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Abstract. The object of the present paper is to characterize paracontact metric (k, p)-
manifolds satisfying certain semisymmetry curvature conditions with respect to the
Schouten-van Kampen connection.
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1. Introduction

Paracontact metric structures have been introduced in [5], as a natural odd-
dimensional counterpart to para-Hermitian structures, like contact metric structures
correspond to the Hermitian ones. Paracontact metric manifolds have been studied
by many authors in the recent years, particularly since the appearance of [19]. An
important class among paracontact metric manifolds is that of the (k, u)-manifolds,
which satisfies the nullity condition [2]

(1.1) R(X,Y)E=k(n(Y)X —n(X)Y) + p(n(Y)hX —n(X)hY),
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for all XY vector fields on M, where k£ and p are constants and h = %Eggﬁ. This
class includes the para-Sasakian manifolds [5, 19], the paracontact metric manifolds
satisfying R(X,Y )¢ = 0 for all X,Y [20].

Among the geometric properties of manifolds symmetry is an important one.
From the local point view it was introduced by Shirokov as a Riemannian mani-
fold with covariant constant curvature tensor R, that is, with VR = 0, where V is
the Levi-Civita connection. An extensive theory of symmetric Riemannian mani-
folds was introduced by Cartan in 1927. A manifold is called semisymmetric if the
curvature tensor R satisfies R(X,Y) - R = 0, where R(X,Y’) is considered to be a
derivation of the tensor algebra at each point of the manifold for the tangent vectors
X,Y. Semisymmetric manifolds were locally classified by Szabé [16]. Also in [17]
and [18], Yildiz and De studied h-Weyl semisymmetric, ¢-Weyl semisymmetric, h-
projectively semisymmetric and ¢-projectively semisymmetric non-Sasakian (k, u)-
contact metric manifolds and paracontact metric (k, 1)-manifolds respectively. Re-
cently Mandal and De have studied certain curvature conditions on paracontact
(k, n)-spaces [6].

The projective curvature tensor is an important tensor from the differential ge-
ometric point of view. Let M be a (2n + 1)-dimensional semi-Riemannian manifold
with metric g. The Ricci operator @ of (M, g) is defined by g(QX,Y) = S(X,Y),
where S denotes the Ricci tensor of type (0,2) on M. If there exists a one-to-one
correspondence between each coordinate neighbourhood of M and a domain in Eu-
clidian space such that any geodesic of the semi-Riemannian manifold corresponds
to a straight line in the Euclidean space, then M is said to be locally projectively
flat. For n > 1, M is locally projectively flat if and only if the well known projective
curvature tensor P vanishes. Here P is defined by

(1.2) P(X,Y)Z = R(X,Y)Z — %{S(Y, Z)X — S(X,Z)Y},

for all X,Y,Z € T(M), where R is the curvature tensor and S is the Ricci tensor.

In fact M is projectively flat if and only if it is of constant curvature. Thus
the projective curvature tensor is the measure of the failure of a semi-Riemannian
manifold to be of constant curvature.

A paracontact metric (k, u)-manifold is said to be an Einstein manifold if the
Ricci tensor satisfies S = A1 ¢, and an n-Einstein manifold if the Ricci tensor satisfies
S = Mg+ Aan ®n, where A1 and A9 are constants.

On the other hand, the Schouten-van Kampen connection is one of the most
natural connections adapted to a pair of complementary distributions on a dif-
ferentiable manifold endowed with an affine connection [1, 4, 10]. Solov’ev has
investigated hyperdistributions in Riemannian manifolds using the Schouten-van
Kampen connection [12, 13, 14, 15]. Then Olszak has studied the Schouten-van
Kampen connection to adapted to an almost (para) contact metric structure [8].
He has characterized some classes of almost (para) contact metric manifolds with the
Schouten-van Kampen connection and he has finded certain curvature properties of
this connection on these manifolds
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In the present paper we have studied certain curvature properties of a paracon-
tact metric (k, u)-space. The outline of the article goes as follows: After introduc-
tion, in Section 2, we recall basic facts which we will need throughout the paper.
Section 3 deals with some basic results of paracontact metric manifolds with charac-
teristic vector field £ belonging to the (k, u)-nullity distribution with respect to the
Schouten-van Kampen connection. In section 4, we characterize paracontact met-
ric (k, u)-manifolds satisfying some semisymmetry curvature conditions. We prove
that a h-projectively semisymmetric and ¢-projectively semisymmetric paracontact
metric (k, u)-manifold with respect to the Schouten-van Kampen connection is an
n-Einstein manifold with respect to the Levi-Civita connection, respectively. In the
all cases we assume that k # —1.

2. Preliminaries

An (2n + 1)-dimensional smooth manifold M is said to have an almost para-
contact structure if it admits a (1, 1)-tensor field ¢, a vector field £ and a 1-form 7
satisfying the following conditions:

(@) &) =1, ¢*=1-nRE,

(7i) the tensor field ¢ induces an almost paracomplex structure on each fibre of
D = ker(n), i.e. the *+l-eigendistributions, D*¥ = Dy(£1) of ¢ have equal
dimension n.

From the definition it follows that ¢ = 0, n o ¢ = 0 and the endomorphism ¢
has rank 2n. The Nijenhius torsion tensor field [¢, ¢] is given by

(2.1) [0, 9)(X,Y) = ¢*[X, Y] + [6X, Y] — ¢[6X, Y] — [ X, ¢Y].

When the tensor field Ny = [¢, ¢] — 2dn @ £ vanishes identically the almost para-
contact manifold is said to be normal. If an almost paracontact manifold admits a
pseudo-Riemannian metric g such that

(2.2) 9(dX,9Y) = —g(X,Y) + n(X)n(Y),

for all XY € T'(T'M), then we say that (M,,&,n,q) is an almost paracontact
metric manifold. Notice that any such a pseudo-Riemannian metric is necessarily
of signature (n + 1,n). For an almost paracontact metric manifold, there always
exists an orthogonal basis {X1,...,X,,Y1,...,Y,, &}, such that g(X;, X;) = 6;,
9(Y3,Y)) = =045, 9(X3,Y;) = 0, g(& Xi) = g(&Y;) = 0, and V; = ¢.X;, for any
1,7 € {1,...,n}. Such basis is called a ¢-basis.

We can now define the fundamental form of the almost paracontact metric man-
ifold by 6(X,Y) = g(X,0Y). If dp(X,Y) = g(X,¢Y), then (M,$,&,n,g) is said
to be paracontact metric manifold. In a paracontact metric manifold one defines a
symmetric, trace-free operator h = %qub, where L¢, denotes the Lie derivative. It
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is known [19] that h anti-commutes with ¢ and satisfies h{ = 0, trh = trhp = 0
and
(2.3) Vx€=—¢X + ohX,

(2.4) (Vxn)Y = g(X,¢Y) — g(hX, ¢Y),

where V is the Levi-Civita connection of the pseudo-Riemannian manifold (M, g).
Let R be Riemannian curvature operator

(2.5) R(X,Y)Z =VxVyZ —VyVxZ — VixyZ.

Moreover h = 0 if and only if £ is Killing vector field. In this case (M, ¢,&,n,g)
is said to be a K-paracontact manifold. A normal paracontact metric manifold is
called a para-Sasakian manifold. Also, in this context the para-Sasakian condition
implies the K-paracontact condition and the converse holds only in dimension 3.
We also recall that any para-Sasakian manifold satisfies

(2.6) R(X,Y)E = n(X)Y —n(Y)X,

3. Paracontact metric (k, u)-manifolds with respect to the
Schouten-van Kampen connection

Let (M, ¢,&,1n,9) be a paracontact manifold. The (k, u)-nullity distribution of
a (M, ¢,&,n,g) for the pair (k, p) is a distribution

N(k,p) : p— Np(k,p)
(3.1) _ { Z € T,M | R(X,Y)Z = k(9(Y, 2)X — g(X,2)Y) }
' +u(g(Y, Z)hX — g(X, Z)hY) ’
for some real constants k and p. If the characteristic vector field £ belongs to the
(k, p)-nullity distribution we have (3.1). [2] is a complete study of paracontact
metric manifolds for which the Reeb vector field of the underlying contact structure
satisfies a nullity condition (the condition (3.1), for some real numbers k and ).

Lemma 3.1. [2] Let M be a paracontact metric (k, w)-manifold of dimension 2n+
1. Then the following holds:

(Vxh)Y — (Vyh)X = —(1+k)(29(X, Y )¢ +n(X)oY —n(Y)pX)
(3.2) +(1 = p)(n(X)phY —n(Y)phX),
(Vxoh)Y — (Vyoh)X = (1+Ek)0X)Y —n(Y)X)
(3.3) +(p =D (n(X)hY —n(Y)hX),

(34) (Vx@)V = —g(X,Y){+ g(hX,YV)E+n(Y)X —n(X)Y,  k# -1,
for any vector fields X, Y on M.
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Lemma 3.2. [2] In any (2n + 1)-dimensional paracontact metric (k, u)-manifold
(M, $,&,1n,9) such that k # —1, the Ricci operator @Q is given by

35 Q=020 -n)+n) I+ 2n—-1)+ph+2n—-1)+n(2k—pu))nE

On the other hand, we have two naturally defined distribution in the tangent
bundle TM of M as follows:

(3.6) H = kern, V = span{¢}.

Then we have TM = H®V, HNV = {0} and H L V. This decomposition allows
one to define the Schoutenvan Kampen connection ;Z over an almost contact metric
structure. The Schouten-van Kampen connection V on an almost (para) contact
metric manifold with respect to Levi-Civita connection V is defined by [12]

(3.7) VxY = VxV —(Y)Vx&+ (Vxn)(Y)E.

Thus with the help of the Schouten-van Kampen connection (3.7), many properties
of some geometric objects connected with the distributions H, V can be charac-

terized [12, 13, 1~4] For example g, { and 7 are parallel with respect to V, that is,
V¢ =0,Vg=0,Vn=0. Also, the torsion T of V is defined by

(3.8) T(X,Y) = n(X)Vy€ —n(Y)VxE+ 2dn(X, Y)E.

Now we consider a paracontact metric (k, u)-manifold with respect to the Schouten-
van Kampen connection. Firstly, using (2.3) and (2.4) in (3.7), we get

(39)  VxY =VxY —n(Y)$X —n(Y)$hX + g(X, ¢V )¢ — g(hX, Y )E.

Let R and R be the curvature tensors of the Levi-Civita connection V and the
Schouten-van Kampen connection V,

(3.10) R(X,Y)=[Vx,Vy]-Vixy,, R(X,Y)=[Vx,Vy]-Vixy
If we substitute equation (3.7) in the definition of the Riemannian curvature tensor
(3.11) R(X,Y)Z =VxVyZ —VyVxZ —VixyZ.

Using (3.9) in (3.11), we have

RX,Y)Z = Vx(VyZ-n(Z)¢Y —n(Z)phY
+9(Y,02)¢ — g(hY, $2)§)
~Vy(VxZ = n(2)$X — n(Z)¢hX
(3.12) +9(X,02)€ — g(hX, $Z)€)
—(Vixy1Z +(2)1X, Y] = n(Z)ph]X,Y]
+9([X,Y],02)§ — g(h[X, Y], 9Z)E).
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Using (3.2), (3.3) and (3.4) in (3.12), we obtain the following formula connecting R
and R on M

R(X,Y)Z = R(X,Y)Z+g(X,62)6Y — g(Y,06Z)6X + g(hY,$Z)$X
—g(hX,02)0Y + g(Y,¢Z)$hX — g(X,$pZ)phY
+g(hX, ¢Z)¢hY — g(hY, ¢Z)¢hX

(3.13) +(k +1)(g(X, Z)n(Y)E — g(Y, Z)n(X)€)
+h((X)(Z)Y —n(Y)n(Z)X)

+(u = 1)(g(hX, Z)n(Y )€ — g(hY, Z)n(X)€)

+u(n(X)n(Z)hY —n(Y)n(Z)hX).

Now taking the inner product in (3.13) with a vector field W, we have

JRX,Y)ZW) = g(RX,Y)ZW)+g(X,02)9(8Y. W) = g(Y,62Z)g(6X, W)
+9(hY,92)g(0 X, W) — g(hX,$Z)g(¢Y, W)
+9(Y, 0Z)g(ohX, W) — (X, ¢Z)g(phY, W)
(3.14) +9(hX,0Z)g(ohY, W) — g(RY, ¢Z)g(dohX, W)
+(k+ 1) (9(X, Z2)n(Y)n(W) = g(Y, Z)n(X)n(W)
+k(g(Y, )()(Z) 9(X, W)n(Y)n(Z))
+(u = D (g(hX, Z)n(Y)n(W) — g(hY, Z)n(X)n(W))
+u(g(hY, Wn(X)n(Z) — g(hX, W)n(Y)n(Z)).
If we take X =W =¢;, {i =1,...,2n+ 1}, in (3.14), where{ei} is an orthonormal
basis of the tangent space at each point of the manifold, we get
3(v,2) = S(YV,2) - (k+2)g(Y, 2)
(3.15) F(k+ 2= k(Y )n(Z) — (1 — 1)g(hY, 2),

where S and S denote the Ricci tensor of the connections V and V, respectively.
As a consequence of (3.15), we get for the Ricci operator @

(3.16) QY = QY — (k+2)Y + (k42 — 2nk)n(Y)€ — (u — 1)hY,
Also if we take Y = Z =e¢;, {i =1,...,2n + 1}, in (3.16), we get
(3.17) r=r—4n(k+1),

where 7 and r denote the scalar curvatures of the connections V and V, respectively.

4. Some semisymmetry curvature conditions on paracontact metric
(k, u)-manifolds

In this section we study some semisymmetry curvature conditions on paracon-
tact metric (k, u)-manifolds with respect to the Schouten-van Kampen connection.
Firstly we give the following:
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Definition 4.1. A semi-Riemannian manifold (M?"*+1 g),n > 1, is said to be
h-projectively semisymmetric if

(4.1) P(X,Y)-h=0,

holds on M.

Let M be a h-projectively semisymmetric paracontact metric (k, u)-manifold
(k # —1) with respect to the Schouten-van Kampen connection. Then above equa-
tion is equivalent to _ B
(4.2) P(X,Y)hZ — hP(X,Y)Z = 0.

for any X,Y,Z € x(M). Thus we write
R(X,Y)hZ — hR(X,Y)Z
(4.3) f%@(y, hZ)X — S(X,hZ)Y — S(Y, Z)hX + S(X,Z)hY} = 0.
Using (3.13) in (4.3), we have
R(X,Y)hZ — hR(X,Y)Z + g(X,dhZ)¢Y — g(Y, ohZ)pX
—g(hY, h¢ Z)pX + g(hX, h¢ Z)Y + g(Y, phZ)phX
—g(X, ohZ)phY — g(hX, h Z)phY + g(hY, h¢ Z)phX
+(k + D{g(X, nZ)n(Y)¢ — g(Y, hZ)n(X)¢}
+(p = D{g(hX, hZ)n(Y)§ — g(hY, hZ)n(X)E}
—9(X,92)h¢Y + g(Y,dZ)h X — g(hY, 9Z)h¢ X
(4.4) +9(hX,0Z)heY — g(Y,$Z)hohX + g(X, pZ)hohY
—g(hX,¢Z)héhY + g(hY, pZ)hohX
—k{n(X)n(Z)hY —n(Y)n(Z)hX}
—u{n(X)n(Z2)R*Y —n(Y)n(Z)h* X}
f%{S(Y, hZ)X — S(X,hZ)Y — S(Y,Z)hX + S(X, Z)hY
—(k +2)[g(Y,hZ)X — g(X,hZ)Y + g(Y,Z)hX — g(X, Z)hY]
+(u— D[g(hX, hZ)Y — g(hY,hZ)X + g(hY, Z)hX — g(hX, Z)hY]
+(k+ 2= 2nk)n(X)n(Z)hY —n(Y)n(Z)hX]} = 0.
Yildiz and De [18] proved that
R(X,Y)hZ —hR(X.Y)Z = p(k+1){g(Y,Z)n(X)§ —g(X, Z)n(Y)¢
+n(X)n(2)Y —n(Y)n(Z)X}
(4.5) +k{g(hY, Z)n(X)€ — g(hX, Z)n(Y)¢
+n(X)n(Z)hY —n(Y)n(Z)hX
+9(¢Y, Z)phX — g(¢X, Z)phY'}
+(u+ k){9(ohX, 2)9Y — g(ohY, Z)p X}
+2ug(pX,Y)phZ.
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Again using (4.5) in (4.4), we get

p(k + 1){g(Y, Z)n(X)€ — 9(X, Z)n(Y)§ +n(X)n(2)Y —n(Y)n(Z)X}
+k{g(hY, Z)n(X)§ — g(h X, Z)n(Y)§ + n(X)n(Z)hY
—n(Y)n(Z)hX — g(¢Y, Z)h¢ X + g(¢X, Z)hoY '}
—(p+ k) {g(ho X, Z)pY — g(hoY, Z)pX }
—2pg(¢ X, Y)hoZ — g(X, h¢ Z)pY + g(Y, hoZ)p X
—(k+1)[g(Y,0Z)pX — g(X,02)¢Y — g(X, 9Z)hoY
(4.6) +9(Y,02)h¢X — g(X,hZ)n(Y)§ + g(Y, hZ)n(X)E]
+9(Y, h¢Z)ho X — g(X, h¢pZ)hoY
+(u = 1)k + D{g(X, Z)n(Y)§ — g(Y, Z)n(X)E}
—9(X,02)heY + g(Y,02)h¢ X — g(hY,$Z)h¢ X + g(hX, ¢ Z)hoY
+(k+1D)[g(Y,02)9pX — g(X, 02)dY + g(hX,$Z)pY — g(hY, ¢Z)pX]

—k{n(XOn(2)RY —n(Y)n(Z)hX} — p(k + D{n(X)n(2)Y —n(Y)n(2)X}

—i{S(Y hZ)X — S(X,hZ)Y — S(Y, Z)hX + S(X, Z)hY

(k: +2)[g(Y,hZ)X — g(X,hZ)Y + g(X, Z)hY — g(Y, Z)hX]

(n =1k +1)[g(X, 2)Y =n(X)n(2)Y — g(Y, Z)X +n(Y)n(Z)X]
—(k+2 =2nk)[n(Y)n(Z)hX — n(X)n(Z)nY]

+(u — D[g(hY, Z)hX + g(hX, Z)hY] = 0,

+

which gives to

lg(heY, Z)g(¢ X, W) — g(hé X, Z)g(¢Y, W) + 2(X, ¢Y ) g(hoZ, W)}
+(k + D{g(Y, 2)n(X)n(W) — g(X, Z)n(Y )n(W)}
+9(hX, Z)n(Y)n(W) — g(hY, Z)n(X)n(W)
— 5 AR Z)g(X, W) = S(X, h2)g(Y, W)
+S(X, Z)g(hY, W) — S(Y, Z)g(hX, W)
47 —(k+2)[g(Y,hZ)g(X, W) = g(X,hZ)g(Y, W)
+9(X7 Z)g(hY, W) - g(Y, Z)g(hX, W)]
—(p =) (k+D[g(Y, Z)g(X, W) — g(X, W)n(Y)n(Z)
+9(Y, Wn(X)n(Z) — g(X, Z)g(Y,W)]
—(k +2 = 2nk)[g(hX, W)n(Y)n(Z) — g(hY, W)n(X)n(Z)]
+(p = Dg(hY, Z)g(hX, W) + g(hX, Z)g(hY,W)] =
Putting X = W =, in (4.7), we get
pw(k +1)g(hz,Y) + pk + ){g(Y, Z) = n(Y)n(Z)} — g(hY, Z)
—%{(% +D[S(AY, Z) — (k +2)g(Y, hZ)
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(4.8) —(p =Dk +1)(g(Y; 2) —=n(Y)n(2))]
+(k+2)g(Y,hZ) +2(n = D)(k +1D)[g(Y, 2) = n(Y)n(Z)]
—(k+2)g(hY,Z)} = 0.

Again putting Y = hY in (4.8) and using h? = (k + 1)¢?, we obtain

(k+D{2nu(k+1) —2n+ 2n+ 1)(k+ 2)]g(Y, Z)
—2npk+1)—2n+ 2n+ 1)(k+ 2) — (2n+ 1)2nkIn(Y)n(2)
(49)  +R2ap+ @n+1)(u—1) — 26— D]g(h, 2)
-2n+1)S(Y,2)} =0.
As well known that
1 (2(1 —n) 4+ nu)

g(hY,z) = mS(YaZ)— 2n—1) +p 9(Y, Z)
(4.10) _@2n ;(:l)jﬁ(iku_ 1) v yn(2).

Hence using (4.10) in (4.9), we get

(
(k + D){[2np(k + 1) — 2n + (20 + 1) (k + 2)]g(Y, Z)
—2npk+1)—2n+ 2n+ 1)(k+ 2) — (2n+ 1)2nkIn(Y)n(2)
1
(4.11) +2np+ 2n+1)(p—1) — 2(p — 1)]{mS(Y,Z)
2(n = 1) + n(2k — p))
S 1) ta n(Y)n(Z)}

(2(1 = n) +nu)
B CEETE 9(Y,Z) -

—@2n+1)8(Y, 2Z)} = 0.

Hence one can write

A
(4.12) S(Y,2) = 7 9(Y.2) + —In(Y)n(2),
where

Ay = 2npk+1)—2n+ 2n+1)(k+2)
(2(1 —n) + np)
2n—1)+p
Ay = 2nuk+1)+2n+ 2n+1)(k+2)+ (2n+ 1)2nk
(2(n — 1) + n(2k — )
2(n—1)+p

A = 2n+1-_2np+2n+1)(p—1) — 2(pn — 1)](2(71_—11)_,_#1)

Therefore from (4.12) it follows that the manifold M is an 7-Einstein manifold with
respect to the Levi-Civita connection. Thus we have the following:

—[2np+ 2n+1)(p—1) = 2(p - 1)]

—[2np+ (20 + 1) (5 — 1) — 2(u — 1)]
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Theorem 4.1. Let M be a (2n + 1)-dimensional h-projectively semisymmetric
paracontact (k,p)-manifold (k # —1) with respect to the Schouten-van Kampen
connection. Then the manifold M is an n-FEinstein manifold with respect to the
Levi-Civita connection provided p # 2(1 —n).

Definition 4.2. A semi-Riemannian manifold (M?"*+1 g),n > 1, is said to be
¢-projectively semisymmetric if

(4.13) P(X,Y) ¢ =0=0,

holds on M for all X,Y € x(M).

Let M be a ¢-projectively semisymmetric paracontact metric (k, u)-manifold
(k # —1) with respect to the Schouten-van Kampen connection. Then above equa-
tion is equivalent to

(4.14) P(X,Y)¢Z — ¢P(X,Y)Z =0,
for any X,Y, Z,W € x(M). Thus we have

(4.15) R(X,Y)$Z — ¢R(X,Y)Z
—%{5(}’, $Z)X — S(X,¢02)Y — S(Y, Z)pX + 5(X, Z)¢Y} =0,

Using (3.13) in (4.15), we get

R(X,Y)9Z — ¢R(X,Y)Z + g(X, Z)pY —n(X)n(Z)¢Y
—9(Y, 2)6X +n(Y)n(Z)pX + g(hY, Z)9X — g(hX, Z)¢Y
+9(Y, Z)phX — (Y )n(Z)ohX — g(X, Z)phY + n(X)n(Z)phY
+9(hX, Z)phY — g(hY, Z)phX
+(k + D{g(X,0Z)n(Y)§ — g(Y, 0Z)n(X)E}
+(u = D{g(hX,dZ)n(Y )€ — g(hY, ¢Z)n(X)E}
—9(X,902)Y +9(X,0Z)n(Y)§ + g(Y,0Z) X — g(Y, 0Z)n(X)E
(4.16) —g(hY,¢Z)X + g(hY,¢Z)n(X)E + g(hX,¢Z)Y — g(hX,dZ)n(Y)§
—g(Y,pZ)hX + (X, $Z)hY — g(hX,$Z)hY + g(hY,pZ)hX
—k{n(X)n(Z)oY —n(Y)n(Z)¢X} — p{n(X)n(Z)phY —n(Y)n(Z)phX}
_i{sm 6Z)X — S(X,62)Y — S(Y, 2)6X + S(X, Z)$Y
(k+2)[g(Y,02)X — g(X,02)Y + g9(X, Z)¢Y — g(Y, Z)pX]
(= D[g(hY,02)X — g(hX,$2)Y]
(k+2 = 2nk)[n(Y)n(Z2)pX —n(X)n(Z)¢Y]
+(pu = D[g(hY, 2)¢X — g(hX, Z)¢Y]} = 0.
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In [18], Yildiz and De proved that

R(X,Y)9Z —oR(X,Y)Z = ¢g(X,02)Y —g(Y,02)X +g(Y,2)9pX
—9(X, 2)9Y — g(X,9Z)hY + g(Y,pZ)h X
+9(hY.$Z)X — g(hX,$2)Y — g(Y, Z)$hX

(4.17) +g(X, Z)¢hY g(hY, 2)pX + g(hX, Z)pY

T 12 {g(hY,¢Z)hX — g(hX,¢pZ)hY — g(hY, Z)phX

+g(hX, Z)¢hY} — _k
+9(hY, $Z)hX — g(hX, ¢Z>hY}

+(k + 1){g(¢X, Z)n(Y)€ — g(¢Y, Z)n(X)¢
+n(X)n(Z2)¢Y —n(Y)n(Z)pX}

(Z
+(p = Dig(ehX, Z)n(Y)E — g(ohY, Z)n(X)E
+n(X)n(Z)phY —n(Y)n(Z)phX}.

122
2

{g(hX, Z)¢hY — g(hY, Z)phX

Using (4.17) in (4.16), we obtain

g(hX, Z)g(dhY, W) — g(hY, Z)g(¢hX, W) + n(X)n(Z)g(shY, W)
—n(Y)n(Z2)g(ohX, W) + g(X, 6 Z)n(Y )n(W) — g(Y, ¢Z)n(X)n(W)
+g(hY, ¢Z)g(hX, W) — g(hX, $Z)g(hY, W)

2 (Y, 62)9(hX, W) — g(hX. 62)g(Y, W)

—g(hY, Z)g(oh X, W) + g(hX, Z)g(¢hY, W)}
R (90X, 2)glohY, W) — g(AY: Z2)g(on X, W)

(418)  +9(hY,02)g(hX, W) = g(hX, 6Z)g(hY, W)}

(i = D{g(hX, 62)n(Y )& — g(hY, 6 Z)n(X )¢}

5 SV, 62)9(X, W) — S(X,62)g(¥, W) + S(X, Z)g(Y, W)

=S(Y, 2)g(dX, W) = (k +2)[9(Y, 6 Z)g(X, W) — g(X, 9Z)g(Y, W)

+9(X, Z)g(8Y. W) — (Y, 2)g(6X. W)] + (1 — )[g(hY, 2)g(6 X, W)

—9(hX, Z)g(oY, W) + g(hY,02)g(X, W) — g(hX, ¢Z)g(Y, W)

~(k+2 = 208)[n(V)n(Z)g(&X, W) = n(X)n(Z2)g (Y, W)]} =0,

If we put Y = ¢Y in (4.18), we have

9(hoY, Z)g(hX, W) — g(X,hZ)g(h¢*Y, W) — g(h¢®Y, W)n(X)n(Z)
—9(oY, 0Z)n(X)n(W) + g(hdY, ¢Z)g(hX, W) — g(X, h¢Z)g(heoY, W)

F R g 1Y, 02)g(hX, W) — g(X, hoZ)g(hoY, W)
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+g(hoY, Z)g(hX, ¢W) — g(X,hZ)g(h¢*Y, W)}

bk
S g (X hZ)g(hPY, W) + g(hY, Z)g(h X, 6W)

(4.19) —g(ohoY, Z)g(hX, W) — g(X, h¢Z)g(heY, W)}
—(n = 1)g(heY, dZ)n(X)n(W)
~ S S(8Y, 62)g(X, W) — 5(X, 62)g(6Y, W) + S(X, Z2)g(6*Y, W)
—S(¢Y, Z)g(¢ X, W) — (k + 2)[g(¢Y, 62)g(X, W) — g(X, ¢Z)g(¢Y, W)
+9(X, Z)g(6*Y, W) — g(¢Y, Z)g(6X, W)] + (1 — 1)[g(heY, Z)g(s X, W)
—g(hX, Z)g(¢*Y, W) + g(hoY, 0 Z)g(X, W) — g(hX, 6 Z)g(6Y, W)]
+(k+2 = 20k)n(X)n(Z)g(6°Y, W)} = 0.

Putting X =W =e¢;, {i=1,...,2n + 1}, in (4.19), we obtain

S(Y,z) = 2n [{1+2k—#+(2”%21(k+2)

2n—1
(4.20) +H{-1-2k+pu— w + (2n — Dk )n(Z)

2n
2n —1

Y, Z)].
ey, 7))

Yo, 2)

—(p=D{1+

Using (4.10) in (4.20), we obtain

N — [{1+2k—u+w

2n—1
(G0
2n—1 1
2n )}{(2(71— 1)+ p)
2(1 —n) +np) (2(n—1) +n(2k — p))

C 2n—1)+pu 9. 2) = 2n—1)+u

t9(Y, Z)

+ (2n = Dkn(Y)n(Z)

—{( -1+ Sy, 2)

n(Y)n(Z)}],

which gives

277,—1)][ 1
2n (2(n—1)+ p)
2n27_ll{1+2k—ﬂ+ (anézl(kJrQ)}

(2(1 —n) + np)
M a2

2n2ﬁ1{_1_2k+u—W+(2n—1)k}

2n—1.,(2(n—1)4+n(2k — pn))
2n ) 2ln—1)+p Y

{1+ (k-1 +

[}S(Y, 2)

- 4

(4.21) Hu—1)(1+

2n—1
2n

—{

Hp =D+
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Hence one can write

(122) S(Y.2) = Sg(v.2) + Tn(V)n(2),
where
B = 2n2fl{1+2k—u+ (2”_2](]”2)}
2n—1., . (2(1 = n) 4+ nu)
By = —{2n27il{—1—2k+u— W—i—@n—l)k}
Hle- a4 2ty B DS,
o — 1 1
B = Lt (- )+ =5 ) e

Therefore from (4.22) it follows that the manifold M is an n-Einstein manifold with
respect to the Levi-Civita connection. Thus we have the following:

Theorem 4.2. Let M be a (2n + 1)-dimensional ¢-projectively semisymmetric
paracontact (k, p)-manifold (k # —1) with respect to the Schouten-van Kampen
connection. Then the manifold M is an n-FEinstein manifold with respect to the
Levi-Civita connection provided p # 2(1 —n).
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