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Abstract. The aim of this paper is to introduce the concept of classical weakly prime
submodules, which is the generalization of the notion of weakly classical prime sub-
modules to modules over arbitrary noncommutative rings. We study some properties
of classical weakly prime submodules and investigate their structure in different classes
of modules. Also, the structure of such submodules of modules over duo rings is com-
pletely described. We investigate some properties of classical weakly prime submodules
of multiplication modules.
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1. Introduction

Throughout this article, all rings are associative with identity element and all mod-
ules are unital. Anderson and Smith [1] studied weakly prime ideals for a commu-
tative ring with identity. They defined a proper ideal P of a commutative ring R
to be weakly prime ideal if 0 6= ab ∈ P implies a ∈ P or b ∈ P ; and then it is
proved [1, Theorem 3] that the following statements are equivalent for an ideal P
of a commutative ring R,

(a) P is weakly prime.

(b) for ideals A and B of R, 0 6= AB ⊆ P implies A ⊆ P or B ⊆ P .
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For rings that are not necessarily commutative, it is clear that (b) does not imply
(a). In [7], Hirano et al. said that a proper ideal P of a ring R is weakly prime ideal
provided that 0 6= IJ ⊆ P implies I ⊆ P or J ⊆ P , for any ideals I and J of R.
Equivalently, P is weakly prime if 0 6= aRb ⊆ P , for some a, b ∈ R, then a ∈ P or
b ∈ P , see [7, Proposition 2].

Weakly prime submodules of modules over commutative rings were introduced
by Ebrahimi Atani and Farzalipour in [6]. A proper submodule N of M is called a
weakly prime submodule if 0 6= am ∈ N , for some a ∈ R and m ∈ M , then m ∈ N
or aM ⊆ N .

Behbboodi and Koohi introduced weakly prime submodules in [5]. A proper
submodule P of M is called a weakly prime submodule if whenever K ⊆ M and
rRsK ⊆ P , where r, s ∈ R, then either rK ⊆ P or sK ⊆ P . If R is a commutative
ring, then a proper submodule P of R-module M is a weakly prime submodule
if and only if for any elements a, b ∈ R and m ∈ M , abm ∈ P implies am ∈ P
or bm ∈ P . It is also clear that each prime submodule is weakly prime but not
conversely, see [5, Example 1]. This notion of weakly prime submodules has been
extensively studied by Behboodi in [2, 3, 4], although in [2, 3], the notion of weakly
prime submodules is named “Classical prime submodule”.

The concept of weakly classical prime submodules of modules over commutative
rings were introduced by Mostafanasab, Tekir and Oral in [8]. A proper submodule
N of an R-module M is called a weakly classical prime submodule if whenever
a, b ∈ R and m ∈M with 0 6= abm ∈ N , then am ∈ N or bm ∈ N .

For all submodules N and K of an R-module M , denote by (N :R K) the subset
{a ∈ R | aK ⊆ N} of R, which is an ideal of R. The annihilator of K, which
is denoted by AnnR(K), is (0 :R K). If AnnR(K) = 0, then K is called a faithful
submodule of M . In particular, if AnnR(M) = 0, then M is called a faithful module.
We know that R is a domain if R has no left or right zero divisors and R is a right
(left) duo ring if every right (left) ideal of R is an ideal.

In this paper, we introduce the concept of classical weakly prime submodules,
which is the generalization of the notion of weakly classical prime submodules and
weakly prime submodules. In the second section, we study some basic properties
of classical weakly prime submodules. In the third section, we shall characterize
the structure of classical weakly prime submodules of modules over duo rings. In
the fourth section, we study some properties of these submodules of multiplication
modules. Finally, we introduce the concept of fully classical weakly prime modules
and study their structures.

2. Classical weakly prime submodules

Let R be a ring. If N is a submodule of an R-module M , we write N ≤ M . Also,
for each element a ∈ R, 〈a〉 denotes the principal ideal of R generated by a.

Definition 2.1. A proper submodule N of an R-module M is called a classical
weakly prime submodule if whenever r, s ∈ R and K ≤ M with 0 6= rRsK ⊆ N,
then rK ⊆ N or sK ⊆ N .
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Theorem 2.1. Let M be an R-module and N be a proper submodule of M . The
following statements are equivalent:

(1) N is a classical weakly prime.

(2) For all ideals I and J of R and K ≤M , if 0 6= IJK ⊆ N , then either IK ⊆ N
or JK ⊆ N .

Proof. 1 ⇒ 2. Let N be a classical weakly prime submodule of M . Suppose that
0 6= IJK ⊆ N , for some ideals I and J of R and some submodule K of M . If
IK * N and JK * N , then there are elements a ∈ I and b ∈ J such that aK * N
and bK * N . Since N is a classical weakly prime and aRbK ⊆ IJK ⊆ N , we must
have aRbK = 0. Hence, abK = 0, and so ab = 0. In the following, we show that
IJK = 0.

Now, we assume that x ∈ I and y ∈ J . If xK * N and yK * N , then by the
above argument xy = 0. If xK * N and yK ⊆ N , then (b + y)K * N , and hence
x(b + y) = 0. Since xb = 0, we have xy = 0. Similarly, if xK ⊆ N and yK * N ,
then xy = 0. If xK ⊆ N and yK ⊆ N , then (a + x)K * N and (b + y)K * N .
Therefore, we must have (a + x)b = a(b + y) = (a + x)(b + y) = ab = 0, which
implies that xy = 0. Hence, IJK = 0, a contradiction, and consequently IK ⊆ N
or JK ⊆ N .
2⇒ 1. Let r, s ∈ R and K ≤M such that 0 6= rRsK ⊆ N . Hence,

0 6= 〈r〉〈s〉K ⊆ N.

By assumption, 〈r〉K ⊆ N or 〈s〉K ⊆ N . Therefore, rK ⊆ N or sK ⊆ N .

Corollary 2.1. Let M be an R-module and let N be a proper submodule of M. If
(N :R K) is a weakly prime ideal of R, for every submodule K of M that is not
contained in N , then N is a classical weakly prime submodule.

Corollary 2.2. Let M be an R-module and let N be a classical weakly prime
submodule of M. Suppose that K is a submodule of M . Then, for every a ∈ R and
for all ideal I of R,

(1) if 0 6= aIK ⊆ N , then aK ⊆ N or IK ⊆ N .

(2) if 0 6= IaK ⊆ N , then aK ⊆ N or IK ⊆ N .

However, by definition, the zero submodule is always classical weakly prime.
Furthermore, it is clear that every weakly prime submodule is classical weakly
prime, but a classical weakly prime submodule need not be weakly prime. The
following gives a conterexample.

Example 2.1. Consider the Z-module M = Zp ⊕ Zq ⊕ Q, where p and q are two
distinct prime integers. Notice that pq(1̄, 1̄, 0) = (0̄, 0̄, 0), but p(1̄, 1̄, 0) 6= (0̄, 0̄, 0) and
q(1̄, 1̄, 0) 6= (0̄, 0̄, 0). Then the zero submodule of M is not weakly prime.
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Definition 2.1 is the generalization of the notion of weakly classical prime sub-
modules to modules over noncommutative rings. In fact, if M is a module over
a commutative ring and if N is a proper submodule of M , then it follows from
Theorem 2.1 and [8, Theorem 2.25] that N is a classical weakly prime submodule
if and only if N is a weakly classical prime submodule.

It is clear that whenever {Pi}i∈I is a chain of classical weakly prime submodules
of an R-module M , then ∩i∈IPi is always a classical weakly prime submodule.
Also, it is evidence that if ∪i∈IPi 6= M , then ∪i∈IPi is a classical weakly prime
submodule.

Theorem 2.2. Let M be an R-module and let N be a classical weakly prime sub-
module of M . Then the following statements hold.

(1) If K is a faithful submodule of M that is not contained in N , then (N :R K)
is a weakly prime ideal of R.

(2) If AnnR(M) is a weakly prime ideal of R, then (N :R M) is a weakly prime
ideal of R.

Proof. 1. Let K be a faithful submodule of M such that K * N . It is clear that
(N :R K) is a proper ideal of R. Now, we assume that 0 6= IJ ⊆ (N :R K), for
some ideals I and J of R. Then 0 6= IJK ⊆ N because K is faithful. Since N is a
classical weakly prime submodule of M , we have IK ⊆ N or JK ⊆ N by Theorem
2.1. Therefore, I ⊆ (N :R K) or J ⊆ (N :R K), and consequently (N :R K) is a
weakly prime ideal of R.
2. Since N is a proper submodule of M , (N :R M) is obviously a proper ideal of
R. Let AnnR(M) be a weakly prime ideal of R and 0 6= IJ ⊆ (N :R M), for some
ideals I and J of R. Hence, IJM ⊆ N . If IJM = 0, then 0 6= IJ ⊆ AnnR(M),
and so

I ⊆ AnnR(M) ⊆ (N :R M) or J ⊆ AnnR(M) ⊆ (N :R M)

because AnnR(M) is a weakly prime ideal of R. If IJM 6= 0, then it follows from
Theorem 2.1 that IM ⊆ N or JM ⊆ N , and so

I ⊆ (N :R M) or J ⊆ (N :R M).

Therefore, (N :R M) is a weakly prime ideal of R.

The following result is obtained immediately from Theorem 2.2.

Corollary 2.3. Let M be an R-module and let N be a classical weakly prime
submodule of M . For every m ∈ M \N , if AnnR(Rm) = 0, then (N :R Rm) is a
weakly prime ideal of R.

Theorem 2.3. Let f : M → M ′ be a homomorphism of R-modules. Then the
following statements hold.
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(1) If f is a monomorphism and if N ′ is a classical weakly prime submodule of M ′

for which f−1(N ′) 6= M , then f−1(N ′) is a classical weakly prime submodule
of M .

(2) If f is an epimorphism and if N is a classical weakly prime submodule of M
containing ker f , then f(N) is a classical weakly prime submodule of M ′.

Proof. 1. Suppose that N ′ is a classical weakly prime submodule of M ′ such that
f−1(N ′) 6= M . If 0 6= rRsK ⊆ f−1(N ′), for some r, s ∈ R and some submod-
ule K of M , then 0 6= f(rRsK) ⊆ N ′ because f is a monomorphism. Thus,
0 6= rRsf(K) = f(rRsK) ⊆ N ′. Since N ′ is a classical weakly prime submodule of
M ′, we have

f(rK) = rf(K) ⊆ N ′ or f(sK) = sf(K) ⊆ N ′.

Therefore, rK ⊆ f−1(N ′) or sK ⊆ f−1(N ′), and so f−1(N ′) is a classical weakly
prime submodule of M .
2. Assume that N is a classical weakly prime submodule of M. Let K ′ be a sub-
module of M ′ such that 0 6= rRsK ′ ⊆ f(N), for some r, s ∈ R. If K = f−1(K ′),
then f(K) = K ′ because f is onto, and so

f(rRsK) = rRsK ′ ⊆ f(N).

Since ker f ⊆ N , we have 0 6= rRsK ⊆ N , and consequently rK ⊆ N or sK ⊆ N
because N is a classical weakly prime submodule. Hence, rK ′ = f(rK) ⊆ f(N) or
sK ′ = f(sK) ⊆ f(N). Therefore, f(N) is a classical weakly prime submodule of
M ′.

As an immediate consequence of Theorem 2.3(2), we have the following result.

Corollary 2.4. Let M be an R-module and let L ⊂ N be submodules of M . If N
is a classical weakly prime submodule of M , then N/L is a classical weakly prime
submodule of M/L.

Theorem 2.4. Let M be an R-module and let K and N be proper submodules of
M with K ⊂ N . If K is a classical weakly prime submodule of M and if N/K
is a classical weakly prime submodule of M/K, then N is a classical weakly prime
submodule of M .

Proof. Suppose that 0 6= rRsL ⊆ N , for some r, s ∈ R and L ≤ M . If rRsL ⊆ K,
then rL ⊆ K ⊂ N or sL ⊆ K ⊂ N as desired. Thus, we assume that rRsL *
K. Then 0 6= (rRs)((L + K)/K) ⊆ N/K, and so r((L + K)/K) ⊆ N/K or
s((L + K)/K) ⊆ N/K. It follows that rL ⊆ N or sL ⊆ N . Therefore, N is a
classical weakly prime submodule of M .

Definition 2.2. Let N be a proper submodule of an R-module M . Then, N is
said to be a weakly 2-absorbing submodule of M if whenever 0 6= rRsK ⊆ N , where
r, s ∈ R and K ≤M , we have rK ⊆ N or sK ⊆ N or rRs ⊆ (N :R M).
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It is evidence that every classical weakly prime submodule is weakly 2-absorbing
submodule.

Proposition 2.1. Let N be a proper submodule of an R-module M . If N is a
weakly 2-absorbing submodule of M and if (N :R M) is a weakly prime ideal of R,
then N is a classical weakly prime submodule.

Proof. Suppose that N is a weakly 2-absorbing submodule of M and (N :R M) is a
weakly prime ideal of R. Now, we assume that 0 6= rRsK ⊆ N , for some r, s ∈ R and
some submodule K of M . If rK * N and sK * N , then
0 6= rRs ⊆ (N :R M) because N is a weakly 2-absorbing submodule. Since
(N :R M) is a weakly prime ideal, we have r ∈ (N :R M) or s ∈ (N :R M).
Hence, rM ⊆ N or sM ⊆ N , a contradiction. This contradiction shows that N is
a classical weakly prime submodule of M .

Definition 2.3. Let N be a classical weakly prime submodule of an R-module
M . If there exist a submodule K of M and elements a, b ∈ R such that aRbK = 0,
aK * N and bK * N , then (a, b,K) is called a classical triple-zero of N .

Proposition 2.2. Let N be a classical weakly prime submodule of an R-module
M and aRbK ⊆ N , for some a, b ∈ R and some submodule K of M . If (a, b,K) is
not a classical triple-zero of N , then aK ⊆ N or bK ⊆ N .

Proof. We assume that (a, b,K) is not a classical triple-zero of N . Therefore, if
aRbK = 0, then aK ⊆ N or bK ⊆ N . If aRbK 6= 0, then aK ⊆ N or bK ⊆ N
because N is a classical weakly prime submodule.

Corollary 2.5. Let N be a classical weakly prime submodule of an R-module M .
If (a, b,K) is not a classical triple-zero of N , for all a, b ∈ R and every submodule
K of M , then N is a weakly prime submodule of M .

Definition 2.4. Let N be a classical weakly prime submodule of an R-module M .
Suppose that IJK ⊆ N , for some ideals I and J of R and some submodule K of
M . We say that N is a free classical triple-zero with respect to IJK if (a, b,K) is
not a classical triple-zero of N for all a ∈ I and b ∈ J .

Remark 2.1. Let N be a classical weakly prime submodule of M and IJK ⊆ N , for
some ideals I and J of R and some submodule K of M . If N is a free classical triple-zero
with respect to IJK, then for all a ∈ I and b ∈ J , we have aK ⊆ N or bK ⊆ N .

Proposition 2.3. Let N be a classical weakly prime submodule of an R-module
M . Suppose that IJK ⊆ N , for some ideals I and J of R and some submodule
K of M . If N is a free classical triple-zero with respect to IJK, then IK ⊆ N or
JK ⊆ N .



On Classical Weakly Prime Submodules 23

Proof. Assume that N is a free classical triple-zero with respect to IJK. If IK * N
and JK * N , then there are elements a ∈ I and b ∈ J such that aK * N and
bK * N . Since aRbK ⊆ IJK ⊆ N and N is free classical triple-zero with respect
to IJK, we must have aRbK 6= 0. Therefore, by assumption aK ⊆ N and bK ⊆ N
which is a contradiction. Consequently, IK ⊆ N or JK ⊆ N .

Theorem 2.5. Let N be a classical weakly prime submodule of M . If (a, b,K)
is a classical triple-zero of N , for some a, b ∈ R and K ≤ M , then the following
statements are hold.

(1) aRbN = 0.

(2) a(N :R M)K = 0.

(3) (N :R M)bK = 0.

(4) (N :R M)2K = 0.

(5) a(N :R M)N = 0.

(6) (N :R M)bN = 0.

Proof. Assume that (a, b,K) is a classical triple-zero of N , for some a, b ∈ R and
K ≤M .
1. If aRbN 6= 0, then there exists an element x ∈ N such that aRbx 6= 0. Thus,
aRbRx 6= 0. Set L = K + Rx. We may conclude that 0 6= aRbL ⊆ N . Hence,
aL ⊆ N or bL ⊆ N because N is a classical weakly prime submodule, and so
aK ⊆ aL ⊆ N or bK ⊆ bL ⊆ N , a contradiction. Therefore, aRbN = 0.
2. If a(N :R M)K 6= 0, then there exists an element s ∈ (N :R M) such that
asK 6= 0. Thus, aRsK 6= 0. We can conclude that 0 6= aR(b + s)K ⊆ N because
sM ⊆ N . Since N is a classical weakly prime submodule, we have aK ⊆ N or
(b + s)K ⊆ N , and so aK ⊆ N or bK ⊆ N . This contradicts the hypothesis.
Therefore, a(N :R M)K = 0.
3. The proof is similar to (2).
4. If (N :R M)2K 6= 0, then there exist elements r, s ∈ (N :R M) such that
rsK 6= 0. Hence, by the assumption, (2) and (3), we have

0 6= (a + r)R(b + s)K = rRsK ⊆ rM ⊆ N.

Therefore, (a + r)K ⊆ N or (b + s)K ⊆ N because N is a classical weakly prime
submodule, and so aK ⊆ N or bK ⊆ N , which is a contradiction. Consequently,
(N :R M)2K = 0.
5. If a(N :R M)N 6= 0, then there exists an element s ∈ (N :R M) such that
asN 6= 0. It follows from (1) that aR(b + s)N = aRsN 6= 0. Thus, aR(b + s)x 6= 0,
for some x ∈ N . Set L = K + Rx. We conclude that 0 6= aR(b + s)L ⊆ N because
sM ⊆ N . Since N is a classical weakly prime submodule, we have aL ⊆ N or
(b + s)L ⊆ N , and so aK ⊆ aL ⊆ N or bK ⊆ bL ⊆ N . This contradicts the
hypothesis. Hence, a(N :R M)N = 0.
6. The proof is similar to (5).
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Theorem 2.6. Let N be a classical weakly prime submodule of an R-module M .
If N is not weakly prime, then (N :R M)2N = 0.

Proof. Suppose that N is not a weakly prime submodule of M . Thus, there exists
a classical triple-zero (a, b,K) of N, for some a, b ∈ R and K ≤ M . Now, if
(N :R M)2N 6= 0, then there are elements r, s ∈ (N :R M) and x ∈ N such that
rsx 6= 0. Set L = K + Rx. Hence, by the assumption, (2) and (3) of Theorem 2.5,
we conclude that

0 6= (a + r)R(b + s)L ⊆ N.

Therefore, (a + r)L ⊆ N or (b + s)L ⊆ N because N is a classical weakly prime
submodule, and so aK ⊆ aL ⊆ N or bK ⊆ bL ⊆ N , which contradicts the fact that
(a, b,K) is a classical triple-zero of N . Consequently, (N :R M)2N = 0.

Proposition 2.4. Let R be a ring and let I be a proper ideal of R. Then the
following conditions are equivalent:

(1) I is a weakly prime ideal of R.

(2) I is a classical weakly prime submodule of RR.

Proof. 1⇒ 2. It is clear.
2 ⇒ 1. Suppose that I is a classical weakly prime submodule of RR. Then by
Corollary 2.3, (I :R R1) = I is a weakly prime ideal of R.

Theorem 2.7. Let M1 and M2 be R-modules and M = M1×M2. If N = N1×M2

is a classical weakly prime submodule of M , for some submodule N1 of M1, then
N1 is a classical weakly prime submodule of M1. Furthermore, for all r, s ∈ R and
K1 ≤M1, if rRsK1 = 0, rK1 * N1 and sK1 * N1, then rRs ⊆ Ann(M2).

Proof. Suppose that N = N1×M2 is a classical weakly prime submodule of M and
0 6= rRsK1 ⊆ N1, for some r, s ∈ R and K1 ≤M1. Then, (0, 0) 6= rRs(K1×0) ⊆ N .
Thus, r(K1 × 0) ⊆ N or s(K1 × 0) ⊆ N , by assumption, and so rK1 ⊆ N1 or
sK1 ⊆ N1. Consequently, N1 is a classical weakly prime submodule of M1.

We now assume that rRsK1 = 0, for some r, s ∈ R and submodule K1 of M1

such that rK1 * N1 and sK1 * N1. If rRs * AnnR(M2), then there exists an
element x ∈M2 such that rRsx 6= 0. Hence,

(0, 0) 6= rRs(K1 ×Rx) ⊆ N.

Therefore, r(K1 ×Rx) ⊆ N or s(K1 ×Rx) ⊆ N , by assumption, and so rK1 ⊆ N1

or sK1 ⊆ N1, which is a contradiction. Consequently, rRs ⊆ AnnR(M2).

3. Duo rings and classical weakly prime submodules

Let M be an R-module and let N be a submodule of M . For every a ∈ R, the
subset {m ∈ M | am ∈ N} of M is denoted by (N :M a). We recall that a ring
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R is called a left duo ring if all left ideals of R is two sided ideal. It is easy to see
that if R is a left duo ring, then xR ⊆ Rx, for each x ∈ R. Therefore, if M is a
module over a left duo ring R, then for every submodule N of M and a ∈ R, the
subset (N :M a) is a submodule of M containing N .

Theorem 3.1. Let R be a left duo ring, let M be an R-module, and let N be a
classical weakly prime submodule of M . If 0 6= abm ∈ N , for some a, b ∈ R and
m ∈M , then am ∈ N or bm ∈ N .

Proof. Suppose that 0 6= abm ∈ N , for some a, b ∈ R and m ∈ M . Thus,
Rabm ⊆ N . Since R is a left duo ring, Rab = RaRbR, and so 0 6= aRbRm ⊆ N .
Hence, aRm ⊆ N or bRm ⊆ N because N is a classical weakly prime submodule.
Therefore, am ∈ N or bm ∈ N .

The following result follows from Theorem 3.1.

Corollary 3.1. Let R be a left duo ring and let N be a classical weakly prime
submodule of an R-module M . If abm ∈ N and if (a, b, Rm) is not a classical
triple-zero of N , for some a, b ∈ R and some m ∈M , then am ∈ N or bm ∈ N .

A submodule N of an R-module M is called u-submodule of M , provided that
N contained in a finite union of submodules must be contained in one of them. M
is called u-module if every submodule of M is a u-submodule, see [9].

Theorem 3.2. Let R be a left duo ring and let M be a u-module over R. The
following statements are equivalent for every proper submodule N of M .

(1) N is a classical weakly prime submodule.

(2) For each m ∈M and all a, b ∈ R, if 0 6= abm ∈ N , then am ∈ N or bm ∈ N .

(3) For all a, b ∈ R, one of the following holds:

i - (N :M ab) = (0 :M ab)

ii - (N :M ab) = (N :M a)

iii - (N :M ab) = (N :M b).

(4) For all a, b ∈ R and every K ≤ M , if 0 6= abK ⊆ N , then aK ⊆ N or
bK ⊆ N .

(5) For every a ∈ R and every submodule K of M , if aK * N , then

(N :R aK) = (0 :R aK) or (N :R aK) = (N :R K).

(6) For every a ∈ R, every ideal I of R and every submodule K of M ,
if 0 6= IaK ⊆ N , then aK ⊆ N or IK ⊆ N .
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(7) For every ideal I of R and every submodule K of M , if IK * N , then

(N :R IK) = (0 :R IK) or (N :R IK) = (N :R K).

Proof. 1⇒ 2. It proved in Theorem 3.1.
2 ⇒ 3. Let a, b ∈ R. For every m ∈ (N :M ab), we have abm ∈ N . If abm = 0,
then m ∈ (0 :M ab). If abm 6= 0, then by assumption am ∈ N or bm ∈ N , and so
m ∈ (N :M a) or m ∈ (N :M b). Hence,

(N :M ab) ⊆ (0 :M ab) ∪ (N :M a) ∪ (N :M b).

Therefore, one of

i- (N :M ab) ⊆ (0 :M ab)

ii- (N :M ab) ⊆ (N :M a)

iii- (N :M ab) ⊆ (N :M b)

holds because M is a u-module. Since R is a left duo ring, the conclusion follows.
3 ⇒ 4. Let 0 6= abK ⊆ N , for some a, b ∈ R and K ≤ M . Hence, K ⊆ (N :M ab)
and K * (0 :M ab). Consequently, by assumption K ⊆ (N :M a) or K ⊆ (N :M b),
and so aK ⊆ N or bK ⊆ N .
4 ⇒ 5. Let aK * N , for some a ∈ R and K ≤ M . For every r ∈ (N :R aK), we
have raK ⊆ N . If raK = 0, then r ∈ (0 :R aK). If raK 6= 0, then by assumption
rK ⊆ N , and so r ∈ (N :R K). Hence, (N :R aK) ⊆ (0 :R aK) ∪ (N :R K).
Therefore, by hypothesis the conclusion is true.
5 ⇒ 6. Suppose that I is an ideal of R and K is a submodule of M such that
0 6= IaK ⊆ N , for some a ∈ R. Then, I ⊆ (N :R aK) and I * (0 :R aK). Hence,
by assumption aK ⊆ N or I ⊆ (N :R K), and so aK ⊆ N or IK ⊆ N , as desired.
6 ⇒ 1. Let I and J be ideals of R and let K be a submodule of M such that
0 6= IJK ⊆ N . Assume that JK * N . Then there exists an element a ∈ J
such that aK * N . Furthermore, IaK ⊆ IJK ⊆ N . Now, if IaK 6= 0, then by
assumption IK ⊆ N . If IaK = 0, then there exists an element b ∈ J such that
IbK 6= 0 because IJK 6= 0. Now, we assume that bK ⊆ N . Thus, (a + b)K * N
and 0 6= I(a + b)K ⊆ IJK ⊆ N . Hence, IK ⊆ N by assumption. If bK * N ,
then 0 6= IbK ⊆ N implies that IK ⊆ N . Therefore, N is a classical weakly prime
submodule.
1⇒ 7. Let I be an ideal of R and let K be a submodule of M such that IK * N .
For every a ∈ (N :R IK), we have aIK ⊆ N . If aIK = 0, then a ∈ (0 :R IK). If
aIK 6= 0, then 0 6= 〈a〉IK ⊆ N . Since N is a classical weakly prime submodule and
IK * N , we have aK ⊆ 〈a〉K ⊆ N . Hence, a ∈ (N :R K). Therefore,

(N :R IK) ⊆ (0 :R IK) ∪ (N :R K).

Consequently, (N :R IK) ⊆ (0 :R IK) or (N :R IK) ⊆ (N :R K). Obviously, the
conclusion is true.
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7 ⇒ 1. Let 0 6= IJK ⊆ N , for some ideals I and J of R and K ≤ M . Then,
I ⊆ (N :R JK) and I * (0 :R JK). Assume that JK * N . By assumption,
(N :R JK) = (N :R K), and so I ⊆ (N :R K). Hence, IK ⊆ N . Consequently, N
is a classical weakly prime submodule.

Remark 3.1. Let R be a left duo ring and let I be an ideal of R. It is easily seen that
the subset {r ∈ R | rn ∈ I for some n ∈ N } of R is an ideal of R containing I, denoted
by
√
I.

Proposition 3.1. Let N be a classical weakly prime submodule of an R-module
M that is not weakly prime. Then the following statements hold.

(1) (N :R M)3 ⊆ AnnR(M).

(2) If R is a left duo ring, then
√
AnnR(M) =

√
(N :R M).

Proof. 1. By Theorem 2.6, (N :R M)2N = 0. Then

(N :R M)3 = (N :R M)2(N :R M)

⊆ ((N :R M)2N :R M)

= (0 :R M) = AnnR(M).

2. By the above remark,√
AnnR(M) = {r ∈ R | rn ∈

√
AnnR(M) for some n ∈ N }.

Hence, it follows from (1) that (N :R M) ⊆
√

AnnR(M). Since

AnnR(M) ⊆ (N :R M), we have
√

(N :R M) =
√
AnnR(M).

4. Classical weakly prime submodules of a multiplication module

Let R be a ring. An R-module M is called a multiplication module if every sub-
module N of M has the form IM , for some ideal I of R, see [10]. We know that M
is a multiplication R-module if and only if N = (N :R M)M , for every submodule
N of M .

Proposition 4.1. Let M be a multiplication R-module and let N be a proper sub-
module of M. If (N :R M) is a weakly prime ideal of R, then N is a classical weakly
prime submodule.

Proof. Let (N :R M) be a weakly prime ideal of R. Suppose that 0 6= IJK ⊆ N ,
for some ideals I and J of R and K ≤ M . Since M is a multiplication module,
there exists an ideal L of R such that K = LM . Then, 0 6= IJLM ⊆ N , and so
0 6= IJL ⊆ (N :R M). Since (N :R M) is a weakly prime ideal, I ⊆ (N :R M) or
JL ⊆ (N :R M), and hence IK ⊆ IM ⊆ N or JK = JLM ⊆ N . Therefore, N is a
classical weakly prime submodule of M .

The following result is a direct consequence of Theorem 2.2 and Proposition 4.1.
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Corollary 4.1. Let M be a faithful multiplication R-module and let N be a proper
submodule of M. Then, N is a classical weakly prime submodule if and only if
(N :R M) is a weakly prime ideal of R.

Also, the following result is obtained from Theorem 2.6.

Corollary 4.2. Let M be a faithful multiplication R-module and let N be a clas-
sical weakly prime submodule of M . If N is not a weakly prime submodule of M ,
then (N :R M)3 = 0.

Proposition 4.2. Let M be a faithful multiplication R-module and let N be a
proper submodule of M . Then the following conditions are equivalent:

(1) N is a classical weakly prime submodule.

(2) (N :R M) is a weakly prime ideal of R.

(3) N = PM , where P is a weakly prime ideal and it is maximal with respect to
this property (i.e., IM ⊆ N implies that I ⊆ P ).

Proof. 1⇔ 2. It follows from Corollary 4.1.
2⇒ 3. Since M is multiplication, N = (N :R M)M . By hypothesis, P := (N :R M)
is a weakly prime ideal. We now assume that N = IM , for some ideal I of R. It is
clear that I ⊆ (N :R M) = P .
3⇒ 2. Let N = PM , where P is a weakly prime ideal of R. Then, P ⊆ (N :R M).
Since M is a multiplication module, we have N = (N :R M)M . It follows from
maximality of P that (N :R M) ⊆ P . Therefore, (N :R M) = P is a weakly prime
ideal of R.

Proposition 4.3. Let M be a multiplication R-module and let N be a proper sub-
module of M . Then the following conditions are equivalent:

(1) N is a classical weakly prime submodule of M .

(2) If 0 6= IK ⊆ N , for some ideal I of R and submodule K of M , then K ⊆ N
or IM ⊆ N .

Proof. 1 ⇒ 2. Suppose that N is a classical weakly prime submodule of M and
0 6= IK ⊆ N , for some ideal I of R and submodules K of M . Since M is multipli-
cation, there is an ideal J of R such that K = JM . Hence, 0 6= IJM = IK ⊆ N .
Therefore, IM ⊆ N or K = JM ⊆ N by Theorem 2.1.
2 ⇒ 1. Suppose that 0 6= IJK ⊆ N , for some ideals I and J of R and submodule
K of M . We set N1 := JK. Hence, 0 6= IN1 = IJK ⊆ N , and so JK = N1 ⊆ N
or IK ⊆ IM ⊆ N by hypothesis. By Theorem 2.1, N is a classical weakly prime
submodule of M .
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5. Fully classical weakly prime modules

Recall that R is a fully weakly prime ring if every proper ideal of R is weakly prime,
see [7]. We call an R-module M a fully classical weakly prime module if every
proper submodule of M is a classical weakly prime submodule. A ring R is called
a fully classical weakly prime ring if R itself is a fully classical weakly prime left
R-module. For example, every module over a simple ring R is fully classical weakly
prime module.

Theorem 5.1. Let R be a ring. An R-module is fully classical weakly prime if
and only if R is a fully weakly prime ring.

Proof. ⇒. Suppose that I is a proper ideal of R. Then, I is classical weakly prime
by Proposition 2.4.
⇐. Let M be an R-module and N ≤ M. Suppose that 0 6= IJK ⊆ N , for some
ideals I and J of R and K ≤ M . Thus, 0 6= IJ ⊆ Ann((K + N)/N). Since
Ann((K+N)/N) is weakly prime, I ⊆ Ann((K+N)/N) or J ⊆ Ann((K+N)/N).
Therefore, IK ⊆ N or JK ⊆ N , and so N is a classical weakly prime submodule
of M . Consequently, M is a fully classical weakly prime module.

Proposition 5.1. Let M be an R-module. Then M is a fully classical weakly
prime module if and only if for each submodule K of M and for all ideals I and J
of R,

IJK = 0 or IJK = JK ⊆ IK or IJK = IK ⊆ JK.

Proof. Suppose that every submodule of M is classical weakly prime. Let I and J
be ideals of R and K ≤ M . If IJK 6= M , then IJK is a classical weakly prime
submodule by assumption. If IJK 6= 0, then

IK ⊆ IJK ⊆ IK or JK ⊆ IJK ⊆ JK,

and so IK = IJK ⊆ JK or JK = IJK ⊆ IK. If IJK = M , then IK = JK = M .

Conversely, we assume that N is a proper submodule of M . If 0 6= IJK ⊆ N ,
for some ideals I and J of R and K ≤M , then

IK = IJK ⊆ N or JK = IJK ⊆ N.

Therefore, N is a classical weakly prime submodule of M .

Corollary 5.1. Let M be a fully classical weakly prime R-module. Then for each
submodule K of M and each ideal I of R ,either I2K = 0 or I2K = IK.

Remark 5.1. Let M be an R-module and let N be a maximal submodule of M . If K is
a submodule of M such that K * N , then N + K = M . We now assume that IK ⊆ N ,
for some ideal I of R. Therefore, IM = IN + IK ⊆ N , and so N is a prime submodule of
M .
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Proposition 5.2. Let M be a multiplication R-module. If M is a fully classical
weakly prime module, then M has at most two maximal submodules.

Proof. Suppose that M has more than two distinct maximal submodules. Let N1,
N2 and N3 be three distinct maximal submodules of M . Since M is multiplication,
there is an ideal I of R such that N1 = IM . If IN2 = 0, then IN2 ⊆ N3. By
Remark 5.1, N3 is a prime submodule of M . Hence, N1 = IM ⊆ N3 or N2 ⊆ N3,
which contradicts the maximality of N1 or N2. Thus, IN2 6= 0. Since IN2 ⊆ N2

and IN2 ⊆ IM = N1, we have 0 6= IN2 ⊆ N1 ∩ N2, and so by Proposition 4.3,
N1 = IM ⊆ N1 ∩N2 or N2 ⊆ N1 ∩N2 because N1 ∩N2 is a classical weakly prime
submodule by assumption. Therefore, N2 ⊆ N1 or N1 ⊆ N2, a contradiction.

Corollary 5.2. Let M be a multiplication and fully classical weakly prime R-
module. If N1 = IM and N2 = JM are two distinct submodules of M , then
N1 and N2 are comparable by inclusion or IN2 = JN1 = 0. In particular, if N1

and N2 are two distinct maximal submodules, then IN2 = JN1 = 0.
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