds} o o H
t

j=1 Yto-7j(to)

N t
+ Q- T1 (1), (t—Tn (1)) + Zf hj (5) ¢ (5) ds
j=1 Yt

N it ¢

N Z f o L H(udu {—bj (s) + h; (5 - T (s)) (1 -1 (S))
=10

—r;®)} @ (s 7j(s))ds

b [ EHON 6 (5 s - 9, 6 - )

to

—HEG)Q(S,@(5—11(8), ..., ¢ (s— TN (5)))} ds

N

t N S
(2.6) —Z ft gk H(”)d”H(s)( fs o h; (u)(p(u)du]ds,

=1

fort > to. Itis clear that (Pg) € C([m (to), ), R) . We now show that (P¢p) (t) — 0 as
t — oo. To this end, denote the six terms on th right hand side of (2.6) by I, I,..., I5,
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respectively. It is obvious that the first term I, tends to zero ast — oo, by condition
(2.3). Also, due to the facts that ¢ (t) - Oand t — 7j(t) = oo for j =1,2,..,N as
t — oo, the second term I, in (2.6) tends to zero ast — co. What is left to show is
each of the remaining terms in (2.6) go to zero at infinity.

Let ¢ € S, be fixed. For a given ¢ > 0, we choose T > 0 large enough such that

t—1j(t) > To, j = 1,2,...,N, implies |p (s)| < ¢ if s > t — 7 (t). Therefore, the third
term I3 in (2.6) satisfies

[13]

N t
Y[ neeods
=1 Yt=1i(®

Nt
) le‘ ij(t) )hj (S)| |(P (5)) ds
N
<

t
3 hij(s)|ds < ae < ¢.
é;ft_mh lds < ac <

Thus I3 — 0ast — co. Now consider l4. For the given ¢ > 0, there existsa T; > 0
such that s > T; implies '(p (s - Tj (s))| <eforj=1,2,..,N. Thus, fort > Ty, the
term Iy in (2.6) satisfies

[14]

N t .
Z ft e~ L HWdu {—bj (s) + h; (s -1 (s)) (1 - (s))} ) (s -1 (s)) ds
=1 Vo

N AT
< Z [ g~k H(udu —bj () + hj (s -1 (s)) (1 -] (s))' '(p (s - (s))' ds
i1 Vo
N t .
+y i e MO | () 4y (s = 7;9)) (1= 7 9)| | (5 - 7 (9))| s
i
i .o
< sup o (a))ZI e b HW@U_p. (5) + h; (s — T (s)) (1 -] (s))|ds
s

a=m(t)

N t .
+€Zf e—sz(u)du
=1V

by (5) + hy (s = 75 (9)) (1 - 7} 9)] .
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By (2.6), we can find T, > Ty such thatt > T, implies

N T .
sup |(p (g)|Zf e‘fs H(u)du
j=1 b

~b; (8) + hy (s = 5 (9)) (1 - 7} (9)] 05

a=m(ty)
—frt H(u)du ! Te T2 Hou)d
= sup |(P(g)|e 2 Zf e‘fs (u)du
o=m(ty) =1 o

X '—b,— (s) +h; (s - Tj (s)) (1 - T] (s))| ds < e.

Now, apply (2.5) to have |l4| < € + ae < 2e. Thus, I — 0ast — oo. Similarly, by
using (1.4)—(1.6) and (2.6), then, if t > T, then the terms Is and I in (2.6) satisfy

(15|

t t
f e [ HOUG (5, (5 — 7 (8)), ... 0 (5 — T (5))
)
—H()Q(s,x(s = 71(5)) , ..., X (s = Tn () O]

t N T1 T
< sup )(p(o))e_ﬁzH(U)d”Zf e‘fszH(”)d“(Kle(s)|+L,—)ds
a>m(ty) j=1 Yl
- [ [ Hwyd
— H(u)du
+e e Js KjIH (s)| + L;)ds
[t m )

< €+ ae <2

and

[l

N t . s
Zf ek H(”)d”H(s)(f h;j (u)(p(u)dqus
j=1 to S—Tj(S)
N T1 f‘ S
su (0) ek H(”)dUIH(s)I( hi (u) du)ds
p|(PG|;]t; l—fj(s))l |

o>m(ty)

N t . s
+e Z f e~ J H(uydu [H (s)| (f , )hj (u)| du] ds
=1 T1 S—TJ(S)

< €+ ae< 2e.

IA

Thus, Is,l1g¢ = 0 as t — co. In conclusion (Pp)(t) — 0 ast — oo, as required.
Hence P maps S into S. Also, by (2.2), P is a contraction mapping with contraction
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constant a. Indeed, for p,ne Sand t > tg

|(P) (®) ~ (Pn) (¥)
)Q (t/ §0 (t —T1 (t)) s @ (t — TN (t))) - Q (t/ 1 (t —T1 (t)) s s 1] (t — TN (t)))|

Nt
+J_fot_w) hj () ¢ (5) = 1 (5)] ds

N t
—f;H(u)du
x'(p(s—q (S))—U(S—Tj (s))'ds
t t
+[ g~k H(udu {)G Sp6—110),. pE—1n())

G N=T16), .. 16— )
+HHEQE, 9= 11(5), @ (s — TN ()
—Q(s,n(s=T1(9), (s —Tn ()} ds

_fs‘H(u)dU H h: B dulds.
L e o [, hello-rola)s
N N t
: [ZKJ'*Zf i ©)] s
=1 j=1 vt

-Tj(t)

N t
—f;H(u)du
5 f ¢
=1

+KjH () + L,—}ds

N t s
—f;H(u)du _ _
+,Z;fo ‘ 'H(S)|US_T1(S) I (U)ldU)dS] o = nll-

IN

—b; (5) + hy (s = 75(9)) (1 - 7} O)

~b; (9) + hj (s — 71 (9) (L - 7] O)

By condition (2.5), P is a contraction mapping with constant a. By the Contraction
Mapping Principle (Smart [24], p. 2), P has a unique fixed point x in S which is a
solution of (1.1) with x (t) = ¢ (t) on [m (o), to] and x (t) = x (t, to, ) > 0ast — oo.

To obtain the asymptotic stability, we need to show that the zero solution of (1.1)

is stable. Let ¢ > 0be given and choose 6 > 0 (5 < ¢) satisfying 26Keh” MU L qe < ¢,
If x (t) = x(t, to, ) is a solution of (1.1) with |[i)|| < 6, then x(t) = (Px) (t) defined
in (2.6). We claim that |x (t)] < ¢ for all t > t;. Notice that [x (s)| < € on [m (to), to].
If there exists t* > ty such that |x (t*)] = ¢ and [x (5)| < & for m(tp) < s < t*, then it
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follows from (2.6) that

to

N N
x® < |y [1 +Y K+Y f
=1 j=1 Yto-Tj(to)
N N t
+eZKj+er Ih; ()| ds
=1 =1 t—7;(t)
N t* fﬁ
+ e~k H(u)du

N At
- J Hdu (4. )
+esztO ek (K,lH(s)|+L,)ds
J:

N t ¢ s
+€Zf e~ [ Hw (s)|[f |n; (u)|dqus
j=1 to S—’Tj(S)

< 26Keh HWd | 4o o €,

| )| ds] e f H@du

—b; (s) + hj (s - Tj (s)) (1 - T] (s))' ds

which contradicts the definition of t*. Thus, [x (t)] < ¢ for all t > t;, and the zero
solution of (1.1) is stable. This shows that the zero solution of (1.1) is asymptotically
stable if (2.3) holds.

Conversely, suppose (2.3) fails. Then by (2.1) there exists asequence {t,}, tn — o

as n — oo such that limy_ fot” H (u) du = | for some | € R*. We may also choose a
positive constant J satisfying

2.7) —Jsan(u)dusJ,
0

for all n > 1. To simplify our expressions, we define

N
W) = ZH—bj(s)+h,~(s—¢,~(s))(1—7:;(s))'

j=1
S
+K; [H ) + Lj + [H©)] |h; (u)| du],
s—1j(s)
for all s > 0. By (2.2), we have
th tn
(2.8) f g~ L HWAd,, () ds < a.
0
This yields

th s n
(2.9) f e HWUG, (g) ds < agh” M < ¢,
0
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The sequence {fot eh HWdu, (5) ds} is bounded, so there exists a convergent subse-
guence. For brevity of notation, we may assume that

n—oo

th
(2.10) lim f el HWduG, (5) ds =y,
0
for some y € R* and choose a positive integer m so large that
t
(2.11) f eh HW ) () ds < 50/4K,
tn

for all n > m, where &y > 0 satisfies 26qKe’ + o < 1.

By (2.1), Kiin (2.4) is well defined. We now consider the solution x (t) = X (t, tm, ) of
(1.1) with ¢ (tm) = 6o and |1p (s)| < O for s < ty. We may choose ¢ so that [x (t)] < 1
fort > t, and

¢ (tm) -Q (tmr Eb (tm —-—T (tm)) s lab (tm — TN (tm)))
N m

_Zf hi (5) ¢ (5)ds > %60.
j=1 vt

m—Tj(tm)
It follows from (2.6) with x (t) = (Px) (t) that forn > m

X (tn) — Q (tn, X (th — 71 (t)) , ..., X (th — T (tn)))
N ty
—Zf h; (s)x (s) ds

j=1 th—7j(tn)

[\

n th n
%609_ f(:“ H(u)du _ f e~ f: H(udu (s)ds
tn

n n o N
- %(5oe—f; HWdu _ o= [ HEdu f el HWdg) (5) ds
tm

th s
= S H(u)du (%60 e ™ H(u)du f el H(du ) () ds)
tm
tn ]_ tn J
e Jo H(u)du (560 _ Kf efo H(u)du () ds)
tm

1. 1
(2.12) > Lo INCLIS 70062 > 0.

v

On the other hand, if the zero solution of (1.1) is asymptotically stable, then x (t) =
X(t,tm, ) > 0ast — co. Since ty — 7j (tn) = o0 asn — co and (2.2) holds, we have

f hj(s)x(s)ds — 0,
1 tn—’fj(tn)

N
(2-13) X (tn) -Q (tn/x (tn —T1 (tn)) s X (tn — TN (tn))) -
J
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as n — oo, which contradicts (2.12). Hence condition (2.3) is necessary for the
asymptotic stability of the zero solution of (1.1). The proof is complete. O

Remark 2.1. It follows from the first part of the proof of Theorem 2.1 that the zero solution
of (1.1) is stable under (2.1) and (2.2). Moreover, Theorem 2.1 still holds if (2.2) is satisfied
fort>t, forsomet, € R*.

For the special case Q (t, Xy, ..., Xn) = G (t,Xg, ..., Xn) = 0, we can get

Corollary 2.1. Suppose that 7; is differentiable, and there exist continuous functions
hj: [mj (to),oo) — Rfor j=1,2,..,Nand a constant « € (0, 1) such that fort > 0

t
(2.14) tIim inff H(s)ds > —oo,
—00 0

and

N t
Y f |h; (s)| ds
=1 Y=t

N t .
T f e—fs H(u)du
L,
N t . s
(2.15) +Zf ek H<U>d“|H(s)|[f |h (u))du}ds < a,
=1 0 s—1(s)

—by (5) + hy (s = 75 (9)) (1 - 7} )] s

N

where H (t) = ) h;j (t). Then the zero solution of (1.9) is asymptotically stable if and only
j=1

if

t
(2.16) f H(s)ds —» coast — co.
0

Remark 2.2.  When h; (s) = b; (gj (s)) forj=1,2,...,N, Corollary 2.1 reduces to Theorem 1.2.
When N = 2, by (t) = 0, Q(t, X1, X2) = Q1 (t,X2) and G (t, X1, X2) = Gy (t,Xg,X2), Theorem 2.1
reduces to Theorem 1.5. Therefore, Theorem 2.1 is a generalization of Theorem 1.5.

3. Two examples

In this section, we give two examples to illustrate the applications of Corollary
2.1 and Theorem 2.1.
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Example 3.1. Consider the following linear delay differential equation
(CRY X () = =by ()X (t— 71 (1)) — b2 (X (t — 72 (1)),

where 73 (t) = 0.271t, 7, (t) = 0.287t, by (t) = 1/ (1.458t + 2) and b, (t) = 1/ (1.426t + 2). Then
the zero solution of (3.1) is asymptotically stable.

Proof. Choosing h; (t) = hy(t) = 0.61/(t+ 1) in Corollary 2.1, we have H (t) =

1.22/(t+1)and
t t
1 .61
f 0.6 061 . f 0.6 ds
o7t S+1 orstS+1

2 t
Zf Ih; (9)| ds
=1 t—Tj(t)
t+1 t+1

2 t . s
Zf e‘sz(u)dU|H(S)|(f |h; (u)|du)ds
=1 0 s—7(s)

o 1.22
f e~ k(A22/(ur1du 22 5 399005 < 0.3992,
0 l+s
and

~b; (8) + hy (s = 75 (9)) (1 - 7} 9) = r; (9)| s

Z f - [*H(u)du

o La2z/usnaunl = 1.22X0.729 1-1.22x0.729
0.729s + 1

f - [fa22/usiau L = 1.22x0.713 1-1.22x0.713
© 0713s+1

- 1(1 1.22x0.729 N 1-1.22x 0.713)
2\ 1.22x0.729 1.22x0.713

t
Xf e_fst(1422/(u+1))dul'_22ds < 0.137.
X s+1

It is easy to see that all the conditions of Corollary 2.1 hold for a = 0.3992 + 0.3992 +
0.137 = 0.9354 < 1. Thus, Corollary 2.1 implies that the zero solution of (3.1) is
asymptotically stable.

However, Theorem 1.2 cannot be used to verify that the zero solution of (3.1)
is asymptotically stable. In fact, by (g1 (t)) = 1/ (2t + 2), by (92 (t)) = 1/ (2t + 2), and
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qt) =1/ (@ +1). Ast — oo,

]

2 t '
Y[ e = [ alpee [ gt
1
E

ottt 1 &
0.720t+1 2 " 0.713t+ 1

N _5 In(0.729 x 0.713),

2 At s
Zf e~ J a(du )q (S))(f 'b,— (gj (u))|du) ds
= 0 s—1j(s)
t
f e_f;(l/(u+1))dui fs 1 du + fs ! du|ds
) 1+5\ Jo700s 2u+2 07135 2U +2

t
5 (t_1+ 5 f [2In(s+1) —In(0.729s + 1) — In (0.713s + 1)] ds
0

t+1/0.729
In(t+1) - W

2(t+1)

In(0.729t + 1)
In(0.713t + 1)

_% In(0.729 x 0.713),

2 At
y f e~ [ awydu
j=1 V0

1 t g1 tos+1

1 [0.271t (0.271

T (s)| ds

) In (0.729t + 1)

2(t+1)| 0729 \0.729
0.287t (0.287
Tos (o 713) n@ 713t+1)]

1(0.271 N 0.287)
2\0.729 ~ 0.713/°
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Thus, we have

limsup Zf o g,(s) ds+Zf - [q@)du
t—1(t

t>0

+ Jzi;fot o [ atwdu lg (S))(f;j(s) 'b,— (g,— (u))'du)ds

1/0.271 0.287
= -1In(0.729x0.713) + 5 (m * o713

(s)| ds

) ~ 1.0415.

In addition, the left-hand side of the following inequality is increasing in t > 0,
then there exists some t; > 0 such that for t > tg,

2

szfu(t) g,(s) ds+Zf - [ awdu
+;]; g~ [ ayau |q(S)|[£_Tj(S)|bj (7 (u))'du)ds > 1.04.

This implies that condition (1.11) does not hold. Thus, Theorem 1.2 cannot be
applied to equation (3.1). O

(s)' ds

Example 3.2. Consider the following nonlinear neutral delay differential equation

LX) = Zb(t)x 1 (0) + S X(E- T (), X (-7 ()

32 +G (tx(t—1s (1), x(t-2(1)),

where 7y (t) = 0.221t, 7, (t) = 0.217¢, by (t) = 1/ (1.558t + 2) , b, (t) = 1/ (1.566t + 2), Q (t,X,y) =
0.072sin (x/2)+0.036 sin(y/3), G (t, %, y) = 0. Then the zero solution of (3.2) is asymptotically
stable.

Proof. Choosing h; (t) = hy(t) = 0.63/(t+1) in Theorem 2.1, we have H(t) =
1.26/ (t+ 1) and

2
(3.3) K1 =0.036, K, = 0.012, Z K;j=10.048, Ly =L, =0,
=1

' 063 ' 063
—ds + —ds
oot S+1 o7sst S+ 1

t+1 t+1

2 t
Y f |h; (9)| ds
=1 YT
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2 t S
- [ @y |( h; (u)| d )d
;foe () I_Tj(s)) i ()| du [ds

t
< f e~ [a2s/wsnpou 1-26 x 0.312ds < 0.312,
0 s+ 1

by +hy(s—79) (1~ (s))|

2 t
Zfe—f;H(u)du{
j=1 0

+Kj[H (s)| + Lj}ds

t
_ fe—f:(l.ZG/(uH))du{
0

2 0.779+1 s+1

11.26x0.779 — 1' 0.036 x 1.26}ds

N ft e_fst(l.%/(uﬂ))du { 11.26x0.783 -1 ' 0.012 x 1.26}ds
0 2 0.783+1 s+1
- (1 1-1.26x0.779 N 11-1.26%0.783 N 0.048)
2 1.26x0.779 2 126x0.783

t
x f e Fazsueman 120 40 g g5,
0 s+1

It is easy to see that all the conditions of Theorem 2.1 hold for & = 0.048 + 0.312 +
0.312 4+ 0.065 = 0.737 < 1. Thus, Theorem 2.1 implies that the zero solution of (3.2)
is asymptotically stable. O
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